1
|
El-Sayed SAES, Rizk MA, Li H, Mohanta UK, Zafar I, Ji S, Ma Z, Do T, Li Y, Kondoh D, Jaroszewski J, Xuan X. Preassembled complexes of hAgo2 and ssRNA delivered by nanoparticles: a novel silencing gene expression approach overcoming the absence of the canonical pathway of siRNA processing in the apicomplexan parasite Babesia microti, blood parasite of veterinary and zoonotic importance. Emerg Microbes Infect 2025; 14:2438658. [PMID: 39648859 DOI: 10.1080/22221751.2024.2438658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Due to the lack of efficacy of the currently used chemical drugs, poor tick control, and lack of effective vaccines against Babesia, novel control strategies are urgently needed. In this regard, searching for anti-Babesia gene therapy may facilitate the control of this infection. Following this pattern, small interfering RNAs (siRNAs) are widely used to study gene function and hence open the way to control the parasite. However, the primary constraint of this approach is the lack of Babesia to RNA-induced silencing complex (RISC) enzymes, making siRNA impractical. In this study, we preassembled complexes with the human enzyme argonaute 2 (hAgo2) and a small interfering RNA (siRNA)/single-stranded RNA (ssRNA) against B. gibsoni and B. microti metabolite transporters. The assembled complexes were generated by developing a gene delivery system with chitosan dehydroascorbic acid nanoparticles. The delivery system effectively protected the loaded RNAi and targeted Babesia-infected RBCs with a relatively high internalization rate. The assembled complexes were successfully transfected into live parasites for specific slicing of Babesia targets. We demonstrated a reduction in the expression of target genes at the mRNA level. Furthermore, this silencing inhibited Babesia growth in vitro and in vivo. For the first time, we used this method to confirm the role of the assembled complexes in manipulating the noncanonical pathway of RNAi in Babesia parasites. This novel method provides a means of silencing Babesia genes to study their role in host-parasite interactions and as potential targets for gene therapy and control.
Collapse
Affiliation(s)
- Shimaa A E-S El-Sayed
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed A Rizk
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hang Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Uday Kumar Mohanta
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Iqra Zafar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Livestock and Dairy Development Department, Veterinary Research Institute, Lahore, Pakistan
| | - Shengwei Ji
- Department of Veterinary Medicine, Agriculture College of Yanbian University, Yanji, People's Republic of China
| | - Zhuowei Ma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Thom Do
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Yongchang Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Daisuke Kondoh
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Jerzy Jaroszewski
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| |
Collapse
|
2
|
Li Y, Zhang T, Liu X, Pan T, Li J, Yang W, Cao X, Jiang Y, Wang J, Zeng Y, Shi C, Huang H, Wang C, Wang N, Yang G. Eimeria tenella rhoptry neck protein 2 plays a key role in the process of invading the host intestinal epithelium. Vet Parasitol 2024; 332:110322. [PMID: 39366187 DOI: 10.1016/j.vetpar.2024.110322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
The Apicomplexa parasitic phylum rhoptry neck protein 2 (RON2) plays a key role in the process of invading host cells. Eimeria tenella, an intracellular protozoan shares a similar conserved invasion pattern. However, whether E. tenella RON2 participates in the process of invading the host intestinal epithelium is poorly understood. In this study, the sequence of EtRON2 was analyzed and expressed. The expression of the truncated extracellular N-terminal fragment of EtRON2 (403-700 aa, designated EtRON2403-700) with a molecular mass of 38.3 kDa. EtRON2 in the sporozoite protein was detected at 151.4 kDa by rabbit anti-rEtRON2403-700 antibody. Immunofluorescence results showed that EtRON2 was mainly localized to the nucleus and apex of the E. tenella sporozoite. qPCR results showed that the highest expression level of EtRON2 was detected in sporulated oocysts compared with other developmental stages of E. tenella. In vitro invasion inhibition assays showed that the capacity of sporozoites to invade DF-1 cells was significantly inhibited after pretreatment with the rabbit anti-rEtRON2403-700 antibody. Silencing the EtRON2 gene by RNA interference (RNAi) significantly inhibited EtRON2 expression and significantly reduced the invasion of DF-1 cells by sporozoites. In vivo experiments revealed a significant decrease parasite burden and oocyst outputs in chicks after infection with EtRON2 gene-silenced sporozoites by cloacal inoculation. Recombinant EtRON2403-700 (rEtRON2403-700) immunizes chicks effectively against E. tenella infection by inducing humoral immunity and upregulating IFN-γ and CD8+ T lymphocytes. Furthermore, chicks exhibited increased relative weight gain rates, lower cecum lesion scores, and reduced oocyst outputs during the E. tenella challenge. H&E staining showed that the cecum tissue of chicks immunized with rEtRON2403-700 showed relatively mild histopathological changes. In conclusion, the results of this study demonstrated that EtRON2 plays a key role in E. tenella invasion of the host intestinal epithelium and provides a potential target for vaccines against E. tenella infection.
