1
|
Clark TW, Tregoning JS, Lister H, Poletti T, Amin F, Nguyen-Van-Tam JS. Recent advances in the influenza virus vaccine landscape: a comprehensive overview of technologies and trials. Clin Microbiol Rev 2024; 37:e0002524. [PMID: 39360831 PMCID: PMC11629632 DOI: 10.1128/cmr.00025-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
SUMMARYIn the United Kingdom (UK) in 2022/23, influenza virus infections returned to the levels recorded before the COVID-19 pandemic, exerting a substantial burden on an already stretched National Health Service (NHS) through increased primary and emergency care visits and subsequent hospitalizations. Population groups ≤4 years and ≥65 years of age, and those with underlying health conditions, are at the greatest risk of influenza-related hospitalization. Recent advances in influenza virus vaccine technologies may help to mitigate this burden. This review aims to summarize advances in the influenza virus vaccine landscape by describing the different technologies that are currently in use in the UK and more widely. The review also describes vaccine technologies that are under development, including mRNA, and universal influenza virus vaccines which aim to provide broader or increased protection. This is an exciting and important era for influenza virus vaccinations, and advances are critical to protect against a disease that still exerts a substantial burden across all populations and disproportionately impacts the most vulnerable, despite it being over 80 years since the first influenza virus vaccines were deployed.
Collapse
Affiliation(s)
- Tristan W. Clark
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - John S. Tregoning
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
2
|
Schewe KE, Cooper S, Crowe J, Llewellyn S, Ritter L, Ryan KA, Dibben O. An Optimised Live Attenuated Influenza Vaccine Ferret Efficacy Model Successfully Translates H1N1 Clinical Data. Vaccines (Basel) 2024; 12:1275. [PMID: 39591178 PMCID: PMC11598904 DOI: 10.3390/vaccines12111275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Between 2013 and 2016, the A/H1N1pdm09 component of the live attenuated influenza vaccine (LAIV) produced instances of lower-than-expected vaccine effectiveness. Standard pre-clinical ferret models, using a human-like vaccine dose and focusing on antigenic match to circulating wildtype (wt) strains, were unable to predict these fluctuations. By optimising the vaccine dose and utilising clinically relevant endpoints, we aimed to develop a ferret efficacy model able to reproduce clinical observations. Ferrets were intranasally vaccinated with 4 Log10 FFU/animal (1000-fold reduction compared to clinical dose) of seven historical LAIV formulations with known (19-90%) H1N1 vaccine efficacy or effectiveness (VE). Following homologous H1N1 wt virus challenge, protection was assessed based on primary endpoints of wt virus shedding in the upper respiratory tract and the development of fever. LAIV formulations with high (82-90%) H1N1 VE provided significant protection from wt challenge, while formulations with reduced (19-32%) VE tended not to provide significant protection. The strongest correlation observed was between reduction in wt shedding and VE (R2 = 0.75). Conversely, serum immunogenicity following vaccination was not a reliable indicator of protection (R2 = 0.37). This demonstrated that, by optimisation of the vaccine dose and the use of non-serological, clinically relevant protection endpoints, the ferret model could successfully translate clinical H1N1 LAIV VE data.
Collapse
Affiliation(s)
- Katarzyna E. Schewe
- Flu-BPD, BioPharmaceutical Development, R&D, AstraZeneca, Liverpool L24 9JW, UK; (K.E.S.); (S.C.); (J.C.); (S.L.); (L.R.)
| | - Shaun Cooper
- Flu-BPD, BioPharmaceutical Development, R&D, AstraZeneca, Liverpool L24 9JW, UK; (K.E.S.); (S.C.); (J.C.); (S.L.); (L.R.)
| | - Jonathan Crowe
- Flu-BPD, BioPharmaceutical Development, R&D, AstraZeneca, Liverpool L24 9JW, UK; (K.E.S.); (S.C.); (J.C.); (S.L.); (L.R.)
| | - Steffan Llewellyn
- Flu-BPD, BioPharmaceutical Development, R&D, AstraZeneca, Liverpool L24 9JW, UK; (K.E.S.); (S.C.); (J.C.); (S.L.); (L.R.)
| | - Lydia Ritter
- Flu-BPD, BioPharmaceutical Development, R&D, AstraZeneca, Liverpool L24 9JW, UK; (K.E.S.); (S.C.); (J.C.); (S.L.); (L.R.)
| | - Kathryn A. Ryan
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK;
| | - Oliver Dibben
- Flu-BPD, BioPharmaceutical Development, R&D, AstraZeneca, Liverpool L24 9JW, UK; (K.E.S.); (S.C.); (J.C.); (S.L.); (L.R.)
| |
Collapse
|
3
|
Vatzia E, Paudyal B, Dema B, Carr BV, Sedaghat-Rostami E, Gubbins S, Sharma B, Moorhouse E, Morris S, Ulaszewska M, MacLoughlin R, Salguero FJ, Gilbert SC, Tchilian E. Aerosol immunization with influenza matrix, nucleoprotein, or both prevents lung disease in pig. NPJ Vaccines 2024; 9:188. [PMID: 39397062 PMCID: PMC11471855 DOI: 10.1038/s41541-024-00989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Current influenza vaccines are strain-specific and require frequent updates to combat new strains, making a broadly protective influenza vaccine (BPIV) highly desirable. A promising strategy is to induce T-cell responses against internal proteins conserved across influenza strains. In this study, pH1N1 pre-exposed pigs were immunized by aerosol using viral vectored vaccines (ChAdOx2 and MVA) expressing matrix (M1) and nucleoprotein (NP). Following H3N2 challenge, all immunizations (M1, NP or NPM1) reduced lung pathology, but M1 alone offered the greatest protection. NP or NPM1 immunization induced both T-cell and antibody responses. M1 immunization generated no detectable antibodies but elicited M1-specific T-cell responses, suggesting T cell-mediated protection. Additionally, a single aerosol immunization with the ChAdOx vaccine encoding M1, NP and neuraminidase reduced lung pathology. These findings provide insights into BPIV development using a relevant large natural host, the pig.
Collapse
Affiliation(s)
| | | | - Barbara Dema
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | - Susan Morris
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marta Ulaszewska
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - Sarah C Gilbert
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
4
|
Jones CH, Hauguel T, Beitelshees M, Davitt M, Welch V, Lindert K, Allen P, True JM, Dolsten M. Deciphering immune responses: a comparative analysis of influenza vaccination platforms. Drug Discov Today 2024; 29:104125. [PMID: 39097221 DOI: 10.1016/j.drudis.2024.104125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/21/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Influenza still poses a significant challenge due to its high mutation rates and the low effectiveness of traditional vaccines. At present, antibodies that neutralize the highly variable hemagglutinin antigen are a major driver of the observed variable protection. To decipher how influenza vaccines can be improved, an analysis of licensed vaccine platforms was conducted, contrasting the strengths and limitations of their different mechanisms of protection. Through this review, it is evident that these vaccines do not elicit the robust cellular immune response critical for protecting high-risk groups. Emerging platforms, such as RNA vaccines, that induce robust cellular responses that may be additive to the recognized mechanism of protection through hemagglutinin inhibition may overcome these constraints to provide broader, protective immunity. By combining both humoral and cellular responses, such platforms could help guide the future influenza vaccine development.
Collapse
Affiliation(s)
| | | | | | | | - Verna Welch
- Pfizer, Hudson Boulevard, New York, NY 10018, USA
| | | | - Pirada Allen
- Pfizer, Hudson Boulevard, New York, NY 10018, USA
| | - Jane M True
- Pfizer, Hudson Boulevard, New York, NY 10018, USA.
| | | |
Collapse
|
5
|
Avanthay R, Garcia-Nicolas O, Ruggli N, Grau-Roma L, Párraga-Ros E, Summerfield A, Zimmer G. Evaluation of a novel intramuscular prime/intranasal boost vaccination strategy against influenza in the pig model. PLoS Pathog 2024; 20:e1012393. [PMID: 39116029 PMCID: PMC11309389 DOI: 10.1371/journal.ppat.1012393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Live-attenuated influenza vaccines (LAIV) offer advantages over the commonly used inactivated split influenza vaccines. However, finding the optimal balance between sufficient attenuation and immunogenicity has remained a challenge. We recently developed an alternative LAIV based on the 2009 pandemic H1N1 virus with a truncated NS1 protein and lacking PA-X protein expression (NS1(1-126)-ΔPAX). This virus showed a blunted replication and elicited a strong innate immune response. In the present study, we evaluated the efficacy of this vaccine candidate in the porcine animal model as a pertinent in vivo system. Immunization of pigs via the nasal route with the novel NS1(1-126)-ΔPAX LAIV did not cause disease and elicited a strong mucosal immune response that completely blocked replication of the homologous challenge virus in the respiratory tract. However, we observed prolonged shedding of our vaccine candidate from the upper respiratory tract. To improve LAIV safety, we developed a novel prime/boost vaccination strategy combining primary intramuscular immunization with a haemagglutinin-encoding propagation-defective vesicular stomatitis virus (VSV) replicon, followed by a secondary immunization with the NS1(1-126)-ΔPAX LAIV via the nasal route. This two-step immunization procedure significantly reduced LAIV shedding, increased the production of specific serum IgG, neutralizing antibodies, and Th1 memory cells, and resulted in sterilizing immunity against homologous virus challenge. In conclusion, our novel intramuscular prime/intranasal boost regimen interferes with virus shedding and transmission, a feature that will help combat influenza epidemics and pandemics.
Collapse
MESH Headings
- Animals
- Swine
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Injections, Intramuscular
- Administration, Intranasal
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/administration & dosage
- Influenza A Virus, H1N1 Subtype/immunology
- Disease Models, Animal
- Antibodies, Viral/immunology
- Immunization, Secondary/methods
- Vaccination/methods
- Influenza, Human/prevention & control
- Influenza, Human/immunology
Collapse
Affiliation(s)
- Robin Avanthay
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Obdulio Garcia-Nicolas
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nicolas Ruggli
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Llorenç Grau-Roma
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Animal Pathology, COMPATH, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ester Párraga-Ros
- Department of Anatomy and Comparative Pathology, Veterinary Faculty, University of Murcia, Murcia, Spain
| | - Artur Summerfield
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Gert Zimmer
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Zhuang Z, Zhuo J, Yuan Y, Chen Z, Zhang S, Zhu A, Zhao J, Zhao J. Harnessing T-Cells for Enhanced Vaccine Development against Viral Infections. Vaccines (Basel) 2024; 12:478. [PMID: 38793729 PMCID: PMC11125924 DOI: 10.3390/vaccines12050478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Despite significant strides in vaccine research and the availability of vaccines for many infectious diseases, the threat posed by both known and emerging infectious diseases persists. Moreover, breakthrough infections following vaccination remain a concern. Therefore, the development of novel vaccines is imperative. These vaccines must exhibit robust protective efficacy, broad-spectrum coverage, and long-lasting immunity. One promising avenue in vaccine development lies in leveraging T-cells, which play a crucial role in adaptive immunity and regulate immune responses during viral infections. T-cell recognition can target highly variable or conserved viral proteins, and memory T-cells offer the potential for durable immunity. Consequently, T-cell-based vaccines hold promise for advancing vaccine development efforts. This review delves into the latest research advancements in T-cell-based vaccines across various platforms and discusses the associated challenges.
