1
|
Molgora BM, Mukherjee SK, Baumel-Alterzon S, Santiago FM, Muratore KA, Sisk AE, Mercer F, Johnson PJ. Trichomonas vaginalis adherence phenotypes and extracellular vesicles impact parasite survival in a novel in vivo model of pathogenesis. PLoS Negl Trop Dis 2023; 17:e0011693. [PMID: 37871037 PMCID: PMC10621976 DOI: 10.1371/journal.pntd.0011693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/02/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023] Open
Abstract
Trichomonas vaginalis is a human infective parasite responsible for trichomoniasis-the most common, non-viral, sexually transmitted infection worldwide. T. vaginalis resides exclusively in the urogenital tract of both men and women. In women, T. vaginalis has been found colonizing the cervix and vaginal tract while in men it has been identified in the upper and lower urogenital tract and in secreted fluids such as semen, urethral discharge, urine, and prostatic fluid. Despite the over 270 million cases of trichomoniasis annually worldwide, T. vaginalis continues to be a highly neglected organism and thus poorly studied. Here we have developed a male mouse model for studying T. vaginalis pathogenesis in vivo by delivering parasites into the murine urogenital tract (MUT) via transurethral catheterization. Parasite burden was assessed ex-vivo using a nanoluciferase-based gene expression assay which allowed quantification of parasites pre- and post-inoculation. Using this model and read-out approach, we show that T. vaginalis can be found within MUT tissue up to 72 hrs post-inoculation. Furthermore, we also demonstrate that parasites that exhibit increased parasite adherence in vitro also have higher parasite burden in mice in vivo. These data provide evidence that parasite adherence to host cells aids in parasite persistence in vivo and molecular determinants found to correlate with host cell adherence in vitro are applicable to infection in vivo. Finally, we show that co-inoculation of T. vaginalis extracellular vesicles (TvEVs) and parasites results in higher parasite burden in vivo. These findings confirm our previous in vitro-based predictions that TvEVs assist the parasite in colonizing the host. The establishment of this pathogenesis model for T. vaginalis sets the stage for identifying and examining parasite factors that contribute to and influence infection outcomes.
Collapse
Affiliation(s)
- Brenda M. Molgora
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Sandip Kumar Mukherjee
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Sharon Baumel-Alterzon
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Fernanda M. Santiago
- Laboratory of Immunoparasitology “Dr. Mário Endsfeldz Camargo,” Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Katherine A. Muratore
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Anthony E. Sisk
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Frances Mercer
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, California, United States of America
| | - Patricia J. Johnson
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
2
|
Bongiorni Galego G, Tasca T. Infinity war: Trichomonas vaginalis and interactions with host immune response. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:103-116. [PMID: 37125086 PMCID: PMC10140678 DOI: 10.15698/mic2023.05.796] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 05/02/2023]
Abstract
Trichomonas vaginalis is the pathological agent of human trichomoniasis. The incidence is 156 million cases worldwide. Due to the increasing resistance of isolates to approved drugs and clinical complications that include increased risk in the acquisition and transmission of HIV, cervical and prostate cancer, and adverse outcomes during pregnancy, increasing our understanding of the pathogen's interaction with the host immune response is essential. Production of cytokines and cells of innate immunity: Neutrophils and macrophages are the main cells involved in the fight against the parasite, while IL-8, IL-6 and TNF-α are the most produced cytokines in response to this infection. Clinical complications: T. vaginalis increases the acquisition of HIV, stimulates the invasiveness and growth of prostate cells, and generates an inflammatory environment that may lead to preterm birth. Endosymbiosis: Mycoplasma hominis increased cytotoxicity, growth, and survival rate of the parasite. Purinergic signaling: NTPD-ases and ecto-5'-nucleotidase helps in parasite survival by modulating the nucleotides levels in the microenvironment. Antibodies: IgG was detected in serum samples of rodents infected with isolates from symptomatic patients as well as patients with symptoms. However, antibody production does not protect against a reinfection. Vaccine candidate targets: The transient receptor potential- like channel of T. vaginalis (TvTRPV), cysteine peptidase, and α-actinin are currently cited as candidate targets for vaccine development. In this context, the understanding of mechanisms involved in the host-T. vaginalis interaction that elicit the immune response may contribute to the development of new targets to combat trichomoniasis.