Collapse
Affiliation(s)
- Yanning Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Tongxuan Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Xuanrui Liu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Tianxu Pan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Junyi Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Wentao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Yanlong Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Haibin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
3
|
Tottey J, Etienne-Mesmin L, Chalançon S, Sausset A, Denis S, Mazal C, Blavignac C, Sallé G, Laurent F, Blanquet-Diot S, Lacroix-Lamandé S. Exploring the impact of digestive physicochemical parameters of adults and infants on the pathophysiology of Cryptosporidium parvum using the dynamic TIM-1 gastrointestinal model. Gut Pathog 2024; 16:55. [PMID: 39354600 PMCID: PMC11443851 DOI: 10.1186/s13099-024-00648-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Human cryptosporidiosis is distributed worldwide, and it is recognised as a leading cause of acute diarrhoea and death in infants in low- and middle-income countries. Besides immune status, the higher incidence and severity of this gastrointestinal disease in young children could also be attributed to the digestive environment. For instance, human gastrointestinal physiology undergoes significant changes with age, however the role this variability plays in Cryptosporidium parvum pathogenesis is not known. In this study, we analysed for the first time the impact of digestive physicochemical parameters on C. parvum infection in a human and age-dependent context using a dynamic in vitro gastrointestinal model. RESULTS Our results showed that the parasite excystation, releasing sporozoites from oocysts, occurs in the duodenum compartment after one hour of digestion in both child (from 6 months to 2 years) and adult experimental conditions. In the child small intestine, slightly less sporozoites were released from excystation compared to adult, however they exhibited a higher luciferase activity, suggesting a better physiological state. Sporozoites collected from the child jejunum compartment also showed a higher ability to invade human intestinal epithelial cells compared to the adult condition. Global analysis of the parasite transcriptome through RNA-sequencing demonstrated a more pronounced modulation in ileal effluents compared to gastric ones, albeit showing less susceptibility to age-related digestive condition. Further analysis of gene expression and enriched pathways showed that oocysts are highly active in protein synthesis in the stomach compartment, whereas sporozoites released in the ileum showed downregulation of glycolysis as well as strong modulation of genes potentially related to gliding motility and secreted effectors. CONCLUSIONS Digestion in a sophisticated in vitro gastrointestinal model revealed that invasive sporozoite stages are released in the small intestine, and are highly abundant and active in the ileum compartment, supporting reported C. parvum tissue tropism. Our comparative analysis suggests that physicochemical parameters encountered in the child digestive environment can influence the amount, physiological state and possibly invasiveness of sporozoites released in the small intestine, thus potentially contributing to the higher susceptibility of young individuals to cryptosporidiosis.