Collapse
Affiliation(s)
- Zhen Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
| | - Jianfen Zhuo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Yaochang Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
| | - Zhao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
| | - Shengnan Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
- Guangzhou National Laboratory, Guangzhou 510005, China
| |
Collapse
|
7
|
Wong PF, Isakova-Sivak I, Stepanova E, Krutikova E, Bazhenova E, Rekstin A, Rudenko L. Development of Cross-Reactive Live Attenuated Influenza Vaccine Candidates against Both Lineages of Influenza B Virus. Vaccines (Basel) 2024; 12:95. [PMID: 38250908 PMCID: PMC10821225 DOI: 10.3390/vaccines12010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/30/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Influenza viruses continue to cause a significant social and economic burden globally. Vaccination is recognized as the most effective measure to control influenza. Live attenuated influenza vaccines (LAIVs) are an effective means of preventing influenza, especially among children. A reverse genetics (RG) system is required to rapidly update the antigenic composition of vaccines, as well as to design LAIVs with a broader spectrum of protection. Such a system has been developed for the Russian LAIVs only for type A strains, but not for influenza B viruses (IBV). METHODS All genes of the B/USSR/60/69 master donor virus (B60) were cloned into RG plasmids, and the engineered B60, as well as a panel of IBV LAIV reassortants were rescued from plasmid DNAs encoding all viral genes. The engineered viruses were evaluated in vitro and in a mouse model. RESULTS The B60 RG system was successfully developed, which made it possible to rescue LAIV reassortants with the desired antigenic composition, including hybrid strains with hemagglutinin and neuraminidase genes belonging to the viruses from different IBV lineages. The LAIV candidate carrying the HA of the B/Victoria-lineage virus and NA from the B/Yamagata-lineage virus demonstrated optimal characteristics in terms of safety, immunogenicity and cross-protection, prompting its further assessment as a broadly protective component of trivalent LAIV. CONCLUSIONS The new RG system for B60 MDV allowed the rapid generation of type B LAIV reassortants with desired genome compositions. The generation of hybrid LAIV reassortants with HA and NA genes belonging to the opposite IBV lineages is a promising approach for the development of IBV vaccines with broad cross-protection.
Collapse
Affiliation(s)
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, 197022 St. Petersburg, Russia; (P.-F.W.); (E.S.); (E.K.); (E.B.); (A.R.); (L.R.)
| | | | | | | | | | | |
Collapse
|
8
|
Liu X, Zhao T, Wang L, Yang Z, Luo C, Li M, Luo H, Sun C, Yan H, Shu Y. A mosaic influenza virus-like particles vaccine provides broad humoral and cellular immune responses against influenza A viruses. NPJ Vaccines 2023; 8:132. [PMID: 37679361 PMCID: PMC10485063 DOI: 10.1038/s41541-023-00728-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
The development of a universal influenza vaccine to elicit broad immune responses is essential in reducing disease burden and pandemic impact. In this study, the mosaic vaccine design strategy and genetic algorithms were utilized to optimize the seasonal influenza A virus (H1N1, H3N2) hemagglutinin (HA) and neuraminidase (NA) antigens, which also contain most potential T-cell epitopes. These mosaic immunogens were then expressed as virus-like particles (VLPs) using the baculovirus expression system. The immunogenicity and protection effectiveness of the mosaic VLPs were compared to the commercial quadrivalent inactivated influenza vaccine (QIV) in the mice model. Strong cross-reactive antibody responses were observed in mice following two doses of vaccination with the mosaic VLPs, with HI titers higher than 40 in 15 of 16 tested strains as opposed to limited cross HI antibody levels with QIV vaccination. After a single vaccination, mice also show a stronger level of cross-reactive antibody responses than the QIV. The QIV vaccinations only elicited NI antibodies to a small number of vaccine strains, and not even strong NI antibodies to its corresponding vaccine components. In contrast, the mosaic VLPs caused robust NI antibodies to all tested seasonal influenza virus vaccine strains. Here, we demonstrated the mosaic vaccines induces stronger cross-reactive antibodies and robust more T-cell responses compared to the QIV. The mosaic VLPs also provided protection against challenges with ancestral influenza A viruses of both H1 and H3 subtypes. These findings indicated that the mosaic VLPs were a promising strategy for developing a broad influenza vaccine in future.
Collapse
Affiliation(s)
- Xuejie Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Tianyi Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Liangliang Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Zhuolin Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Chuming Luo
- School of Public Health (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Minchao Li
- School of Public Health (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Huanle Luo
- School of Public Health (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Caijun Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China.
| | - Huacheng Yan
- Center for Disease Control and Prevention of Southern Military Theatre, 510610, Guangzhou, China.
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China.
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730, Beijing, China.
| |
Collapse
|
9
|
Bagga S, Krishnan A, Dar L. Revisiting live attenuated influenza vaccine efficacy among children in developing countries. Vaccine 2023; 41:1009-1017. [PMID: 36604216 DOI: 10.1016/j.vaccine.2022.12.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023]
Abstract
Seasonal influenza epidemics cause significant pediatric mortality and morbidity worldwide. Live attenuated influenza vaccines (LAIVs) can be administered intranasally, induce a broad and robust immune response, demonstrate higher yields during manufacturing as compared to inactivated influenza vaccines (IIVs), and thereby represent an attractive possibility for young children in developing countries. We summarize recent pediatric studies evaluating LAIV efficacy in developing countries where a large proportion of the influenza-virus-associated respiratory disease burden occurs. Recently, two randomized controlled trials (RCTs) assessing Russian-backbone trivalent LAIV in children reported contradictory results; vaccine efficacy varied between Bangladesh (41 %) and Senegal (0.0 %) against all influenza viral strains. Prior to 2013, Ann Arbor-based LAIV demonstrated superior efficacy as compared to IIV. However, due to low effectiveness of the Ann Arbor-based LAIV against influenza A(H1N1)pdm09-like viruses, the CDC Advisory Committee on Immunization Practices (ACIP) recommended against the use of LAIV during the 2016-17 and 2017-18 influenza seasons. Reduced replicative fitness of the A(H1N1)pdm09 LAIV strains is thought to have led to the low effectiveness of the Ann-Arbor-based LAIV. Once the A(H1N1)pdm09 component was updated, the ACIP reintroduced the Ann-Arbor-based LAIV as a vaccine choice for the 2018-19 influenza season. In 2021, results from a 2-year RCT evaluating the Russian-backbone trivalent LAIV in rural north India reported that LAIV demonstrated significantly lower efficacy compared to IIV, but in Year 2, the vaccine efficacy for LAIV and IIV was comparable. A profounder understanding of the mechanisms underlying varied efficacy of LAIV in developing countries is warranted. Assessing replicative fitness, in addition to antigenicity, when selecting annual A(H1N1)pdm09 components in the Russian-backbone trivalent LAIVs is essential and may ultimately, enable widespread utility in resource-poor settings.
Collapse
Affiliation(s)
- Sumedha Bagga
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Anand Krishnan
- Centre for Community Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Lalit Dar
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
10
|
Duration of Immunity Induced after Vaccination of Cattle with a Live Attenuated or Inactivated Lumpy Skin Disease Virus Vaccine. Microorganisms 2023; 11:microorganisms11010210. [PMID: 36677502 PMCID: PMC9864976 DOI: 10.3390/microorganisms11010210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Vaccines have proven themselves as an efficient way to control and eradicate lumpy skin disease (LSD). In addition to the safety and efficacy aspects, it is important to know the duration for which the vaccines confer protective immunity, as this impacts the design of an efficient control and eradication program. We evaluated the duration of immunity induced by a live attenuated vaccine (LSDV LAV) and an inactivated vaccine (LSDV Inac), both based on LSDV. Cattle were vaccinated and challenged after 6, 12 and 18 months for LSDV LAV or after 6 and 12 months for the LSDV Inac. The LSDV LAV elicited a strong immune response and protection for up to 18 months, as no clinical signs or viremia could be observed after a viral LSDV challenge in any of the vaccinated animals. A good immune response and protection were similarly seen for the LSDV Inac after 6 months. However, two animals developed clinical signs and viremia when challenged after 12 months. In conclusion, our data support the annual booster vaccination when using the live attenuated vaccine, as recommended by the manufacturer, which could potentially even be prolonged. In contrast, a bi-annual vaccination seems necessary when using the inactivated vaccine.
Collapse
|
11
|
Begue S, Waerlop G, Salaun B, Janssens M, Bellamy D, Cox RJ, Davies R, Gianchecchi E, Medaglini D, Montomoli E, Pettini E, Leroux-Roels G, Clement F, Pagnon A. Harmonization and qualification of intracellular cytokine staining to measure influenza-specific CD4+ T cell immunity within the FLUCOP consortium. Front Immunol 2022; 13:982887. [PMID: 36341380 PMCID: PMC9632653 DOI: 10.3389/fimmu.2022.982887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/21/2022] [Indexed: 11/26/2022] Open
Abstract
Despite the knowledge that cell-mediated immunity (CMI) contributes to the reduction of severe influenza infection, transmission, and disease outcome, the correlates of protection for cell-mediated immunity remain still unclear. Therefore, measuring the magnitude and quality of influenza-specific T cell responses in a harmonized way is of utmost importance to improve characterisation of vaccine-induced immunity across different clinical trials. The present study, conducted as part of the FLUCOP project, describes the development of a consensus protocol for the intracellular cytokine staining (ICS) assay, in order to reduce inter-laboratory variability, and its qualification. In order to develop a consensus protocol, the study was divided into different stages. Firstly, two pilot studies evaluated critical parameters in the analytical (read-outs) and post-analytical (gating strategies and data analysis) methods applied by eight different laboratories within the FLUCOP consortium. The methods were then harmonized by fixing the critical parameters and the subsequent consensus protocol was then qualified by one FLUCOP member. The antigen-specific cell population was defined as polypositive CD4+ T cells (i.e. positive for at least two markers among CD40L/IFNγ/IL2/TNFα), which was shown to be the most sensitive and specific read-out. The qualification of this consensus protocol showed that the quantification of polypositive CD4+ T cells was precise, linear and accurate, and sensitive with a lower limit of quantification of 0.0335% antigen-specific polypositive CD4+ T cells. In conclusion, we provide the description of a harmonized ICS assay, which permits quantitative and qualitative evaluation of influenza vaccine-induced T cell responses. Application of this harmonized assay may allow for future comparisons of T cell responses to different influenza vaccines. It may facilitate future assessments of potential correlates of protection with the promise of application across other pathogens.
Collapse
Affiliation(s)
- Sarah Begue
- Research Global Immunology, Sanofi, Marcy L’Etoile, France
| | - Gwenn Waerlop
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium
| | - Bruno Salaun
- GlaxoSmithKline, Clinical Laboratory Sciences, Rixensart, Belgium
| | - Michel Janssens
- GlaxoSmithKline, Clinical Laboratory Sciences, Rixensart, Belgium
| | - Duncan Bellamy
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
| | - Rebecca Jane Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Richard Davies
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Emanuele Montomoli
- VisMederi, Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Elena Pettini
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium
| | - Frédéric Clement
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium
| | - Anke Pagnon
- Research Global Immunology, Sanofi, Marcy L’Etoile, France
- *Correspondence: Anke Pagnon,
| |
Collapse
|
12
|
Noh K, Jeong EJ, An T, Shin JS, Kim H, Han SB, Kim M. The efficacy of a 2,4-diaminoquinazoline compound as an intranasal vaccine adjuvant to protect against influenza A virus infection in vivo. J Microbiol 2022; 60:550-559. [PMID: 35437625 PMCID: PMC9014970 DOI: 10.1007/s12275-022-1661-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 12/26/2022]
Abstract
Adjuvants are substances added to vaccines to enhance antigen-specific immune responses or to protect antigens from rapid elimination. As pattern recognition receptors, Toll-like receptors 7 (TLR7) and 8 (TLR8) activate the innate immune system by sensing endosomal single-stranded RNA of RNA viruses. Here, we investigated if a 2,4-diaminoquinazoline-based TLR7/8 agonist, (S)-3-((2-amino-8-fluoroquinazolin-4-yl)amino)hexan-1-ol (named compound 31), could be used as an adjuvant to enhance the serological and mucosal immunity of an inactivated influenza A virus vaccine. The compound induced the production of proinflammatory cytokines in macrophages. In a dose-response analysis, intranasal administration of 1 µg compound 31 together with an inactivated vaccine (0.5 µg) to mice not only enhanced virus-specific IgG and IgA production but also neutralized influenza A virus with statistical significance. Notably, in a virus-challenge model, the combination of the vaccine and compound 31 alleviated viral infection-mediated loss of body weight and increased survival rates by 40% compared with vaccine only-treated mice. We suggest that compound 31 is a promising lead compound for developing mucosal vaccine adjuvants to protect against respiratory RNA viruses such as influenza viruses and potentially coronaviruses.