Collapse
Affiliation(s)
- Giulia Bongiorni Galego
- Grupo de Pesquisa em Tricomonas, Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, 90610-000, Rio Grande do Sul, Brazil
| | - Tiana Tasca
- Grupo de Pesquisa em Tricomonas, Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, 90610-000, Rio Grande do Sul, Brazil
- * Corresponding Author: Tiana Tasca, Avenida Ipiranga, 2752. 90610-000. Porto Alegre, Rio Grande do Sul, Brazil; Tel: +555133085325;
| |
Collapse
|
3
|
Myrtle-Functionalized Nanofibers Modulate Vaginal Cell Population Behavior While Counteracting Microbial Proliferation. PLANTS 2022; 11:plants11121577. [PMID: 35736728 PMCID: PMC9227804 DOI: 10.3390/plants11121577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Vaginal infections affect millions of women annually worldwide. Therapeutic options are limited, moreover drug-resistance increases the need to find novel antimicrobials for health promotion. Recently phytochemicals were re-discovered for medical treatment. Myrtle (Myrtus communis L.) plant extracts showed in vitro antioxidant, antiseptic and anti-inflammatory properties thanks to their bioactive compounds. The aim of the present study was to create novel nanodevices to deliver three natural extracts from leaves, seeds and fruit of myrtle, in vaginal milieu. We explored their effect on human cells (HeLa, Human Foreskin Fibroblast-1 line, and stem cells isolated from skin), resident microflora (Lactobacillus acidophilus) and on several vaginal pathogens (Trichomonas vaginalis, Escherichia coli, Staphylococcus aureus, Candida albicans, Candida kefyr, Candida glabrata, Candida parapsilosis, Candida krusei). Polycaprolactone-Gelatin nanofibers encapsulated with leaves extract and soaked with seed extracts exhibited a different capability in regard to counteracting microbial proliferation. Moreover, these nanodevices do not affect human cells and resident microflora viability. Results reveal that some of the tested nanofibers are interesting candidates for future vaginal infection treatments.
Collapse
|
4
|
Local cytokine/chemokine profiles in BALB/c and C57BL/6 mice in response to T. vaginalis infection. Exp Parasitol 2022; 239:108287. [PMID: 35660531 DOI: 10.1016/j.exppara.2022.108287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 02/27/2022] [Accepted: 05/30/2022] [Indexed: 11/19/2022]
Abstract
Trichomonas vaginalis is the causative agent of Trichomoniasis (a sexually transmitted infection). Recent reports have shown that stimulation of cellular immunity can reduce trichomoniasis infection. Animal studies are essential to understanding the pathogenesis of infection and developing new potential drugs and vaccines to treat the infection. Therefore, we have tried to understand the pathogenesis of T. vaginalis infection by investigating the differences in the expression of chemokine/cytokine levels in vaginal and cervical tissues of BALB/c and C57BL/6 mice. Different pathological symptoms, like desquamation, neutrophil infiltration, and hemorrhage, were recorded in BALB/c and C57BL/6 in response to T. vaginalis infection. Vaginal and cervical tissues of BALB/c showed these symptoms on 2nd dpi, which became severe on 7th dpi and turned to mild or normal till 14th dpi compared to C57BL/6 strain. Immunohistochemistry in the vagina and cervical tissues of BALB/c and C57BL/6 mice was done to assess cytokines at different time intervals post-infection. Significant expression of Interleukin-1β (IL-1β) (a pro-inflammatory cytokine) was found in BALB/c compared to the C57BL/6 mice, on 7th dpi and 2nd dpi in vaginal and cervical tissues, respectively. Higher expression of MIP-2 (neutrophil chemoattractant) was observed in the vaginal tissues of BALB/c mice on 7th dpi compared to the C57BL/6 group. In addition, higher expression of TGF-β (immune-suppressor) was observed on 7th dpi in the vaginal tissue of BALB/c mice. The present study demonstrates that more pathological signs of T. vaginalis infection developed in BALB/c mice than C57BL/6 mice. Also, significant levels of IL-1β and MIP-2 were measured in BALB/c mice in response to T. vaginalis compared to C57BL/6.