Collapse
Affiliation(s)
- Julie Tottey
- UMR 1282 ISP, Infectiologie et Santé Publique, INRAE, Université de Tours, Nouzilly, France.
| | - Lucie Etienne-Mesmin
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Sandrine Chalançon
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Alix Sausset
- UMR 1282 ISP, Infectiologie et Santé Publique, INRAE, Université de Tours, Nouzilly, France
| | - Sylvain Denis
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Carine Mazal
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Christelle Blavignac
- Centre Imagerie Cellulaire Santé, Université Clermont Auvergne, Clermont- Ferrand, France
| | - Guillaume Sallé
- UMR 1282 ISP, Infectiologie et Santé Publique, INRAE, Université de Tours, Nouzilly, France
| | - Fabrice Laurent
- UMR 1282 ISP, Infectiologie et Santé Publique, INRAE, Université de Tours, Nouzilly, France
| | - Stéphanie Blanquet-Diot
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Sonia Lacroix-Lamandé
- UMR 1282 ISP, Infectiologie et Santé Publique, INRAE, Université de Tours, Nouzilly, France
| |
Collapse
|
4
|
Ali M, Xu C, Wang J, Kulyar MFEA, Li K. Emerging therapeutic avenues against Cryptosporidium: A comprehensive review. Vet Parasitol 2024; 331:110279. [PMID: 39116547 DOI: 10.1016/j.vetpar.2024.110279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Cryptosporidium is among the top causes of life-threatening diarrheal infection in public health and livestock sectors. Despite its high prevalence and economic importance, currently, there is no vaccine. Control of this protozoan is difficult due to the excretion of many resistant oocysts in the feces of the infected host, which contaminate the environment. Paromomycin shows inconsistent results and isn't considered a reliable therapy for cryptosporidiosis. Nitazoxanide (NTZ), the only FDA-approved drug against this parasite, is less productive in impoverished children and PLWHA (people living with HIV/AIDS). The absence of mitochondria and apicoplast, its unique location inside enterocytes separated by parasitophorous vacuole, and, most importantly, challenges in its genetic manipulations are some hurdles to the drug-discovery process. A library of compounds has been tested against Cryptosporidium during in vitro and in vivo trials. However, there has still not been sufficient success in finding the drug of choice against this parasite. Recent genome editing technologies based on CRISPR/Cas-9 have explored the functions of the vital genes by producing transgenic parasites that help to screen a collection of compounds to find target-specific drugs, provided the sufficient availability of in vitro culturing platforms, efficient transfection methods, and analytic techniques. The use of herbal remedies against Cryptosporidium is also an emerging area of interest with sufficient clinical success due to enhanced concern regarding anthelmintic resistance. Here, we highlighted present treatment options with their associated limitations, the use of genetic tools and natural products against it to find safe, effective, and inexpensive drugs to control the ever-increasing global burden of this disease.
Collapse
Affiliation(s)
- Munwar Ali
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chang Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jia Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
5
|
Mitrovic K, Zivotic I, Kolic I, Zakula J, Zivkovic M, Stankovic A, Jovanovic I. A preliminary study of the miRNA restitution effect on CNV-induced miRNA downregulation in CAKUT. BMC Genomics 2024; 25:218. [PMID: 38413914 PMCID: PMC10900603 DOI: 10.1186/s12864-024-10121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/14/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND The majority of CAKUT-associated CNVs overlap at least one miRNA gene, thus affecting the cellular levels of the corresponding miRNA. We aimed to investigate the potency of restitution of CNV-affected miRNA levels to remediate the dysregulated expression of target genes involved in kidney physiology and development in vitro. METHODS Heterozygous MIR484 knockout HEK293 and homozygous MIR185 knockout HEK293 cell lines were used as models depicting the deletion of the frequently affected miRNA genes by CAKUT-associated CNVs. After treatment with the corresponding miRNA mimics, the levels of the target genes have been compared to the non-targeting control treatment. For both investigated miRNAs, MDM2 and PKD1 were evaluated as common targets, while additional 3 genes were investigated as targets of each individual miRNA (NOTCH3, FIS1 and APAF1 as hsa-miR-484 targets and RHOA, ATF6 and CDC42 as hsa-miR-185-5p targets). RESULTS Restitution of the corresponding miRNA levels in both knockout cell lines has induced a change in the mRNA levels of certain candidate target genes, thus confirming the potential to alleviate the CNV effect on miRNA expression. Intriguingly, HEK293 WT treatment with investigated miRNA mimics has triggered a more pronounced effect, thus suggesting the importance of miRNA interplay in different genomic contexts. CONCLUSIONS Dysregulation of multiple mRNA targets mediated by CNV-affected miRNAs could represent the underlying mechanism behind the unresolved CAKUT occurrence and phenotypic variability observed in CAKUT patients. Characterizing miRNAs located in CNVs and their potential to become molecular targets could eventually help in understanding and improving the management of CAKUT.