Collapse
Affiliation(s)
- Kyungseob Noh
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eun Ju Jeong
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
- Medicinal Chemistry and Pharmacology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Timothy An
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jin Soo Shin
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Hyejin Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Soo Bong Han
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea.
- Medicinal Chemistry and Pharmacology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Meehyein Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea.
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
13
|
Rüthrich MM, Giesen N, Mellinghoff SC, Rieger CT, von Lilienfeld-Toal M. Cellular Immune Response after Vaccination in Patients with Cancer-Review on Past and Present Experiences. Vaccines (Basel) 2022; 10:182. [PMID: 35214642 PMCID: PMC8875094 DOI: 10.3390/vaccines10020182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023] Open
Abstract
Patients with cancer are at particular risk for infection but also have diminished vaccine responses, usually quantified by the level of specific antibodies. Nonetheless, vaccines are specifically recommended in this vulnerable patient group. Here, we discuss the cellular part of the vaccine response in patients with cancer. We summarize the experience with vaccines prior to and during the SARS-CoV-2 pandemic in different subgroups, and we discuss why, especially in patients with cancer, T cells may be the more reliable correlate of protection. Finally, we provide a brief outlook on options to improve the cellular response to vaccines.
Collapse
Affiliation(s)
- Maria Madeleine Rüthrich
- Department of Internal Medicine II, Hematology and Medical Oncology, Universitätsklinikum Jena, Am Klinikum 1, 07747 Jena, Germany;
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institut, Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| | - Nicola Giesen
- Department of Haematology and Oncology, Internal Medicine V, University Hospital Heidelberg, 69115 Heidelberg, Germany;
| | - Sibylle C. Mellinghoff
- Centre for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Faculty of Medicine and University Hospital of Cologne, Department I of Internal Medicine, University of Cologne, 50923 Cologne, Germany;
| | - Christina T. Rieger
- Hemato-Oncology Germering & Interdisciplinary Tumorcenter, Ludwig-Maximilians-University Munich, 81377 Munich, Germany;
| | - Marie von Lilienfeld-Toal
- Department of Internal Medicine II, Hematology and Medical Oncology, Universitätsklinikum Jena, Am Klinikum 1, 07747 Jena, Germany;
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institut, Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| |
Collapse
|
14
|
Zheng Y, Xing HY, Zhu ZG, Zhu HH, Zhang F, Gao X, Gao J, Hu Q, Fang Y. Identification of sensitive indicators in immune response for leprosy affected patients: An observational clinical study of safety and immunogenicity of influenza vaccine. Medicine (Baltimore) 2021; 100:e26744. [PMID: 34397815 PMCID: PMC8341344 DOI: 10.1097/md.0000000000026744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 04/07/2021] [Accepted: 06/29/2021] [Indexed: 01/04/2023] Open
Abstract
ABSTRACT Cured leprosy patients have special physical conditions, which could pose challenges for safety and immunogenicity after immunization. We performed an observational clinical study aimed to identify the safety and immunogenicity of influenza vaccine in cured leprosy patients. A total of 65 participants from a leprosarium were recruited into leprosy cured group or control group, and received a 0.5 ml dose of the inactivated split-virion trivalent influenza vaccine and a follow-up 28 days proactive observation of any adverse events. Hemagglutination and hemagglutination inhibition test was performed to evaluate serum antibody titer, flow cytometry was conducted to screen of cytokines level. The total rate of reactogenicity was 0.0% [0/41] in leprosy cured group and 37.5% [9/24] in control group. The seroconversion rate for H1N1 was difference between leprosy cured group and control group (41.83% vs 79.17%, P = .0082), but not for H3N2 (34.25% vs 50.00%, P = .4468). At day 0, leprosy cured group have relatively high concentration of interleukin-6, interleukin-10, tumor necrosis factor, interferon-γ, and interleukin-17 compared to control group. The interleukin-2 concentration increased 2 weeks after vaccination compared to pre-vaccination in leprosy cured group, but declined in control group (0.92 pg/ml vs -0.02 pg/ml, P = .0147). Leprosy cured group showed a more rapid down-regulation of interleukin-6 when influenza virus was challenged compared to control group (-144.38 pg/ml vs -11.52 pg/ml, P < .0001). Subgroup analysis revealed that the immunization administration declined interleukin-17 concentration in Tuberculoid type subgroup, but not in Lepromatous type subgroup or control group. Clinically cured leprosy patients are relatively safe for influenza vaccine. Leprosy cured patient have immune deficit in producing antibody. Interleukin-6 and interleukin-17 were 2 sensitive indicators in immune response for leprosy affected patients. The identification of indicators might be help management of leprosy and used as predictive markers in leprosy early symptom monitoring.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Leprosy, Wuhan Institute of Dermatology and Venereology, Wuhan, China
| | - Hong-yi Xing
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng-Gang Zhu
- Department of Immunization, Wuhan Centers for Disease Prevention and Control, Wuhan, China
| | - Hong-Hao Zhu
- Department of Immunization, Wuhan Centers for Disease Prevention and Control, Wuhan, China
| | - Fang Zhang
- Department of Leprosy, Wuhan Institute of Dermatology and Venereology, Wuhan, China
| | - Xia Gao
- Department of Leprosy, Wuhan Institute of Dermatology and Venereology, Wuhan, China
| | - Jun Gao
- Department of Leprosy, Wuhan Institute of Dermatology and Venereology, Wuhan, China
| | - Quan Hu
- Department of Leprosy, Wuhan Institute of Dermatology and Venereology, Wuhan, China
| | - Yuan Fang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Wen S, Wu Z, Zhong S, Li M, Shu Y. Factors influencing the immunogenicity of influenza vaccines. Hum Vaccin Immunother 2021; 17:2706-2718. [PMID: 33705263 DOI: 10.1080/21645515.2021.1875761] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Annual vaccination is the best prevention of influenza. However, the immunogenicity of influenza vaccines varies among different populations. It is important to fully identify the factors that may affect the immunogenicity of the vaccines to provide best protection for vaccine recipients. This paper reviews the factors that may influence the immunogenicity of influenza vaccines from the aspects of vaccine factors, adjuvants, individual factors, repeated vaccination, and genetic factors. The confirmed or hypothesized molecular mechanisms of these factors have also been briefly summarized.
Collapse
Affiliation(s)
- Simin Wen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China
| | - Zhengyu Wu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China
| | - Shuyi Zhong
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China
| | - Mao Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Prevention and Control, Beijing, China
| |
Collapse
|
16
|
BOCCALINI SARA, PARIANI ELENA, CALABRÒ GIOVANNAELISA, DE WAURE CHIARA, PANATTO DONATELLA, AMICIZIA DANIELA, LAI PIEROLUIGI, RIZZO CATERINA, AMODIO EMANUELE, VITALE FRANCESCO, CASUCCIO ALESSANDRA, DI PIETRO MARIALUISA, GALLI CRISTINA, BUBBA LAURA, PELLEGRINELLI LAURA, VILLANI LEONARDO, D’AMBROSIO FLORIANA, CAMINITI MARTA, LORENZINI ELISA, FIORETTI PAOLA, MICALE ROSANNATINDARA, FRUMENTO DAVIDE, CANTOVA ELISA, PARENTE FLAVIO, TRENTO GIACOMO, SOTTILE SARA, PUGLIESE ANDREA, BIAMONTE MASSIMILIANOALBERTO, GIORGETTI DUCCIO, MENICACCI MARCO, D’ANNA ANTONIO, AMMOSCATO CLAUDIA, LA GATTA EMANUELE, BECHINI ANGELA, BONANNI PAOLO. [Health Technology Assessment (HTA) of the introduction of influenza vaccination for Italian children with Fluenz Tetra ®]. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2021; 62:E1-E118. [PMID: 34909481 PMCID: PMC8639053 DOI: 10.15167/2421-4248/jpmh2021.62.2s1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- SARA BOCCALINI
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze, Firenze, Italia
| | - ELENA PARIANI
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italia
- Centro Interuniversitario per la Ricerca sull'Influenza e le altre Infezioni Trasmissibili CIRI-IT, Italia
| | - GIOVANNA ELISA CALABRÒ
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italia
- VIHTALI (Value In Health Technology and Academy for Leadership & Innovation), spin off dell’Università Cattolica del Sacro Cuore, Roma, Italia
| | - CHIARA DE WAURE
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Perugia, Italia
| | - DONATELLA PANATTO
- Centro Interuniversitario per la Ricerca sull'Influenza e le altre Infezioni Trasmissibili CIRI-IT, Italia
- Dipartimento di Scienze della Salute, Università degli Studi di Genova, Genova, Italia
| | - DANIELA AMICIZIA
- Centro Interuniversitario per la Ricerca sull'Influenza e le altre Infezioni Trasmissibili CIRI-IT, Italia
- Dipartimento di Scienze della Salute, Università degli Studi di Genova, Genova, Italia
| | - PIERO LUIGI LAI
- Centro Interuniversitario per la Ricerca sull'Influenza e le altre Infezioni Trasmissibili CIRI-IT, Italia
- Dipartimento di Scienze della Salute, Università degli Studi di Genova, Genova, Italia
| | - CATERINA RIZZO
- Area Funzionale Percorsi Clinici ed Epidemiologia, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italia
| | - EMANUELE AMODIO
- Dipartimento Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D'Alessandro”, Università degli Studi di Palermo, Palermo, Italia
| | - FRANCESCO VITALE
- Dipartimento Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D'Alessandro”, Università degli Studi di Palermo, Palermo, Italia
| | - ALESSANDRA CASUCCIO
- Dipartimento Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D'Alessandro”, Università degli Studi di Palermo, Palermo, Italia
| | - MARIA LUISA DI PIETRO
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - CRISTINA GALLI
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italia
| | - LAURA BUBBA
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italia
| | - LAURA PELLEGRINELLI
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italia
| | - LEONARDO VILLANI
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - FLORIANA D’AMBROSIO
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - MARTA CAMINITI
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Perugia, Italia
| | - ELISA LORENZINI
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Perugia, Italia
| | - PAOLA FIORETTI
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Perugia, Italia
| | | | - DAVIDE FRUMENTO
- Dipartimento di Scienze della Salute, Università degli Studi di Genova, Genova, Italia
| | - ELISA CANTOVA
- Dipartimento di Scienze della Salute, Università degli Studi di Genova, Genova, Italia
| | - FLAVIO PARENTE
- Dipartimento di Scienze della Salute, Università degli Studi di Genova, Genova, Italia
| | - GIACOMO TRENTO
- Dipartimento di Scienze della Salute, Università degli Studi di Genova, Genova, Italia
| | - SARA SOTTILE
- Università degli Studi di Trento, Trento, Italia
| | | | | | - DUCCIO GIORGETTI
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze, Firenze, Italia
| | - MARCO MENICACCI
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze, Firenze, Italia
| | - ANTONIO D’ANNA
- Dipartimento Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D'Alessandro”, Università degli Studi di Palermo, Palermo, Italia
| | - CLAUDIA AMMOSCATO
- Dipartimento Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D'Alessandro”, Università degli Studi di Palermo, Palermo, Italia
| | - EMANUELE LA GATTA
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - ANGELA BECHINI
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze, Firenze, Italia
| | - PAOLO BONANNI
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze, Firenze, Italia
| |
Collapse
|
17
|
Mohn KGI, Brokstad KA, Islam S, Oftung F, Tøndel C, Aarstad HJ, Cox RJ. Early Induction of Cross-Reactive CD8+ T-Cell Responses in Tonsils After Live-Attenuated Influenza Vaccination in Children. J Infect Dis 2021; 221:1528-1537. [PMID: 32255493 PMCID: PMC7137893 DOI: 10.1093/infdis/jiz583] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/10/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Live-attenuated influenza vaccine (LAIV) was licensed for prophylaxis of children 2-17 years old in Europe in 2012 and is administered as a nasal spray. Live-attenuated influenza vaccine induces both mucosal and systemic antibodies and systemic T-cell responses. Tonsils are the lymph nodes serving the upper respiratory tract, acting as both induction and effector site for mucosal immunity. METHODS Here, we have studied the early tonsillar T-cell responses induced in children after LAIV. Thirty-nine children were immunized with trivalent LAIV (containing A/H1N1, A/H3N2, and B viruses) at days 3, 7, and 14 before tonsillectomy. Nonvaccinated controls were included for comparison. Tonsils and peripheral blood (pre- and postvaccination) were collected to study T-cell responses. RESULTS Tonsillar and systemic T-cell responses differed between influenza strains, and both were found against H3N2 and B viruses, whereas only systemic responses were observed against A/H1N1. A significant increase in cross-reactive tonsillar CD8+ T cells recognizing conserved epitopes from a broad range of seasonal and pandemic viruses occurred at day 14. Tonsillar T cells showed significant cytokine responses (Th1, Th2, and granulocyte-macrophage colony-stimulating factor). CONCLUSIONS Our findings support the use of LAIV in children to elicit broadly cross-reactive T cells, which are not induced by traditional inactivated influenza vaccines and may provide protection to novel virus strains.