Collapse
|
5
|
Fatima F, Kumar S, Das A. Vaccines against sexually transmitted infections: an update. Clin Exp Dermatol 2022; 47:1454-1463. [DOI: 10.1111/ced.15223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 12/09/2022]
Affiliation(s)
- Farhat Fatima
- Department of Dermatology, Venereology, and Leprosy; Medical College & Hospital Kolkata India
| | - Satarupa Kumar
- Department of Dermatology, Venereology, and Leprosy; Medical College & Hospital Kolkata India
| | - Anupam Das
- Department of Dermatology, Venereology, and Leprosy; KPC Medical College & Hospital Kolkata India
| |
Collapse
|
6
|
Rangel-Mata FJ, Ávila-Muro EE, Reyes-Martínez JE, Olmos-Ortiz LM, Brunck ME, Arriaga-Pizano LA, Cuéllar-Mata P. Immune cell arrival kinetics to peritoneum and role during murine-experimental trichomoniasis. Parasitology 2021; 148:1624-1635. [PMID: 35060469 PMCID: PMC11010205 DOI: 10.1017/s0031182021001311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/09/2021] [Accepted: 07/15/2021] [Indexed: 01/07/2023]
Abstract
Trichomonas vaginalis causes trichomoniasis, an inflammatory process related to an increased rate of HIV transmission. In order to study T. vaginalis infection response in a microorganism-free environment, an infection model was established providing a host–parasite interaction system useful to study the interplay between immune cells and the parasite. Infected mice peritoneal cells were immunophenotyped at different times after infection using flow cytometry. Neutrophils and macrophages showed the most relevant increase from third to 12th day post-infection. A high number of B lymphocytes were present on 15th day post-infection, and an increase in memory T cells was observed on sixth day post-infection. The levels of NO increased at day 10 post-infection; no significant influence was observed on T. vaginalis clearance. Increased viability of T. vaginalis was observed when the NETs inhibitors, metformin and Cl− amidine, were administrated, highlighting the importance of this mechanism to control parasite infection (43 and 86%, respectively). This report presents a comprehensive cell count of the immune cells participating against trichomoniasis in an in vivo interaction system. These data highlight the relevance of innate mechanisms such as specific population changes of innate immune cells and their impact on the T. vaginalis viability.
Collapse
Affiliation(s)
- F. J. Rangel-Mata
- Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | - E. E. Ávila-Muro
- Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | | | - L. M. Olmos-Ortiz
- Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | - M. E. Brunck
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Mexico
| | | | - P. Cuéllar-Mata
- Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| |
Collapse
|
7
|
Mabaso N, Abbai NS. A review on Trichomonas vaginalis infections in women from Africa. S Afr J Infect Dis 2021; 36:254. [PMID: 34485502 PMCID: PMC8377975 DOI: 10.4102/sajid.v36i1.254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/13/2021] [Indexed: 12/02/2022] Open
Abstract
Background Trichomoniasis is the most common sexually transmitted infection (STI) with an estimated annual incidence of 276.4 million cases globally and about 30 million cases in sub-Saharan Africa. Trichomoniasis has been found to be associated with various health complications including pelvic inflammatory disease (PID), significant pregnancy complications, cervical cancer, prostatitis, infertility and the acquisition of human immunodeficiency virus (HIV). Aim Despite being a highly prevalent infection in the African continent, there is no review article published that solely focusses on Trichomonas vaginalis (T. vaginalis) infections in women from Africa. This review aims to fill this gap in the literature. Method An electronic search of online databases was used to identify and extract relevant research articles related to the epidemiology, health complications and treatment associated with T. vaginalis in women from Africa. Results Within the African continent, South Africa has reported the highest prevalence rate for this infection. A combination of sociodemographic, behavioural and biological factors has been shown to be associated with infection. Trichomonas vaginalis infection is associated with the acquisition of HIV, cervical cancer and PIDs in various female populations across the continent. Emerging patterns of resistance to metronidazole have been reported in women from South Africa. Currently, there is no effective vaccine against this pathogen despite efforts at vaccine development. Conclusion Based on the high prevalence and health consequences associated with T. vaginalis, there is a need for improved screening programmes that will lead to early diagnosis, detection of asymptomatic infections and effective treatment regimens.