Collapse
Affiliation(s)
- Kristina Mitrovic
- Department of Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, P.O. Box 522, Serbia
| | - Ivan Zivotic
- Department of Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, P.O. Box 522, Serbia
| | - Ivana Kolic
- Department of Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, P.O. Box 522, Serbia
| | - Jelena Zakula
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, P.O. Box 522, Serbia
| | - Maja Zivkovic
- Department of Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, P.O. Box 522, Serbia
| | - Aleksandra Stankovic
- Department of Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, P.O. Box 522, Serbia
| | - Ivan Jovanovic
- Department of Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, P.O. Box 522, Serbia.
| |
Collapse
|
6
|
Xiao Y, Liu TM, MacRae IJ. A tiny loop in the Argonaute PIWI domain tunes small RNA seed strength. EMBO Rep 2023:e55806. [PMID: 37082939 DOI: 10.15252/embr.202255806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Argonaute (AGO) proteins use microRNAs (miRNAs) and small interfering RNAs (siRNAs) as guides to regulate gene expression in plants and animals. AGOs that use miRNAs in bilaterian animals recognize short (6-8 nt.) elements complementary to the miRNA seed region, enabling each miRNA to interact with hundreds of otherwise unrelated targets. By contrast, AGOs that use miRNAs in plants employ longer (> 13 nt.) recognition elements such that each miRNA silences a small number of physiologically related targets. Here, we show that this major functional distinction depends on a minor structural difference between plant and animal AGO proteins: a 9-amino acid loop in the PIWI domain. Swapping the PIWI loop from human Argonaute2 (HsAGO2) into Arabidopsis Argonaute10 (AtAGO10) increases seed strength, resulting in animal-like miRNA targeting. Conversely, swapping the plant PIWI loop into HsAGO2 reduces seed strength and accelerates the turnover of cleaved targets. The loop-swapped HsAGO2 silences targets more potently, with reduced miRNA-like targeting, than wild-type HsAGO2 in mammalian cells. Thus, tiny structural differences can tune the targeting properties of AGO proteins for distinct biological roles.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - TingYu M Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
7
|
RNA-Based Therapy for Cryptosporidium parvum Infection: Proof-of-Concept Studies. Infect Immun 2022; 90:e0019622. [PMID: 35647663 DOI: 10.1128/iai.00196-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cryptosporidium is a leading cause of moderate-to-severe diarrhea in children, which is one of the major causes of death in children under 5 years old. Nitazoxanide is the only FDA-approved treatment for cryptosporidiosis. However, it has limited efficacy in immunosuppressed patients and malnourished children. Therefore, it is urgent to develop novel therapies against this parasite. RNA interference-mediated therapies are emerging as novel approaches for the treatment of infectious diseases. We have developed a novel method to silence essential genes in Cryptosporidium using single-stranded RNA (ssRNA)/Argonaute (Ago) complexes. In this work we conducted proof-of-concept studies to test the anticryptosporidial activity of these complexes by silencing Cryptosporidium parvum nucleoside diphosphate kinase (NDK) using in vitro and in vivo models. We demonstrated that a 3-day treatment with anti-sense NDK ssRNA/Ago decreased parasite burden by ~98% on infected cells. In vivo studies showed that ssRNA/Ago complexes encapsulated in lipid nanoparticles can be delivered onto intestinal epithelial cells of mice treated orally. In addition a cryptosporidiosis-mouse model showed that treatment with NDK ssRNA/Ago complexes reduced oocyst shedding in 4/5 SCID/beige mice during the acute phase of the infection. Our findings highlight the potential use of antisense RNA-based therapy as an alternative approach to cryptosporidiosis treatment.