Collapse
Affiliation(s)
- K G-I Mohn
- Influenza Centre, University of Bergen, Bergen, Norway.,K. G. Jebsen Center for Influenza Vaccines, University of Bergen, Bergen, Norway.,Emergency Care Clinic, Haukeland University Hospital, Bergen, Norway
| | - K A Brokstad
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - S Islam
- Influenza Centre, University of Bergen, Bergen, Norway.,K. G. Jebsen Center for Influenza Vaccines, University of Bergen, Bergen, Norway
| | - F Oftung
- Department of Infectious Disease Immunology, Norwegian Institute of Public Health, Oslo, Norway
| | - C Tøndel
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - H J Aarstad
- Department of Otorhinolaryngology/Head and Neck Surgery, Haukeland University Hospital, Bergen, Norway
| | - R J Cox
- Influenza Centre, University of Bergen, Bergen, Norway.,K. G. Jebsen Center for Influenza Vaccines, University of Bergen, Bergen, Norway.,Department of Research and Development, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
18
|
Roy S, Williams CM, Wijesundara DK, Furuya Y. Impact of Pre-Existing Immunity to Influenza on Live-Attenuated Influenza Vaccine (LAIV) Immunogenicity. Vaccines (Basel) 2020; 8:E683. [PMID: 33207559 PMCID: PMC7711626 DOI: 10.3390/vaccines8040683] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
During the previous influenza seasons, between 2010 and 2016, the live attenuated influenza vaccine (LAIV) provided variable efficacy against influenza in the U.S., causing the recommendation against the use of the LAIV. In striking contrast, pre-clinical studies have repeatedly demonstrated superior efficacy of LAIV against mismatched influenza viruses, compared to inactivated influenza vaccines (IIV). This disparity in reported vaccine efficacies between pre-clinical and clinical studies may in part be explained by limitations of the animal models of influenza. In particular, the absence of pre-existing immunity in animal models has recently emerged as a potential explanation for the discrepancies between preclinical findings and human studies. This commentary focuses on the potential impact of pre-existing immunity on LAIV induced immunogenicity with an emphasis on cross-protective immunity.
Collapse
Affiliation(s)
- Sreeja Roy
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (S.R.); (C.M.W.)
| | - Clare M. Williams
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (S.R.); (C.M.W.)
| | - Danushka K. Wijesundara
- The School of Chemistry and Molecular Biosciences, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland 4072, Australia;
| | - Yoichi Furuya
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (S.R.); (C.M.W.)
| |
Collapse
|
19
|
Loes AN, Gentles LE, Greaney AJ, Crawford KHD, Bloom JD. Attenuated Influenza Virions Expressing the SARS-CoV-2 Receptor-Binding Domain Induce Neutralizing Antibodies in Mice. Viruses 2020; 12:E987. [PMID: 32899480 PMCID: PMC7552029 DOI: 10.3390/v12090987] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
An effective vaccine is essential for controlling the spread of the SARS-CoV-2 virus. Here, we describe an influenza virus-based vaccine for SARS-CoV-2. We incorporated a membrane-anchored form of the SARS-CoV-2 spike receptor binding domain (RBD) in place of the neuraminidase (NA) coding sequence in an influenza virus also possessing a mutation that reduces the affinity of hemagglutinin for its sialic acid receptor. The resulting ΔNA(RBD)-Flu virus can be generated by reverse genetics and grown to high titers in cell culture. A single-dose intranasal inoculation of mice with ΔNA(RBD)-Flu elicits serum neutralizing antibody titers against SAR-CoV-2 comparable to those observed in humans following natural infection (~1:200). Furthermore, ΔNA(RBD)-Flu itself causes no apparent disease in mice. It might be possible to produce a vaccine similar to ΔNA(RBD)-Flu at scale by leveraging existing platforms for the production of influenza vaccines.
Collapse
Affiliation(s)
- Andrea N. Loes
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (A.N.L.); (L.E.G.); (A.J.G.); (K.H.D.C.)
- Howard Hughes Medical Institute, Seattle, WA 98103, USA
| | - Lauren E. Gentles
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (A.N.L.); (L.E.G.); (A.J.G.); (K.H.D.C.)
- Department of Microbiology, University of Washington, Seattle, WA 98195-7735, USA
| | - Allison J. Greaney
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (A.N.L.); (L.E.G.); (A.J.G.); (K.H.D.C.)
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Katharine H. D. Crawford
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (A.N.L.); (L.E.G.); (A.J.G.); (K.H.D.C.)
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Jesse D. Bloom
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (A.N.L.); (L.E.G.); (A.J.G.); (K.H.D.C.)
- Howard Hughes Medical Institute, Seattle, WA 98103, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195-7735, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
20
|
Loes AN, Gentles LE, Greaney AJ, Crawford KHD, Bloom JD. Attenuated influenza virions expressing the SARS-CoV-2 receptor-binding domain induce neutralizing antibodies in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.08.12.248823. [PMID: 32817935 PMCID: PMC7430565 DOI: 10.1101/2020.08.12.248823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
An effective vaccine is essential to controlling the spread of SARS-CoV-2 virus. Here, we describe an influenza-virus-based vaccine for SARS-CoV-2. We incorporated a membrane-anchored form of the SARS-CoV-2 Spike receptor binding domain (RBD) in place of the neuraminidase (NA) coding sequence in an influenza virus also possessing a mutation that reduces the affinity of hemagglutinin for its sialic acid receptor. The resulting ΔNA(RBD)-Flu virus can be generated by reverse genetics and grown to high titers in cell culture. A single-dose intranasal inoculation of mice with ΔNA(RBD)-Flu elicits serum neutralizing antibody titers against SAR-CoV-2 comparable to those observed in humans following natural infection (~1:200). Furthermore, ΔNA(RBD)-Flu itself causes no apparent disease in mice. It might be possible to produce a vaccine similar to ΔNA(RBD)-Flu at scale by leveraging existing platforms for production of influenza vaccines.
Collapse
Affiliation(s)
- Andrea N. Loes
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98103, USA
| | - Lauren E. Gentles
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195-7735, USA
| | - Allison J. Greaney
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Katharine H. D. Crawford
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Jesse D. Bloom
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98103, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195-7735, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
21
|
Lopez CE, Legge KL. Influenza A Virus Vaccination: Immunity, Protection, and Recent Advances Toward A Universal Vaccine. Vaccines (Basel) 2020; 8:E434. [PMID: 32756443 PMCID: PMC7565301 DOI: 10.3390/vaccines8030434] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Influenza virus infections represent a serious public health threat and account for significant morbidity and mortality worldwide due to seasonal epidemics and periodic pandemics. Despite being an important countermeasure to combat influenza virus and being highly efficacious when matched to circulating influenza viruses, current preventative strategies of vaccination against influenza virus often provide incomplete protection due the continuous antigenic drift/shift of circulating strains of influenza virus. Prevention and control of influenza virus infection with vaccines is dependent on the host immune response induced by vaccination and the various vaccine platforms induce different components of the local and systemic immune response. This review focuses on the immune basis of current (inactivated influenza vaccines (IIV) and live attenuated influenza vaccines (LAIV)) as well as novel vaccine platforms against influenza virus. Particular emphasis will be placed on how each platform induces cross-protection against heterologous influenza viruses, as well as how this immunity compares to and contrasts from the "gold standard" of immunity generated by natural influenza virus infection.
Collapse
Affiliation(s)
- Christopher E. Lopez
- Department of Microbiology and Immunology University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Kevin L. Legge
- Department of Microbiology and Immunology University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
22
|
The Effects of Pre-Existing Antibodies on Live-Attenuated Viral Vaccines. Viruses 2020; 12:v12050520. [PMID: 32397218 PMCID: PMC7290594 DOI: 10.3390/v12050520] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Live-attenuated vaccines (LAVs) have achieved remarkable successes in controlling virus spread, as well as for other applications such as cancer immunotherapy. However, with rapid increases in international travel, globalization, geographic spread of viral vectors, and widespread use of vaccines, there is an increasing need to consider how pre-exposure to viruses which share similar antigenic regions can impact vaccine efficacy. Pre-existing antibodies, derived from either from maternal–fetal transmission, or by previous infection or vaccination, have been demonstrated to interfere with vaccine immunogenicity of measles, adenovirus, and influenza LAVs. Immune interference of LAVs can be caused by the formation of virus–antibody complexes that neutralize virus infection in antigen-presenting cells, or by the cross-linking of the B-cell receptor with the inhibitory receptor, FcγRIIB. On the other hand, pre-existing antibodies can augment flaviviral LAV efficacy such as that of dengue and yellow fever virus, especially when pre-existing antibodies are present at sub-neutralizing levels. The increased vaccine immunogenicity can be facilitated by antibody-dependent enhancement of virus infection, enhancing virus uptake in antigen-presenting cells, and robust induction of innate immune responses that promote vaccine immunogenicity. This review examines the literature on this topic and examines the circumstances where pre-existing antibodies can inhibit or enhance LAV efficacy. A better knowledge of the underlying mechanisms involved could allow us to better manage immunization in seropositive individuals and even identify possibilities that could allow us to exploit pre-existing antibodies to boost vaccine-induced responses for improved vaccine efficacy.
Collapse
|
23
|
Ito T, Kumagai T, Yamaji Y, Sawada A, Nakayama T. Recombinant Measles AIK-C Vaccine Strain Expressing Influenza HA Protein. Vaccines (Basel) 2020; 8:vaccines8020149. [PMID: 32230902 PMCID: PMC7349030 DOI: 10.3390/vaccines8020149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/16/2022] Open
Abstract
Recombinant measles AIK-C vaccine expressing the hemagglutinin (HA) protein of influenza A/Sapporo/107/2013(H1N1pdm) (MVAIK/PdmHA) was constructed. Measles particle agglutination (PA) and influenza hemagglutinin inhibition (HI) antibodies were induced in cotton rats immunized with MVAIK/PdmHA. Cotton rats immunized with two doses of the HA split vaccine were used as positive controls, and higher HI antibodies were detected 3 weeks after the first dose. Following the challenge of A/California/07/2009(H1N1pdm), higher viral loads (107 TCID50/g) were detected in the lung homogenates of cotton rats immunized with the empty vector (MVAIK) or control groups than those immunized with MVAIK/Pdm HA (103 TCID50/g) or the group immunized with HA split vaccine (105 TCID50/g). Histopathologically, destruction of the alveolar structure, swelling of broncho-epithelial cells, and thickening of the alveolar wall with infiltration of inflammatory cells and HA antigens were detected in lung tissues obtained from non-immunized rats and those immunized with the empty vector after the challenge, but not in those immunized with the HA spilt or MVAIK/PdmHA vaccine. Lower levels of IFN-α, IL-1β, and TNF-α mRNA, and higher levels of IFN-γ mRNA were found in the lung homogenates of the MVAIK/PdmHA group. Higher levels of IFN-γ mRNA were detected in spleen cell culture from the MVAIK/PdmHA group stimulated with UV-inactivated A/California/07/2009(H1N1pdm). In conclusion, the recombinant MVAIK vaccine expressing influenza HA protein induced protective immune responses in cotton rats.