Collapse
Affiliation(s)
- Nonkululeko Mabaso
- School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nathlee S Abbai
- School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
8
|
Zhang Z, Song X, Zhang Z, Li H, Duan Y, Zhang H, Lu H, Luo C, Wang M. The molecular characterization and immune protection of adhesion protein 65 (AP65) of Trichomonas vaginalis. Microb Pathog 2021; 152:104750. [PMID: 33484808 DOI: 10.1016/j.micpath.2021.104750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/13/2020] [Accepted: 01/13/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Adherence to the surface of the host cell is the precondition for T. vaginalis parasitism and pathogenicity, causing urogenital infection. The AP65 of T. vaginalis (TvAP65) involves in the process of adhesion. So, the present study was aimed at investigating the molecular characterization and vaccine candidacy of TvAP65 for protecting the host from the onset of Trichomoniasis. METHODS The open reading frame (ORF) of TvAP65 was amplified and then inserted into pET-32a (+) to clone recombinant TvAP65 (rTvAP65). The immunoblotting determined the immunogenicity and molecular size of TvAP65, while immunofluorescence staining visualized and the precise localization of TvAP65 in T. vaginalis trophozoites. Animal challenge and enzyme-linked immunosorbent assay (ELISA) test were used to evaluate the immunoprotection and the types of the immune response of TvAP65. RESULTS By the sequence analysis, TvAP65 encoded a 63.13 kDa protein that consisted 567 amino acid residues with a high antigenic index. The western blotting revealed that rTvAP65 and native TvAP65 could interact with the antibodies in the rat serums post hoc rTvAP65 immunization and the serums from the mice that were experimentally infected with T. vaginalis, respectively. Immunofluorescence stained TvAP65 on the surface of T. vaginalis trophozoites. Moreover, following emulsification with Freund's adjuvant, rTvAP65 was subsequently administered to BALB/c mice three times at 0, 2, and 4 weeks and the results from this animal challenge experiments showed significant increases in immunoglobulins of IgG2a, IgG1, and IgG, and cytokine of IFN-γ, and IL-2, and 10. Lastly, rTvAP65 vaccinated animals had a prolonged survival time (26.80 ± 4.05) after challenged by T. vaginalis. CONCLUSIONS TvAP65 mediated the adhesion of T. vaginalis to the host epithelia for the pathogenesis of the parasite and can be considered as a candidate protein for designing a functional vaccine that induces cell-mediated and humoral immunity against the T. vaginalis infection.
Collapse
Affiliation(s)
- Zhenchao Zhang
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China.
| | - Xiaoxiao Song
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Zhengbo Zhang
- School of International Education, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Haoran Li
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Yujuan Duan
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Hao Zhang
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Haoran Lu
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Chengyang Luo
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Mingyong Wang
- Henan Key Laboratory of Immunology and Targeted Therapy, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China.
| |
Collapse
|
9
|
Zhang Z, Li Y, Wang S, Hao L, Zhu Y, Li H, Song X, Duan Y, Sang Y, Wu P, Li X. The Molecular Characterization and Immunity Identification of Trichomonas vaginalis Adhesion Protein 33 (AP33). Front Microbiol 2020; 11:1433. [PMID: 32695085 PMCID: PMC7338309 DOI: 10.3389/fmicb.2020.01433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/03/2020] [Indexed: 12/22/2022] Open
Abstract
Trichomoniasis is caused by Trichomonas vaginalis (T. vaginalis), which is a widespread and serious sexually transmitted pathogen in humans. The procedure of T. vaginalis adherence to the host cell is the precondition for T. vaginalis parasitism and pathogenicity. The AP33 adhesin of T. vaginalis (TvAP33) plays a key role in the process of adhesion. In this study, the specific primers for polymerase chain reaction (PCR) were designed based on the sequence of TvAP33 (GenBank Accession No. U87098.1) to amplify the open reading frame (ORF), and the ORF was inserted into pET-32a (+) to produce recombinant TvAP33 (rTvAP33). The sequence analysis indicated that the TvAP33 gene encoded a protein of 309 amino acids with 32.53 kDa, and the protein was predicted to have a high antigen index. Western blotting assay showed rTvAP33 was successfully recognized by the sera of mice experimentally infected with T. vaginalis, while native TvAP33 in the somatic extract of T. vaginalis trophozoite was as well detected by sera from rats immunized with the rTvAP33. Immunofluorescence analysis using an antibody against rTvAP33 demonstrated that the protein was expressed and located on the surface of T. vaginalis trophozoites. The recombinant protein was emulsified in Freund's adjuvant and used to immunize BALB/C mice three times at days 0, 14, and 28. The result of animal challenge experiments revealed the levels of IgG, IgG1, and IgG2a, and IL-4, IL-10, and IL17 among rTvAP33 vaccinated animals were integrally increased. Moreover, the rTvAP33 vaccinated animals were apparently prolonged survival time (26.45 ± 4.10) after challenge infection with this parasite. All these results indicated that TvAP33 could be used as vaccine candidate antigen to induce cell-mediated and humoral immunity.