Collapse
Affiliation(s)
- Takashi Ito
- Laboratory of Viral Infection II, Kitasato Institute for Life Sciences, Tokyo 108-8641, Japan; (T.I.); (Y.Y.); (A.S.)
| | | | - Yoshiaki Yamaji
- Laboratory of Viral Infection II, Kitasato Institute for Life Sciences, Tokyo 108-8641, Japan; (T.I.); (Y.Y.); (A.S.)
| | - Akihito Sawada
- Laboratory of Viral Infection II, Kitasato Institute for Life Sciences, Tokyo 108-8641, Japan; (T.I.); (Y.Y.); (A.S.)
| | - Tetsuo Nakayama
- Laboratory of Viral Infection II, Kitasato Institute for Life Sciences, Tokyo 108-8641, Japan; (T.I.); (Y.Y.); (A.S.)
- Correspondence: ; Tel.: +81-3-5791-6269; Fax: +81-3-5791-6130
| |
Collapse
|
24
|
Shannon I, White CL, Nayak JL. Understanding Immunity in Children Vaccinated With Live Attenuated Influenza Vaccine. J Pediatric Infect Dis Soc 2020; 9:S10-S14. [PMID: 31848606 DOI: 10.1093/jpids/piz083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Live attenuated influenza vaccine (LAIV), or FluMist, was approved for use in the United States in 2003. This vaccine, administered intranasally, offers the advantage of stimulating immunity at the site of infection in the upper respiratory tract and, by mimicking natural infection, has the potential to elicit a multifaceted immune response. However, the development of immunity following LAIV administration requires viral replication, causing vaccine effectiveness to be impacted by both the replicative fitness of the attenuated viruses being administered and the degree of the host's preexisting immunity. In this review, we discuss the current state of knowledge regarding the mechanisms of protection elicited by LAIV in children, contrast this with immune protection that develops upon vaccination with inactivated influenza vaccines, and briefly discuss both the potential advantages as well as challenges offered by this vaccination platform.
Collapse
Affiliation(s)
- Ian Shannon
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, USA
| | - Chantelle L White
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Jennifer L Nayak
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
25
|
Isakova-Sivak I, Grigorieva E, Rudenko L. Insights into current clinical research on the immunogenicity of live attenuated influenza vaccines. Expert Rev Vaccines 2020; 19:43-55. [PMID: 31903816 DOI: 10.1080/14760584.2020.1711056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: Live attenuated influenza vaccines (LAIVs) have been in use for more than three decades and are now licensed in many countries. There is evidence that LAIVs can have greater efficacy than inactivated influenza vaccines, especially against mismatched influenza, however, in recent years, a number of trials have found a lack of LAIV efficacy, mainly in relation to the H1N1 virus.Areas covered: In this review, we summarize the results of clinical research published in the past 5 years on the immunogenicity of LAIVs, with special attention to the mechanisms of establishing protective immunity and some factors that may influence immunogenicity and efficacy.Expert opinion: A number of recent clinical studies confirmed that the immune responses to LAIVs are multifaceted, involving different immune mechanisms. These trials suggest that the intrinsic replicative properties of each LAIV component should be taken into account, and the precise effects of adding a fourth vaccine strain to trivalent LAIV formulations are still to be identified. In addition, new data are emerging regarding the impact of pre-vaccination conditions, such as preexisting immunity or concurrent asymptomatic viral and bacterial respiratory infections, on LAIV immunogenicity, suggesting the importance of monitoring them during clinical trials or vaccination campaigns.
Collapse
Affiliation(s)
- Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - Elena Grigorieva
- Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russia
| |
Collapse
|
26
|
Lee TY, Kim CU, Lee P, Seo SH, Bae EH, Kim YS, Kim SH, Kim DJ. Outer membrane vesicle increases the efficacy of an influenza vaccine in a diet-induced obese mouse model. Immunol Lett 2019; 219:27-33. [PMID: 31901375 DOI: 10.1016/j.imlet.2019.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/20/2019] [Accepted: 12/30/2019] [Indexed: 11/15/2022]
Abstract
Obesity has been associated with increased symptoms and mortality in influenza patients and impaired immune responses to the influenza vaccine. To date, however, there is no effective adjuvant to improve vaccine efficacy for the obese population. To address this issue, we generated a modified outer membrane vesicle with attenuated endotoxicity (fmOMV) and tested its adjuvant effect on the influenza vaccine in comparison with a squalene-based oil-in-water adjuvant (AddaVax) using a diet-induced obese (DIO) mouse model. Although coadministration of fmOMV did not affect neutralizing antibody (Ab) response, it preferentially induced IgG2c antibody response and significantly increased the vaccine-induced T cell response. More importantly, fmOMV conferred significant protection against homologous and heterologous influenza virus challenge, whereas AddaVax showed marginal protection irrespective of the strongest Ab and T cell responses in DIO mice. These results indicate that fmOMV improves the antigen-specific T cell response and the efficacy of an influenza vaccine, suggesting a potential influenza vaccine adjuvant for the obese population.
Collapse
Affiliation(s)
- Tae-Young Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Chang-Ung Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea; Department of Biochemistry, Chungnam National University, Daejeon, South Korea
| | - Pureum Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea; University of Science and Technology (UST), Daejeon, South Korea
| | - Sang-Hwan Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Eun-Hye Bae
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Young Sang Kim
- Department of Biochemistry, Chungnam National University, Daejeon, South Korea
| | - Sang-Hyun Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea.
| | - Doo-Jin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea; Department of Biochemistry, Chungnam National University, Daejeon, South Korea; University of Science and Technology (UST), Daejeon, South Korea.
| |
Collapse
|
27
|
Abstract
Introduction: High variance is associated with influenza vaccine effectiveness (VE). Accumulating evidence suggests that preexisting influenza-specific immunity results in the variance in VE and skews overall immune response to vaccination. Nevertheless, the investigation of preexisting immunity is highly limited due to the lack of proper methodology to explore the complex individual immune history.Areas covered: Retrospective observational studies have shown that the preexisting influenza specific immunity influences on VE. To simplify a discussion, we summarized important findings from the observational studies based on the transition of the individual immune history: the first exposure to influenza virus, the first vaccination, and repetitive exposure throughout life. We also discussed the prospectus of pre-immunized animal models to investigate the interaction between preexisting immunity and vaccine efficacy.Expert opinion: A better understanding in the underlying mechanisms on preexisting immunity is critical to improve VE and to help develop novel vaccine strategies. Using animals pre-immunized with historical influenza strains is a promising approach to verify the underlying immunologic mechanism of interaction between preexisting immunity and vaccine antigen. Also, pre-immunized animal models will be better able to evaluate the efficacy of novel vaccine strategies than naïve animals.
Collapse
Affiliation(s)
- Hyesun Jang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA.,Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
28
|
Jang YH, Seong BL. The Quest for a Truly Universal Influenza Vaccine. Front Cell Infect Microbiol 2019; 9:344. [PMID: 31649895 PMCID: PMC6795694 DOI: 10.3389/fcimb.2019.00344] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022] Open
Abstract
There is an unmet public health need for a universal influenza vaccine (UIV) to provide broad and durable protection from influenza virus infections. The identification of broadly protective antibodies and cross-reactive T cells directed to influenza viral targets present a promising prospect for the development of a UIV. Multiple targets for cross-protection have been identified in the stalk and head of hemagglutinin (HA) to develop a UIV. Recently, neuraminidase (NA) has received significant attention as a critical component for increasing the breadth of protection. The HA stalk-based approaches have shown promising results of broader protection in animal studies, and their feasibility in humans are being evaluated in clinical trials. Mucosal immune responses and cross-reactive T cell immunity across influenza A and B viruses intrinsic to live attenuated influenza vaccine (LAIV) have emerged as essential features to be incorporated into a UIV. Complementing the weakness of the stand-alone approaches, prime-boost vaccination combining HA stalk, and LAIV is under clinical evaluation, with the aim to increase the efficacy and broaden the spectrum of protection. Preexisting immunity in humans established by prior exposure to influenza viruses may affect the hierarchy and magnitude of immune responses elicited by an influenza vaccine, limiting the interpretation of preclinical data based on naive animals, necessitating human challenge studies. A consensus is yet to be achieved on the spectrum of protection, efficacy, target population, and duration of protection to define a “universal” vaccine. This review discusses the recent advancements in the development of UIVs, rationales behind cross-protection and vaccine designs, and challenges faced in obtaining balanced protection potency, a wide spectrum of protection, and safety relevant to UIVs.
Collapse
Affiliation(s)
- Yo Han Jang
- Molecular Medicine Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Baik Lin Seong
- Molecular Medicine Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| |
Collapse
|
29
|
Jansen JM, Gerlach T, Elbahesh H, Rimmelzwaan GF, Saletti G. Influenza virus-specific CD4+ and CD8+ T cell-mediated immunity induced by infection and vaccination. J Clin Virol 2019; 119:44-52. [DOI: 10.1016/j.jcv.2019.08.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/13/2023]
|
30
|
Sun W, Zheng A, Miller R, Krammer F, Palese P. An Inactivated Influenza Virus Vaccine Approach to Targeting the Conserved Hemagglutinin Stalk and M2e Domains. Vaccines (Basel) 2019; 7:vaccines7030117. [PMID: 31540436 PMCID: PMC6789539 DOI: 10.3390/vaccines7030117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023] Open
Abstract
Universal influenza virus vaccine candidates that focus on the conserved hemagglutinin (HA) stalk domain and the extracellular domain of the matrix protein 2 (M2e) have been developed to increase the breadth of protection against multiple strains. In this study, we report a novel inactivated influenza virus vaccine approach that combines these two strategies. We inserted a human consensus M2e epitope into the immunodominant antigenic site (Ca2 site) of three different chimeric HAs (cHAs). Sequential immunization with inactivated viruses containing these modified cHAs substantially enhanced M2e antibody responses while simultaneously boosting stalk antibody responses. The combination of additional M2e antibodies with HA stalk antibodies resulted in superior antibody-mediated protection in mice against challenge viruses expressing homologous or heterosubtypic hemagglutinin and neuraminidase compared to vaccination strategies that targeted the HA stalk or M2e epitopes in isolation.
Collapse
Affiliation(s)
- Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Allen Zheng
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Robert Miller
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
31
|
Islam S, Zhou F, Lartey S, Mohn KGI, Krammer F, Cox RJ, Brokstad KA. Functional immune response to influenza H1N1 in children and adults after live attenuated influenza virus vaccination. Scand J Immunol 2019; 90:e12801. [PMID: 31269273 DOI: 10.1111/sji.12801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/20/2019] [Accepted: 06/28/2019] [Indexed: 02/02/2023]
Abstract
Influenza virus is a major respiratory pathogen, and vaccination is the main method of prophylaxis. In 2012, the trivalent live attenuated influenza vaccine (LAIV) was licensed in Europe for use in children. Vaccine-induced antibodies directed against the main viral surface glycoproteins, haemagglutinin (HA) and neuraminidase (NA) play important roles in limiting virus infection. The objective of this study was to dissect the influenza-specific antibody responses in children and adults, and T cell responses in children induced after LAIV immunization to the A/H1N1 virus. Blood samples were collected pre- and at 28 and 56 days post-vaccination from 20 children and 20 adults. No increase in micro-neutralization (MN) antibodies against A/H1N1 was observed after vaccination. A/H1N1 stalk-specific neutralizing and NA-inhibiting (NI) antibodies were boosted in children after LAIV. Interferon γ-producing T cells increased significantly in children, and antibody-dependent cellular-mediated cytotoxic (ADCC) cell activity increased slightly in children after vaccination, although this change was not significant. The results indicate that the NI assay is more sensitive to qualitative changes in serum antibodies after LAIV. There was a considerable difference in the immune response in children and adults after vaccination, which may be related to priming and previous influenza history. Our findings warrant further studies for evaluating LAIV vaccination immunogenicity.