Collapse
Affiliation(s)
- Zhenchao Zhang
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yuhua Li
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Shuai Wang
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Lixia Hao
- Xinxiang Maternity and Child Health Care Hospital, Xinxiang, China
| | - Yunqing Zhu
- Xinxiang Maternity and Child Health Care Hospital, Xinxiang, China
| | - Haoran Li
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xiaoxiao Song
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yujuan Duan
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yuhui Sang
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Pucheng Wu
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xiangrui Li
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Kalia N, Singh J, Kaur M. Immunopathology of Recurrent Vulvovaginal Infections: New Aspects and Research Directions. Front Immunol 2019; 10:2034. [PMID: 31555269 PMCID: PMC6722227 DOI: 10.3389/fimmu.2019.02034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/12/2019] [Indexed: 12/25/2022] Open
Abstract
Recurrent vulvovaginal infections (RVVI), a devastating group of mucosal infection, are severely affecting women's quality of life. Our understanding of the vaginal defense mechanisms have broadened recently with studies uncovering the inflammatory nature of bacterial vaginosis, inflammatory responses against novel virulence factors, innate Type 17 cells/IL-17 axis, neutrophils mediated killing of pathogens by a novel mechanism, and oxidative stress during vaginal infections. However, the pathogens have fine mechanisms to subvert or manipulate the host immune responses, hijack them and use them for their own advantage. The odds of hijacking increases, due to impaired immune responses, the net magnitude of which is the result of numerous genetic variations, present in multiple host genes, detailed in this review. Thus, by underlining the role of the host immune responses in disease etiology, modern research has clarified a major hypothesis shift in the pathophilosophy of RVVI. This knowledge can further be used to develop efficient immune-based diagnosis and treatment strategies for this enigmatic disease conditions. As for instance, plasma-derived MBL replacement, adoptive T-cell, and antibody-based therapies have been reported to be safe and efficacious in infectious diseases. Therefore, these emerging immune-therapies could possibly be the future therapeutic options for RVVI.
Collapse
Affiliation(s)
- Namarta Kalia
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Jatinder Singh
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Manpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
11
|
Mendoza-Oliveros T, Arana-Argáez V, Alvaréz-Sánchez LC, Lara-Riegos J, Alvaréz-Sánchez ME, Torres-Romero JC. Immune Response of BALB/c Mice toward Putative Calcium Transporter Recombinant Protein of Trichomonas vaginalis. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:33-38. [PMID: 30840797 PMCID: PMC6409216 DOI: 10.3347/kjp.2019.57.1.33] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 12/23/2018] [Indexed: 12/12/2022]
Abstract
Trichomoniasis is a common sexually transmitted infection caused by Trichomonas vaginalis, which actually does not exist a vaccine for control or prevention. Thus, the identification of new and potent immunogens in T. vaginalis, which can contribute to the development of a vaccine against this parasite, is necessary. Therefore, the aim of this work was to evaluate the potential of a recombinant Transient Receptor Potential-like channel of T. vaginalis (TvTRPV), as a promising immunogen in BALB/c mice. First, TvTRPV was cloned and expressed as a recombinant protein in Escherichia coli BL21 cells and purified by nickel affinity. Next, BALB/c mice were immunized and the antibody levels in mice serum and cytokines from the supernatant of macrophages and from co-culture systems were evaluated. Recombinant TvTRPV triggered high levels of specific total IgG in sera from the immunized mice. Also, a statistically significant increase of cytokines: IL-1β, IL-6, and TNF-α after stimulation with the corresponding antigens in vitro, was identified. Moreover, co-cultures using CD4+ T cells from immunized mice were able to identify higher levels of IL-10 and IFN-γ. These results were useful to validate the immunogenicity of TvTRPV in BALB/c mice, where IL-10-IFN-γ-secreting cells could play a role in infection control, supporting the potential of TvTRPV as a promising target for vaccine against T. vaginalis.
Collapse
Affiliation(s)
- Tahali Mendoza-Oliveros
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química de la Universidad Autónoma de Yucatán, Mérida 97069, México
| | - Victor Arana-Argáez
- Laboratorio de Farmacología, Facultad de Química de la Universidad Autónoma de Yucatán, Mérida 97069, México
| | - Leidi C Alvaréz-Sánchez
- Laboratorio de Virología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi" de la Universidad Autónoma de Yucatán, Mérida 97069, México
| | - Julio Lara-Riegos
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química de la Universidad Autónoma de Yucatán, Mérida 97069, México
| | | | - Julio C Torres-Romero
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química de la Universidad Autónoma de Yucatán, Mérida 97069, México
| |
Collapse
|
12
|
Nemati M, Malla N, Yadav M, Khorramdelazad H, Jafarzadeh A. Humoral and T cell-mediated immune response against trichomoniasis. Parasite Immunol 2018; 40. [PMID: 29266263 DOI: 10.1111/pim.12510] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022]
Abstract
Trichomonas vaginalis (T. vaginalis) infection leads to the synthesis of specific antibodies in the serum and local secretions. The profile of T. vaginalis-specific antibodies and T cell-mediated immune responses may influence the outcome of infection, towards parasite elimination, persistence or pathological reactions. Studies have indicated that Th1-, Th17- and Th22 cell-related cytokines may be protective or pathogenic, whereas Th2- and Treg cell-related cytokines can exert anti-inflammatory effects during T. vaginalis infection. A number of T. vaginalis-related components such as lipophosphoglycan (TvLPG), α-actinin, migration inhibitory factor (TvMIF), pyruvate:ferredoxin oxidoreductase (PFO), legumain-1 (TvLEGU-1), adhesins and cysteine proteases lead to the induction of specific antibodies. T. vaginalis has acquired several strategies to evade the humoral immune responses such as degradation of immunoglobulins by cysteine proteases, antigenic variation and killing of antibody-producing B cells. The characterization of the T. vaginalis-specific antibodies to significant immunogenic molecules and formulation of strategies to promote their induction in vaginal mucosa may reveal their potential protective effects against trichomoniasis. In this review, we discuss the current understanding of antibody and T cell-mediated immune responses to T. vaginalis and highlight novel insights into the possible role of immune responses in protection against parasite.
Collapse
Affiliation(s)
- M Nemati
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - N Malla
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - M Yadav
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - H Khorramdelazad
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - A Jafarzadeh
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
13
|
Käser T, Renois F, Wilson HL, Cnudde T, Gerdts V, Dillon JAR, Jungersen G, Agerholm JS, Meurens F. Contribution of the swine model in the study of human sexually transmitted infections. INFECTION GENETICS AND EVOLUTION 2017; 66:346-360. [PMID: 29175001 DOI: 10.1016/j.meegid.2017.11.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/18/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022]
Abstract
The pig has garnered more and more interest as a model animal to study various conditions in humans. The growing success of the pig as an experimental animal model is explained by its similarities with humans in terms of anatomy, genetics, immunology, and physiology, by their manageable behavior and size, and by the general public acceptance of using pigs for experimental purposes. In addition, the immunological toolbox of pigs has grown substantially in the last decade. This development led to a boost in the use of pigs as a preclinical model for various human infections including sexually transmitted diseases (STIs) like Chlamydia trachomatis. In the current review, we discuss the use of animal models for biomedical research on the major human STIs. We summarize results obtained in the most common animal models and focus on the contributions of the pig model towards the understanding of pathogenesis and the host immune response. In addition, we present the main features of the porcine model that are particularly relevant for the study of pathogens affecting human female and male genital tracts. We also inform on the technological advancements in the porcine toolbox to facilitate new discoveries in this biologically important animal model. There is a continued need for improvements in animal modeling for biomedical research inclusive STI research. With all its advantages and the highly improved toolbox, the porcine model can play a crucial role in STI research and open the door to new exciting discoveries.
Collapse
Affiliation(s)
- Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, 27607 Raleigh, NC, USA
| | - Fanny Renois
- LUNAM Université, Oniris, Laboratoire d'Étude des Résidus et Contaminants dans les Aliments (LABERCA), UMR INRA 1329, 44307 Nantes, France
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - Thomas Cnudde
- BIOMAP, Laboratoire Biomédicaments Anti-Parasitaires, ISP, UMR INRA 1282, Université Tours, 37380 Nouzilly, France
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - Jo-Anne R Dillon
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada; Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Canada
| | - Gregers Jungersen
- Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Jørgen S Agerholm
- Section for Veterinary Reproduction and Obstetrics, Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
14
|
Abstract
The last estimated annual incidence of Trichomonas vaginalis worldwide exceeds that of chlamydia and gonorrhea combined. This critical review updates the state of the art on advances in T. vaginalis diagnostics and strategies for treatment and prevention of trichomoniasis. In particular, new data on treatment outcomes for topical administration of formulations are reviewed and discussed.