Collapse
Affiliation(s)
- Shahinul Islam
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway.,Department of Clinical Science, K.G. Jebsen Centre for Influenza Vaccine Research, University of Bergen, Bergen, Norway
| | - Fan Zhou
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway.,Department of Clinical Science, K.G. Jebsen Centre for Influenza Vaccine Research, University of Bergen, Bergen, Norway
| | - Sarah Lartey
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway.,Department of Clinical Science, K.G. Jebsen Centre for Influenza Vaccine Research, University of Bergen, Bergen, Norway
| | - Kristin G I Mohn
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway.,Emergency Care Clinic, Haukeland University Hospital, Bergen, Norway
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rebecca Jane Cox
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway.,Department of Clinical Science, K.G. Jebsen Centre for Influenza Vaccine Research, University of Bergen, Bergen, Norway.,Department of Research & Development, Haukeland University Hospital, Bergen, Norway
| | - Karl Albert Brokstad
- Department of Clinical Science, Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
| |
Collapse
|
32
|
Fox A, Quinn KM, Subbarao K. Extending the Breadth of Influenza Vaccines: Status and Prospects for a Universal Vaccine. Drugs 2019; 78:1297-1308. [PMID: 30088204 DOI: 10.1007/s40265-018-0958-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite the widespread use of seasonal influenza vaccines, there is urgent need for a universal influenza vaccine to provide broad, long-term protection. A number of factors underpin this urgency, including threats posed by zoonotic and pandemic influenza A viruses, suboptimal effectiveness of seasonal influenza vaccines, and concerns surrounding the effects of annual vaccination. In this article, we discuss approaches that are being investigated to increase influenza vaccine breadth, which are near-term, readily achievable approaches to increase the range of strains recognized within a subtype, or longer-term more challenging approaches to produce a truly universal influenza vaccine. Adjuvanted and neuraminidase-optimized vaccines are emerging as the most feasible and promising approaches to extend protection to cover a broader range of strains within a subtype. The goal of developing a universal vaccine has also been advanced with the design of immunogenic influenza HA-stem constructs that induce broadly neutralizing antibodies. However, these constructs are not yet sufficiently immunogenic to induce lasting universal immunity in humans. Advances in understanding how T cells mediate protection, and how viruses are packaged, have facilitated the rationale design and delivery of replication-incompetent virus vaccines that induce broad protection mediated by lung-resident memory T cells. While the lack of clear mechanistic correlates of protection, other than haemagglutination-inhibiting antibodies, remains an impediment to further advancing novel influenza vaccines, the pressing need for such a vaccine is supporting development of highly innovative and effective strategies.
Collapse
Affiliation(s)
- Annette Fox
- WHO Collaborating Centre for Reference and Research on Influenza, and the Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC, Australia
| | - Kylie M Quinn
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza, and the Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC, Australia.
| |
Collapse
|
33
|
Gianchecchi E, Manenti A, Kistner O, Trombetta C, Manini I, Montomoli E. How to assess the effectiveness of nasal influenza vaccines? Role and measurement of sIgA in mucosal secretions. Influenza Other Respir Viruses 2019; 13:429-437. [PMID: 31225704 PMCID: PMC6692539 DOI: 10.1111/irv.12664] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 01/07/2023] Open
Abstract
Secretory IgAs (sIgA) constitute the principal isotype of antibodies present in nasal and mucosal secretions. They are secreted by plasma cells adjacent to the mucosal epithelial cells, the site where infection occurs, and are the main humoral mediator of mucosal immunity. Mucosally delivered vaccines, such as live attenuated influenza vaccine (LAIV), are able to mimic natural infection without causing disease or virus transmission and mainly elicit a local immune response. The measurement of sIgA concentrations in nasal swab/wash and saliva samples is therefore a valuable tool for evaluating their role in the effectiveness of such vaccines. Here, we describe two standardized assays (enzyme‐linked immunosorbent assay and microneutralization) available for the quantification of sIgA and discuss the advantages and limitations of their use.
Collapse
Affiliation(s)
| | | | | | - Claudia Trombetta
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Ilaria Manini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Emanuele Montomoli
- VisMederi Srl, Siena, Italy.,VisMederi Research Srl, Siena, Italy.,Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
34
|
Immunogenicity and safety of a quadrivalent plant-derived virus like particle influenza vaccine candidate-Two randomized Phase II clinical trials in 18 to 49 and ≥50 years old adults. PLoS One 2019; 14:e0216533. [PMID: 31166987 PMCID: PMC6550445 DOI: 10.1371/journal.pone.0216533] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/11/2019] [Indexed: 11/19/2022] Open
Abstract
Background New influenza vaccines eliciting more effective protection are needed, particularly for the elderly who paid a large and disproportional toll of hospitalization and dead during seasonal influenza epidemics. Low (≤15 μg/strain) doses of a new plant-derived virus-like-particle (VLP) vaccine candidate have been shown to induce humoral and cellular responses against both homologous and heterologous strains in healthy adults 18–64 years of age. The two clinical trials reported here addressed the safety and immunogenicity of higher doses (≥15 μg/strain) of quadrivalent VLP candidate vaccine on 18–49 years old and ≥50 years old subjects. We also investigated the impact of alum on the immunogenicity induced by lower doses of the vaccine candidate. Method In the first Phase II trial reported here (NCT02233816), 18–49 year old subjects received 15, 30 or 60 μg/strain of a hemagglutinin-bearing quadrivalent virus-like particle (QVLP) vaccine or placebo. In the second trial (NCT02236052), ≥50 years old subjects received QVLP as above or placebo with additional groups receiving 7.5 or 15 μg/strain with alum. Along with safety recording, the humoral and cell-mediated immune responses were analyzed. Results Local and systemic side-effects were similar to those reported previously. The QVLP vaccine induced significant homologous and heterologous antibody responses at the two higher doses, the addition of alum having little-to-no effect. Serologic outcomes tended to be lower in ≥50 years old subjects previously vaccinated. The candidate vaccine also consistently elicited both homologous and heterologous antigen-specific CD4+ T cells characterized by their production of interferon-gamma (IFN-γ), interleukine-2 (IL-2) and/or tumor-necrosis factor alpha (TNF-α) upon ex vivo antigenic restimulation. Conclusion Overall, the 30 μg dose produced the most consistent humoral and cellular responses in both 18–49 and ≥50 years old subjects, strongly supporting the clinical development of this candidate vaccine. That particular dose was chosen to test in the ongoing Phase III clinical trial.
Collapse
|
35
|
Liu WC, Nachbagauer R, Stadlbauer D, Solórzano A, Berlanda-Scorza F, García-Sastre A, Palese P, Krammer F, Albrecht RA. Sequential Immunization With Live-Attenuated Chimeric Hemagglutinin-Based Vaccines Confers Heterosubtypic Immunity Against Influenza A Viruses in a Preclinical Ferret Model. Front Immunol 2019; 10:756. [PMID: 31105689 PMCID: PMC6499175 DOI: 10.3389/fimmu.2019.00756] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022] Open
Abstract
Due to continuous antigenic drift and occasional antigenic shift, influenza viruses escape from human adaptive immunity resulting in significant morbidity and mortality in humans. Therefore, to avoid the need for annual reformulation and readministration of seasonal influenza virus vaccines, we are developing a novel chimeric hemagglutinin (cHA)-based universal influenza virus vaccine, which is comprised of sequential immunization with antigens containing a conserved stalk domain derived from a circulating pandemic H1N1 strain in combination with “exotic” head domains. Here, we show that this prime-boost sequential immunization strategy redirects antibody responses toward the conserved stalk region. We compared the vaccine efficacy elicited by distinct vaccination approaches in the preclinical ferret model of influenza. All ferrets immunized with cHA-based vaccines developed stalk-specific and broadly cross-reactive antibody responses. Two consecutive vaccinations with live-attenuated influenza viruses (LAIV-LAIV) conferred superior protection against pH1N1 and H6N1 challenge infection. Sequential immunization with LAIV followed by inactivated influenza vaccine (LAIV-IIV regimen) also induced robust antibody responses. Importantly, the LAIV-LAIV immunization regimen also induced HA stalk-specific CD4+IFN-γ+ and CD8+IFN-γ+ effector T cell responses in peripheral blood that were recalled by pH1N1 viral challenge. The findings from this preclinical study suggest that an LAIV-LAIV vaccination regimen would be more efficient in providing broadly protective immunity against influenza virus infection as compared to other approaches tested here.
Collapse
Affiliation(s)
- Wen-Chun Liu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Daniel Stadlbauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alicia Solórzano
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
36
|
Estrada LD, Schultz-Cherry S. Development of a Universal Influenza Vaccine. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:392-398. [PMID: 30617121 PMCID: PMC6327971 DOI: 10.4049/jimmunol.1801054] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/30/2018] [Indexed: 12/17/2022]
Abstract
The severity of the 2017-18 influenza season, combined with the low efficacy for some vaccine components, highlights the need to improve our current seasonal influenza vaccine. Thus, the National Institute of Allergy and Infectious Diseases recently announced a strategic plan to improve current influenza vaccines and eventually develop a "universal" influenza vaccine. This review will highlight the many different strategies being undertaken in pursuit of this goal and the exciting advances made by the influenza community. There is no doubt that an improved influenza vaccine is on the horizon.
Collapse
Affiliation(s)
- Leonardo D Estrada
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| |
Collapse
|
37
|
Mohn KGI, Zhou F. Clinical Expectations for Better Influenza Virus Vaccines-Perspectives from the Young Investigators' Point of View. Vaccines (Basel) 2018; 6:E32. [PMID: 29861454 PMCID: PMC6027204 DOI: 10.3390/vaccines6020032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 01/20/2023] Open
Abstract
The influenza virus is one of a few viruses that is capable of rendering an otherwise healthy person acutly bedridden for several days. This impressive knock-out effect, without prodromal symptoms, challenges our immune system. The influenza virus undergoes continuous mutations, escaping our pre-existing immunity and causing epidemics, and its segmented genome is subject to reassortment, resulting in novel viruses with pandemic potential. The personal and socieoeconomic burden from influenza is high. Vaccination is the most cost-effective countermeasure, with several vaccines that are available. The current limitations in vaccine effectivness, combined with the need for yearly updating of vaccine strains, is a driving force for research into developing new and improved influenza vaccines. The lack of public concern about influenza severity, and misleading information concerning vaccine safety contribute to low vaccination coverage even in high-risk groups. The success of future influeza vaccines will depend on an increased public awarness of the disease, and hence, the need for vaccination-aided through improved rapid diagnositics. The vaccines must be safe and broadly acting, with new, measurable correlates of protection and robust post-marketing safety studies, to improve the confidence in influenza vaccines.
Collapse
Affiliation(s)
- Kristin G-I Mohn
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen 5021, Norway.
- Emergency Care clinic, Haukeland University Hospital, Bergen 5021, Norway.
| | - Fan Zhou
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen 5021, Norway.
- K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen 5021, Norway.
| |
Collapse
|
38
|
Clemens EB, van de Sandt C, Wong SS, Wakim LM, Valkenburg SA. Harnessing the Power of T Cells: The Promising Hope for a Universal Influenza Vaccine. Vaccines (Basel) 2018; 6:vaccines6020018. [PMID: 29587436 PMCID: PMC6027237 DOI: 10.3390/vaccines6020018] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Next-generation vaccines that utilize T cells could potentially overcome the limitations of current influenza vaccines that rely on antibodies to provide narrow subtype-specific protection and are prone to antigenic mismatch with circulating strains. Evidence from animal models shows that T cells can provide heterosubtypic protection and are crucial for immune control of influenza virus infections. This has provided hope for the design of a universal vaccine able to prime against diverse influenza virus strains and subtypes. However, multiple hurdles exist for the realisation of a universal T cell vaccine. Overall primary concerns are: extrapolating human clinical studies, seeding durable effective T cell resident memory (Trm), population human leucocyte antigen (HLA) coverage, and the potential for T cell-mediated immune escape. Further comprehensive human clinical data is needed during natural infection to validate the protective role T cells play during infection in the absence of antibodies. Furthermore, fundamental questions still exist regarding the site, longevity and duration, quantity, and phenotype of T cells needed for optimal protection. Standardised experimental methods, and eventually simplified commercial assays, to assess peripheral influenza-specific T cell responses are needed for larger-scale clinical studies of T cells as a correlate of protection against influenza infection. The design and implementation of a T cell-inducing vaccine will require a consensus on the level of protection acceptable in the community, which may not provide sterilizing immunity but could protect the individual from severe disease, reduce the length of infection, and potentially reduce transmission in the community. Therefore, increasing the standard of care potentially offered by T cell vaccines should be considered in the context of pandemic preparedness and zoonotic infections, and in combination with improved antibody vaccine targeting methods. Current pandemic vaccine preparedness measures and ongoing clinical trials under-utilise T cell-inducing vaccines, reflecting the myriad questions that remain about how, when, where, and which T cells are needed to fight influenza virus infection. This review aims to bring together basic fundamentals of T cell biology with human clinical data, which need to be considered for the implementation of a universal vaccine against influenza that harnesses the power of T cells.