Collapse
|
15
|
Recombinant α-actinin subunit antigens of Trichomonas vaginalis as potential vaccine candidates in protecting against trichomoniasis. Parasit Vectors 2017; 10:83. [PMID: 28209207 PMCID: PMC5312525 DOI: 10.1186/s13071-017-2009-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/01/2017] [Indexed: 12/02/2022] Open
Abstract
Background Human trichomoniasis caused by Trichomonas vaginalis is one of the most common sexually transmitted diseases with more than 200 million cases worldwide. It has caused a series of health problems to patients. For prevention and control of infectious diseases, vaccines are usually considered as one of the most cost-efficient tools. However, until now, work on the development of T. vaginalis vaccines is still mainly focused on the screening of potential immunogens. Alpha-actinin characterized by high immunogenicity in T. vaginalis was suggested as a promising candidate. Therefore, the purpose of this study was to evaluate the protective potency of recombinant α-actinin against T. vaginalis infection in a mouse intraperitoneal model. Methods Two selected coding regions of α-actinin (ACT-F, 14–469 aa and ACT-T, 462–844 aa) amplified from cDNA were cloned into pET-32a (+) expression vector and transfected into BL21 cells. After induction with IPTG and purification with electroelution, the two recombinant fusion proteins were emulsified in Freund’s adjuvant (FA) and used to immunize BALB/C mice. Following intraperitoneal inoculation with T. vaginalis, the survival rate of mice was monitored for the assessment of protective potency. After immunization, the antibody level in mouse serum was assessed by ELISA, splenocyte proliferation response was detected with CCK8 and cytokines in the supernatant of splenocytes were quantified with a cytometric bead-based assay. Results We successfully obtained purified ACT-F (70.33 kDa) and ACT-T (61.7kDa). Both recombinant proteins could provide significant protection against T. vaginalis challenge, especially ACT-T (with 100% protection within one month). Meanwhile, high levels of specific total IgG and subtypes (IgG1 > IgG2a) were detected in sera from the immunized mice. Our results also revealed a statistically significant increase in splenocyte proliferation and related cytokine (IFN-γ, IL-6, IL-17A and IL-10) production after repeated stimulation with the corresponding antigens in vitro. Conclusions Immunization with both ACT-F and ACT-T could confer partial to complete protection and trigger strong Th1/Th2 mixed humoral and cellular immune responses in the mouse host. This suggested that recombinant α-actinin subunit antigens may be promising vaccine candidates against trichomoniasis.
Collapse
|
16
|
Human vaginal fluid contains exosomes that have an inhibitory effect on an early step of the HIV-1 life cycle. AIDS 2016; 30:2611-2616. [PMID: 27536982 DOI: 10.1097/qad.0000000000001236] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Vaginal transmission is crucial to the spread of HIV-1 around the world. It is not yet clear what type (s) of innate defenses against HIV-1 infection are present in the vagina. Here, we aimed to determine whether human vaginal fluid contains exosomes that may possess anti-HIV-1 activity. METHODS The exosomal fraction was isolated from samples of vaginal fluids. The presence of exosomes was confirmed by flow cytometry and western blotting. The newly discovered exosomes were tested for their ability to block early steps of HIV-1 infection in vitro using established cell culture systems and real time PCR-based methods. RESULTS Vaginal fluid contains exosomes expressing CD9, CD63, and CD81 exosomal markers. The exosomal fraction of the fluid-reduced transmission of HIV-1 vectors by 60%, the efficiency of reverse transcription step by 58.4%, and the efficiency of integration by 47%. Exosomes had no effect on the entry of HIV-1 vectors. CONCLUSION Human vaginal fluid exosomes are newly discovered female innate defenses that may protect women against HIV-1 infection.
Collapse
|
17
|
Iqbal J, Al-Rashed J, Kehinde EO. Detection of Trichomonas vaginalis in prostate tissue and serostatus in patients with asymptomatic benign prostatic hyperplasia. BMC Infect Dis 2016; 16:506. [PMID: 27660027 PMCID: PMC5034458 DOI: 10.1186/s12879-016-1843-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/17/2016] [Indexed: 01/07/2023] Open
Abstract
Background Despite a worldwide common and progressive nature of benign prostate hyperplasia (BPH) in older men, no association has been observed between a causative pathogen and other etiology so far. Methods In this study, we investigated a causative association of Trichomonas vaginalis, a flagellate protozoan parasite, in 171 BPH cases presenting without symptoms of prostatitis at a surgical outpatient clinic in Kuwait. We detected T. vaginalis DNA by polymerase chain reaction (PCR) and T. vaginalis antigen by immunocytochemistry (ICC) in the prostate tissue of these cases. A total of 171 age-matched controls with no urinary tract symptoms were also included in the study. A detailed information regarding the sexual history and sexually transmitted infections (STIs) was enquired from all the enrolled subjects. Results We detected T. vaginalis DNA and T. vaginalis antigen in 42 (24.6 %) and 37 (21.6 %) of the 171 BPH cases respectively in their prostate tissue. Both these assays showed a very good agreement and statistically no significant difference in their sensitivities and specificities. A relatively higher seropositivity rate for antibodies to T. vaginalis was detected in BPH cases (53 of 171 cases, 31.0 %) than in the control group (26.9 %) [p: 0.19] and both were higher than in earlier reports but no significant association was observed between BPH and T. vaginalis serostatus. However, a greater proportion of seroreactive BPH cases had high IgG2 antibody absorbance score than in the control group (p:0.000). Furthermore, no significant association was observed between T. vaginalis seropositivity and presence of T. vaginalis DNA in the prostate tissue. Conclusions Our study documents T. vaginalis DNA and T. vaginalis antigen in 24.6 and 21.6 % respectively in the prostate tissue of the BPH cases. We also detected a relatively higher seropositivity rate for antibodies to T. vaginalis both in the BPH cases and in normal control group, 31 and 26.9 % respectively but no significant association was observed between BPH and T. vaginalis serostatus or presence of T. vaginalis DNA in the prostate tissue. Further epidemiological and case-controlled studies are needed to focus on local response to chronic asymptomatic retention of T. vaginalis in prostate tissue in the development of benign prostate hyperplasia. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-1843-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jamshaid Iqbal
- Department of Medical Microbiology, Faculty of Medicine, Kuwait University, PO Box: 24923, Safat, 13110, Kuwait.
| | - Jumanah Al-Rashed
- Department of Medical Microbiology, Faculty of Medicine, Kuwait University, PO Box: 24923, Safat, 13110, Kuwait
| | - Elijah O Kehinde
- Department of Surgery (Division of Urology), Faculty of Medicine, Kuwait University, PO Box: 24923, Safat, 13110, Kuwait
| |
Collapse
|
18
|
Mercer F, Diala FGI, Chen YP, Molgora BM, Ng SH, Johnson PJ. Leukocyte Lysis and Cytokine Induction by the Human Sexually Transmitted Parasite Trichomonas vaginalis. PLoS Negl Trop Dis 2016; 10:e0004913. [PMID: 27529696 PMCID: PMC4986988 DOI: 10.1371/journal.pntd.0004913] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/19/2016] [Indexed: 11/18/2022] Open
Abstract
Trichomonas vaginalis (Tv) is an extracellular protozoan parasite that causes the most common non-viral sexually transmitted infection: trichomoniasis. While acute symptoms in women may include vaginitis, infections are often asymptomatic, but can persist and are associated with medical complications including increased HIV susceptibility, infertility, pre-term labor, and higher incidence of cervical cancer. Heightened inflammation resulting from Tv infection could account for these complications. Effective cellular immune responses to Tv have not been characterized, and re-infection is common, suggesting a dysfunctional adaptive immune response. Using primary human leukocyte components, we have established an in vitro co-culture system to assess the interaction between Tv and the cells of the human immune system. We determined that in vitro, Tv is able to lyse T-cells and B-cells, showing a preference for B-cells. We also found that Tv lysis of lymphocytes was mediated by contact-dependent and soluble factors. Tv lysis of monocytes is far less efficient, and almost entirely contact-dependent. Interestingly, a common symbiont of Tv, Mycoplasma hominis, did not affect cytolytic activity of the parasite, but had a major impact on cytokine responses. M. hominis enabled more diverse inflammatory cytokine secretion in response to Tv and, of the cytokines tested, Tv strains cleared of M. hominis induced only IL-8 secretion from monocytes. The quality of the adaptive immune response to Tv is therefore likely influenced by Tv symbionts, commensals, and concomitant infections, and may be further complicated by direct parasite lysis of effector immune cells.
Collapse
Affiliation(s)
- Frances Mercer
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Fitz Gerald I. Diala
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Yi-Pei Chen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Brenda M. Molgora
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Shek Hang Ng
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Patricia J. Johnson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|