Collapse
Affiliation(s)
- E Bridie Clemens
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Carolien van de Sandt
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Sook San Wong
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Linda M Wakim
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Sophie A Valkenburg
- HKU Pasteur Research Pole, School of Public Health, University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
39
|
Mohn KGI, Smith I, Sjursen H, Cox RJ. Immune responses after live attenuated influenza vaccination. Hum Vaccin Immunother 2018; 14:571-578. [PMID: 28933664 PMCID: PMC5861782 DOI: 10.1080/21645515.2017.1377376] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 08/07/2017] [Accepted: 09/03/2017] [Indexed: 01/06/2023] Open
Abstract
Since 2003 (US) and 2012 (Europe) the live attenuated influenza vaccine (LAIV) has been used as an alternative to the traditional inactivated influenza vaccines (IIV). The immune responses elicted by LAIV mimic natural infection and have been found to provide broader clinical protection in children compared to the IIVs. However, our knowledge of the detailed immunological mechanisims induced by LAIV remain to be fully elucidated, and despite 14 years on the global market, there exists no correlate of protection. Recently, matters are further complicated by differing efficacy data from the US and Europe which are not understood. Better understanding of the immune responses after LAIV may aid in achieving the ultimate goal of a future "universal influenza vaccine". In this review we aim to cover the current understanding of the immune responses induced after LAIV.
Collapse
Affiliation(s)
| | - Ingrid Smith
- Department of Research and Development, Haukeland University Hospital, Bergen, Norway
| | - Haakon Sjursen
- Medical Department, Haukeland University Hospital, Bergen, Norway
| | - Rebecca Jane Cox
- The Influenza Center
- Department of Research and Development, Haukeland University Hospital, Bergen, Norway
- Jebsen Center for Influenza Vaccines, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
40
|
Pillet S, Aubin É, Trépanier S, Poulin JF, Yassine-Diab B, Ter Meulen J, Ward BJ, Landry N. Humoral and cell-mediated immune responses to H5N1 plant-made virus-like particle vaccine are differentially impacted by alum and GLA-SE adjuvants in a Phase 2 clinical trial. NPJ Vaccines 2018; 3:3. [PMID: 29387473 PMCID: PMC5780465 DOI: 10.1038/s41541-017-0043-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 12/19/2022] Open
Abstract
The hemagglutinination inhibition (HI) response remains the gold standard used for the licensure of influenza vaccines. However, cell-mediated immunity (CMI) deserves more attention, especially when evaluating H5N1 influenza vaccines that tend to induce poor HI response. In this study, we measured the humoral response (HI) and CMI (flow cytometry) during a Phase II dose-ranging clinical trial (NCT01991561). Subjects received two intramuscular doses, 21 days apart, of plant-derived virus-like particles (VLP) presenting the A/Indonesia/05/2005 H5N1 influenza hemagglutinin protein (H5) at the surface of the VLP (H5VLP). The vaccine was co-administrated with Alhydrogel® or with a glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE). We demonstrated that low doses (3.75 or 7.5 μg H5VLP) of GLA-SE-adjuvanted vaccines induced HI responses that met criteria for licensure at both antigen doses tested. Alhydrogel adjuvanted vaccines induced readily detectable HI response that however failed to meet licensure criteria at any of three doses (10, 15 and 20 μg) tested. The H5VLP also induced a sustained (up to 6 months) polyfunctional and cross-reactive HA-specific CD4+ T cell response in all vaccinated groups. Interestingly, the frequency of central memory Th1-primed precursor cells before the boost significantly correlated with HI titers 21 days after the boost. The ability of the low dose GLA-SE-adjuvanted H5VLP to elicit both humoral response and a sustained cross-reactive CMI in healthy adults is very attractive and could result in significant dose-sparing in a pandemic situation.
Collapse
Affiliation(s)
- Stéphane Pillet
- 1Medicago Inc., Québec, G1V 3V9 QC Canada.,2Research Institute of the McGill University Health Centre, Montreal, H4A 3J1 QC Canada
| | - Éric Aubin
- 1Medicago Inc., Québec, G1V 3V9 QC Canada
| | | | | | | | - Jan Ter Meulen
- Immune Design, Seattle, WA 98102 USA.,Immune Design, San Francisco, CA 94080-7006 USA
| | - Brian J Ward
- 2Research Institute of the McGill University Health Centre, Montreal, H4A 3J1 QC Canada
| | | |
Collapse
|
41
|
Gill MA, Schlaudecker EP. Perspectives from the Society for Pediatric Research: Decreased Effectiveness of the Live Attenuated Influenza Vaccine. Pediatr Res 2018; 83:31-40. [PMID: 28945700 DOI: 10.1038/pr.2017.239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/15/2017] [Indexed: 11/09/2022]
Abstract
The intranasal live attenuated influenza vaccine (LAIV), FluMist, has been widely appreciated by pediatricians, parents, and children alike for its ease of administration. However, concerns regarding lack of effectiveness in recent influenza seasons led to the CDC Advisory Committee on Immunization Practices (ACIP) recommendation to administer inactivated influenza vaccines (IIVs), and not LAIV, during the 2016-17 and 2017-18 seasons. Given that data from previous years demonstrated equivalent and even improved efficacy of LAIV compared with IIV, these recent data were surprising, raising many questions about the potential mechanisms underlying this change. This review seeks to summarize the history of LAIV studies and ACIP recommendations with a focus on the recent decrease in vaccine effectiveness (VE) and discordant results among studies performed in different countries. Decreased VE for A/H1N1pdm09 viruses represents the most consistent finding across studies, as VE has been low every season these viruses predominated since 2010-11. Potential explanations underlying diminished effectiveness include the hypothesis that prior vaccination, reduced thermostability of A/H1N1pdm09, addition of a fourth virus, or reduced replication fitness of A/H1N1pdm09 strains may have contributed to this phenomenon. Ongoing studies and potential alterations to LAIV formulations provide hope for a return of effective LAIV in future influenza seasons.
Collapse
Affiliation(s)
- Michelle A Gill
- Division of Infectious Diseases, Departments of Pediatrics, Internal Medicine, and Immunology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Elizabeth P Schlaudecker
- Division of Infectious Diseases, Global Health Center, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
42
|
Influenza Virus Hemagglutinin Stalk-Specific Antibodies in Human Serum are a Surrogate Marker for In Vivo Protection in a Serum Transfer Mouse Challenge Model. mBio 2017; 8:mBio.01463-17. [PMID: 28928215 PMCID: PMC5605943 DOI: 10.1128/mbio.01463-17] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immunogenicity of current influenza virus vaccines is assessed by measuring an increase of influenza virus-specific antibodies in a hemagglutination inhibition assay. This method exclusively measures antibodies against the hemagglutinin head domain. While this domain is immunodominant, it has been shown that hemagglutination inhibition titers do not always accurately predict protection from disease. In addition, several novel influenza virus vaccines that are currently under development do not target the hemagglutinin head domain, but rather more conserved sites, including the hemagglutinin stalk. Importantly, antibodies against the hemagglutinin stalk do not show activity in hemagglutination inhibition assays and will require different methods for quantification. In this study, we tested human serum samples from a seasonal influenza virus vaccination trial and an avian H5N1 virus vaccination trial for antibody activities in multiple types of assays, including binding assays and also functional assays. We then performed serum transfer experiments in mice which then received an H1N1 virus challenge to assess the in vivo protective effects of the antibodies. We found that hemagglutinin-specific antibody levels measured in an enzyme-linked immunosorbent assay (ELISA) correlated well with protection from weight loss in mice. In addition, we found that weight loss was also inversely correlated with the level of serum antibody-dependent cellular cytotoxicity (ADCC) as measured in a reporter assay. These findings indicate that protection is in part conferred by Fc-dependent mechanisms. In conclusion, ELISAs can be used to measure hemagglutinin-specific antibody levels that could serve as a surrogate marker of protection for universal influenza virus vaccines.IMPORTANCE Influenza viruses are a serious concern for public health and cause a large number of deaths worldwide every year. Current influenza virus vaccines can confer protection from disease, but they often show low efficacy due to the ever-changing nature of the viruses. Novel vaccination approaches target conserved epitopes of the virus, including the hemagglutinin stalk domain, to elicit universally protective antibodies that also bind to mutated viruses or new subtypes of viruses. Importantly, the hemagglutination inhibition assay-the only assay that has been accepted as a correlate of protection by regulatory authorities-cannot measure antibodies against the hemagglutinin stalk domain. Therefore, novel correlates of protection and assays to measure vaccine immunogenicity need to be developed. In this study, we correlated the results from multiple assays with protection in mice after transfer of human serum and a lethal virus challenge to investigate potential novel serological surrogate markers for protection.
Collapse
|
43
|
Islam S, Mohn KGI, Krammer F, Sanne M, Bredholt G, Jul-Larsen Å, Tete SM, Zhou F, Brokstad KA, Cox RJ. Influenza A haemagglutinin specific IgG responses in children and adults after seasonal trivalent live attenuated influenza vaccination. Vaccine 2017; 35:5666-5673. [PMID: 28899626 DOI: 10.1016/j.vaccine.2017.08.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/07/2017] [Accepted: 08/19/2017] [Indexed: 11/18/2022]
Abstract
Influenza is a major respiratory pathogen and vaccination is the main method of prophylaxis. In 2012, the trivalent live attenuated influenza vaccine (LAIV3) was licensed in Europe for use in children. Vaccine-induced antibodies directed against the main viral surface glycoprotein, haemagglutinin (HA), play an important role in virus neutralization through different mechanism. The objective of this study was to dissect the HA specific antibody responses induced after LAIV3 immunization to the influenza A viruses in children and adults. Plasma was collected from 20 children and 20 adults pre- and post-LAIV3 vaccination (up to ayear) and analysed by the haemagglutination inhibition (HI) and ELISA assays. We found that LAIV3 boosted the HA specific IgG response against the head and the full-length of H3N2 in children, but not adults. Adults had higher levels of pre-existing stalk antibodies (towards H3N2 and H1N1), but these were not boosted by LAIV3. Importantly, we observed a trend in boosting of H1N1 HA stalk specific antibodies in children after LAIV3. Whereas, heterosubtypic H5 and H7 full-length HA specific antibodies were not boosted in either children or adults. In conclusion, LAIV3 elicited H3-head and low levels of H1 stalk specific antibody responses in children, supporting the prophylactic use of LAIV in children.
Collapse
Affiliation(s)
- Shahinul Islam
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway; K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kristin Greve-Isdahl Mohn
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway; K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Mari Sanne
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Geir Bredholt
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Åsne Jul-Larsen
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway; K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Sarah M Tete
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway; K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Research & Development, Haukeland University Hospital, Bergen, Norway
| | - Fan Zhou
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway; K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Karl Albert Brokstad
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Norway
| | - Rebecca Jane Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway; K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Research & Development, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
44
|
Mohn KGI, Zhou F, Brokstad KA, Sridhar S, Cox RJ. Boosting of Cross-Reactive and Protection-Associated T Cells in Children After Live Attenuated Influenza Vaccination. J Infect Dis 2017; 215:1527-1535. [PMID: 28368530 PMCID: PMC5461427 DOI: 10.1093/infdis/jix165] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/26/2017] [Indexed: 01/27/2023] Open
Abstract
Background Live attenuated influenza vaccines (LAIVs) stimulate a multifaceted immune response including cellular immunity, which may provide protection against newly emerging strains. This study shows proof of concept that LAIVs boost preexisting, cross-reactive T cells in children to genetically diverse influenza A virus (IAV) strains to which the children had not been exposed. Methods We studied the long-term cross-reactive T-cell response in 14 trivalent LAIV-vaccinated children using the fluorescent immunospot assay (FluoroSpot) with heterologous H1N1 and H3N2 IAVs and CD8+ peptides from the internal proteins (matrix protein 1 [M1], nucleoprotein [NP], polymerase basic protein 1 [PB1]). Serum antibody responses were determined by means of hemagglutination inhibition assay. Blood samples were collected before vaccination and up to 1 year after vaccination. Results Preexisting cross-reactive T cells to genetically diverse IAV strains were found in the majority of the children, which were further boosted in 50% of them after receipt of LAIV. Further analyses of these T cells showed significant increases in CD8+ T cells, mainly dominated by NP-specific responses. After vaccination with LAIV, the youngest children showed the highest increase in T-cell responses. Conclusion LAIV boosts durable, cross-reactive T-cell responses in children and may have a clinically protective effect at the population level. LAIV may be a first step toward the desired universal influenza vaccine.
Collapse
Affiliation(s)
| | - Fan Zhou
- The Influenza Centre.,K. G. Jebsen Centre for Influenza Vaccines, and
| | - Karl A Brokstad
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, and
| | | | - Rebecca J Cox
- The Influenza Centre.,K. G. Jebsen Centre for Influenza Vaccines, and.,Department of Research & Development, Haukeland University Hospital, Bergen, Norway ; and
| |
Collapse
|
45
|
Petukhova GD, Losev IV, Isakova-Sivak IN, Rudenko LG. Influence of Individual Mutations in Genes Coding Internal Proteins of the Influenza A Virus on Formation of Humoral and Cellular Immune Response in Mice. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2017. [DOI: 10.3103/s0891416817030077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Inactivated influenza virus vaccines: the future of TIV and QIV. Curr Opin Virol 2017; 23:102-106. [PMID: 28505524 DOI: 10.1016/j.coviro.2017.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/24/2017] [Indexed: 11/20/2022]
Abstract
Influenza viruses continue to be a major public health concern, despite the availability of vaccines. Currently licensed influenza vaccines aim at the induction of antibodies that target hemagglutinin, the major antigenic determinant on the surface of influenza virions that is responsible for attachment of the virus to the host cell that is to be infected. Currently licensed influenza vaccines come as inactivated or live attenuated influenza vaccines and are trivalent or quadrivalent as they contain antigens of two influenza A and one or two influenza B strains that circulate in the human population, respectively. In this review we briefly compare trivalent and quadrivalent inactivated influenza vaccines (TIV and QIV) with live attenuated influenza vaccines (LAIV). The use of the latter vaccine type in children age 2-8 has been disrecommended recently by the American Centers for Disease Control and Prevention due to inferior vaccine effectiveness in this age group in recent seasons. This recommendation will favor the use of TIV and QIV over LAIV in the near future. However, there is much evidence from studies in humans that illustrate the benefit of LAIV and we discuss some of the mechanisms that contribute to broader protection against influenza viruses of different subtypes induced by natural infection and LAIV. The future challenge will be to apply these insights to allow induction of broader and long-lasting protection provided by TIV and QIV vaccines, for example, by the use of adjuvants or combining LAIV with TIV and QIV. Other immune factors than serum hemagglutination inhibiting antibodies have shown to correlate with protection provided by TIV and QIV, which illustrates the need for other correlates of protection than hemagglutination inhibition by serum antibodies and justifies more focus on influenza antigens in the TIV and QIV other than hemagglutinin.
Collapse
|
47
|
Impact of Type I Interferon on the Safety and Immunogenicity of an Experimental Live-Attenuated Herpes Simplex Virus 1 Vaccine in Mice. J Virol 2017; 91:JVI.02342-16. [PMID: 28122977 DOI: 10.1128/jvi.02342-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022] Open
Abstract
Viral fitness dictates virulence and capacity to evade host immune defenses. Understanding the biological underpinnings of such features is essential for rational vaccine development. We have previously shown that the live-attenuated herpes simplex virus 1 (HSV-1) mutant lacking the nuclear localization signal (NLS) on the ICP0 gene (0ΔNLS) is sensitive to inhibition by interferon beta (IFN-β) in vitro and functions as a highly efficacious experimental vaccine. Here, we characterize the host immune response and in vivo pathogenesis of HSV-1 0ΔNLS relative to its fully virulent parental strain in C57BL/6 mice. Additionally, we explore the role of type 1 interferon (IFN-α/β) signaling on virulence and immunogenicity of HSV-1 0ΔNLS and uncover a probable sex bias in the induction of IFN-α/β in the cornea during HSV-1 infection. Our data show that HSV-1 0ΔNLS lacks neurovirulence even in highly immunocompromised mice lacking the IFN-α/β receptor. These studies support the translational viability of the HSV-1 0ΔNLS vaccine strain by demonstrating that, while it is comparable to a virulent parental strain in terms of immunogenicity, HSV-1 0ΔNLS does not induce significant tissue pathology.IMPORTANCE HSV-1 is a common human pathogen associated with a variety of clinical presentations ranging in severity from periodic "cold sores" to lethal encephalitis. Despite the consistent failures of HSV subunit vaccines in clinical trials spanning the past 28 years, opposition to live-attenuated HSV vaccines predicated on unfounded safety concerns currently limits their widespread acceptance. Here, we demonstrate that a live-attenuated HSV-1 vaccine has great translational potential.
Collapse
|
48
|
A Feasibility Trial of Home Administration of Intranasal Vaccine by Parents to Eligible Children. Clin Ther 2016; 39:204-211.e4. [PMID: 27938896 DOI: 10.1016/j.clinthera.2016.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/10/2016] [Accepted: 12/16/2016] [Indexed: 11/23/2022]
Abstract
PURPOSE Intranasal vaccines are being developed for protection against many different infectious agents. The currently available intranasal live attenuated influenza vaccine (LAIV) is only approved for administration by medical personnel. We conducted a pilot study to investigate the feasibility of training parents to give LAIV to their own children. METHODS Subjects were recruited from several sources: a university-based outpatient clinic, university employee e-mail announcement, and direct referrals from study subjects. After confirming eligibility to receive LAIV, consented parents were trained by viewing a video with the study staff. LAIV was provided in a cooler with instructions to vaccinate within 24 hours. Telephone follow-up was conducted to confirm proper administration and to assess parental attitudes about home administration. At season's end, immunization registry and hospital records were reviewed to confirm no additional doses were given. FINDINGS Twenty-seven families with 41 children were enrolled. All participants successfully administered LAIV to their children, and all preferred or strongly preferred home administration to an office visit for getting vaccinated. Two families stated that without this option they would not have otherwise vaccinated their children. Adverse events were minor. All patients had their state vaccine registries accurately updated and none received duplicate doses. Upon review, no reimbursement was received for vaccination. IMPLICATIONS Home administration of intranasal LAIV was successful and well received. This option could be used in the future for LAIV or other intranasal vaccines as a way to increase vaccination rates and convenience for parents. ClinicalTrials.gov identifier: NCT01938170.
Collapse
|
49
|
Caspard H, Coelingh KL, Mallory RM, Ambrose CS. Association of vaccine handling conditions with effectiveness of live attenuated influenza vaccine against H1N1pdm09 viruses in the United States. Vaccine 2016; 34:5066-5072. [PMID: 27613072 DOI: 10.1016/j.vaccine.2016.08.079] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/29/2016] [Indexed: 01/04/2023]
Abstract
PURPOSE This analysis examined potential causes of the lack of vaccine effectiveness (VE) of live attenuated influenza vaccine (LAIV) against A/H1N1pdm09 viruses in the United States (US) during the 2013-2014 season. Laboratory studies have demonstrated reduced thermal stability of A/California/07/2009, the A/H1N1pdm09 strain utilized in LAIV from 2009 through 2013-2014. METHODS Post hoc analyses of a 2013-2014 test-negative case-control (TNCC) effectiveness study investigated associations between vaccine shipping conditions and LAIV lot effectiveness. Investigational sites provided the LAIV lot numbers administered to each LAIV recipient enrolled in the study, and the vaccine distributor used by the site for commercially purchased vaccine. Additionally, a review was conducted of 2009-2014 pediatric observational TNCC effectiveness studies of LAIV, summarizing effectiveness by type/subtype, season, and geographic location. RESULTS From the 2013 to 2014 TNCC study, the proportion of LAIV recipients who tested positive for H1N1pdm09 was significantly higher among children who received a lot released between August 1 and September 15, 2013, compared with a lot shipped either earlier or later (21% versus 4%; P<0.01). A linear relationship was observed between the proportion of subjects testing positive for H1N1pdm09 and outdoor temperatures during truck unloading at distributors' central locations. The review of LAIV VE studies showed that in the 2010-2011 and 2013-2014 influenza seasons, no significant effectiveness of LAIV against H1N1pdm09 was demonstrated for the trivalent or quadrivalent formulations of LAIV in the US, respectively, in contrast to significant effectiveness against A/H3N2 and B strains during 2010-2014. CONCLUSIONS This study showed that the lack of VE observed with LAIV in the US against H1N1pdm09 viruses was associated with exposure of some LAIV lots to temperatures above recommended storage conditions during US distribution, and is likely explained by the increased susceptibility of the A/California/7/2009 (H1N1pdm09) LAIV strain to thermal degradation. CLINICAL TRIAL REGISTRY NCT01997450.
Collapse
Affiliation(s)
- Herve Caspard
- MedImmune, One MedImmune Way, Gaithersburg, MD 20878, USA.
| | | | | | | |
Collapse
|
50
|
Pillet S, Aubin É, Trépanier S, Bussière D, Dargis M, Poulin JF, Yassine-Diab B, Ward BJ, Landry N. A plant-derived quadrivalent virus like particle influenza vaccine induces cross-reactive antibody and T cell response in healthy adults. Clin Immunol 2016; 168:72-87. [PMID: 26987887 DOI: 10.1016/j.clim.2016.03.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/22/2016] [Accepted: 03/07/2016] [Indexed: 01/09/2023]
Abstract
Recent issues regarding efficacy of influenza vaccines have re-emphasized the need of new approaches to face this major public health issue. In a phase 1-2 clinical trial, healthy adults received one intramuscular dose of a seasonal influenza plant-based quadrivalent virus-like particle (QVLP) vaccine or placebo. The hemagglutination inhibition (HI) titers met all the European licensure criteria for the type A influenza strains at the 3μg/strain dose and for all four strains at the higher dosages 21days after immunization. High HI titers were maintained for most of the strains 6months after vaccination. QVLP vaccine induced a substantial and sustained increase of hemagglutinin-specific polyfunctional CD4 T cells, mainly transitional memory and TEMRA effector IFN-γ(+) CD4 T cells. A T cells cross-reactive response was also observed against A/Hong-Kong/1/1968 H3N2 and B/Massachusetts/2/2012. Plant-based QVLP offers an attractive alternative manufacturing method for producing effective and HA-strain matching seasonal influenza vaccines.
Collapse
Affiliation(s)
- Stéphane Pillet
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC, Canada, G1V 3V9; Research Institute of the McGill University Health Centre, 2155 Guy Street, 5th Floor, Montreal, QC, Canada, H3H 2R9
| | - Éric Aubin
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC, Canada, G1V 3V9
| | - Sonia Trépanier
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC, Canada, G1V 3V9
| | - Diane Bussière
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC, Canada, G1V 3V9
| | - Michèle Dargis
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC, Canada, G1V 3V9
| | | | - Bader Yassine-Diab
- ImmuneCarta, 201 Avenue du Président-Kennedy, Montreal, QC, Canada, H2X 3Y7
| | - Brian J Ward
- Research Institute of the McGill University Health Centre, 2155 Guy Street, 5th Floor, Montreal, QC, Canada, H3H 2R9
| | - Nathalie Landry
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC, Canada, G1V 3V9.
| |
Collapse
|