Collapse
|
8
|
Zhu G, Yin J, Cuny GD. Current status and challenges in drug discovery against the globally important zoonotic cryptosporidiosis. ANIMAL DISEASES 2021. [DOI: 10.1186/s44149-021-00002-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AbstractThe zoonotic cryptosporidiosis is globally distributed, one of the major diarrheal diseases in humans and animals. Cryptosporidium oocysts are also one of the major environmental concerns, making it a pathogen that fits well into the One Health concept. Despite its importance, fully effective drugs are not yet available. Anti-cryptosporidial drug discovery has historically faced many unusual challenges attributed to unique parasite biology and technical burdens. While significant progresses have been made recently, anti-cryptosporidial drug discovery still faces a major obstacle: identification of systemic drugs that can be absorbed by patients experiencing watery diarrhea and effectively pass through electron-dense (ED) band at the parasite-host cell interface to act on the epicellular parasite. There may be a need to develop an in vitro assay to effectively screen hits/leads for their capability to cross ED band. In the meantime, non-systemic drugs with strong mucoadhesive properties for extended gastrointestinal exposure may represent another direction in developing anti-cryptosporidial therapeutics. For developing both systemic and non-systemic drugs, a non-ruminant animal model exhibiting diarrheal symptoms suitable for routine evaluation of drug absorption and anti-cryptosporidial efficacy may be very helpful.
Collapse
|
9
|
Nava S, Sadiqova A, Castellanos-Gonzalez A, White AC. Cryptosporidium parvum cyclic GMP-dependent protein kinase (PKG): An essential mediator of merozoite egress. Mol Biochem Parasitol 2020; 237:111277. [PMID: 32348840 PMCID: PMC7262579 DOI: 10.1016/j.molbiopara.2020.111277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 11/26/2022]
Abstract
Cryptosporidium protein kinase G mRNA was silenced using siRNA, which led to decreased expression of the PKG protein. After silencing, merozoite egress was blocked and merozoites retained within the host epithelical cells. PKG plays an essential role in Cryptosporidium merozoite egress.
Cryptosporidiosis is an obligate intracellular pathogen causing diarrhea. Merozoite egress is essential for infection to spread between host cells. However, the mechanisms of egress have yet to be defined. We hypothesized that Cyclic GMP-Dependent Protein Kinase G (PKG) may be involved in Cryptosporidium egress. In this study, Cryptosporidium parvum PKG was silenced by using antisense RNA sequences. PKG-silencing significantly inhibited egress of merozoites from infected HCT-8 cells into the supernatant and led to retention of intracellular forms within the host cells. This data identifies PKG as a key mediator of merozoite egress, a key step in the parasite lifecycle.
Collapse
Affiliation(s)
- Samantha Nava
- Infectious Diseases Division, Department of Internal Medicine, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-0435, USA
| | - Aygul Sadiqova
- Infectious Diseases Division, Department of Internal Medicine, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-0435, USA
| | - Alejandro Castellanos-Gonzalez
- Infectious Diseases Division, Department of Internal Medicine, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-0435, USA
| | - A Clinton White
- Infectious Diseases Division, Department of Internal Medicine, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-0435, USA.
| |
Collapse
|
10
|
Abstract
The parasites of the genus Cryptosporidium are important causes of diarrheal diseases, specifically cryptosporidiosis, worldwide. A major bottleneck for developing drugs and vaccines against cryptosporidiosis is the lack of methods to study gene function in this parasite. Silencing of genes by RNA interference (RNAi) is a powerful method to investigate gene function that has been widely used in the identification of targets for several pathogens. Unfortunately, as Cryptosporidium does not possess the enzymes of the RNAi pathway, its genes cannot be silenced by standard siRNA technology. To circumvent that problem, we have developed a novel strategy to knock down Cryptosporidium genes by reconstituting the effector arm of the siRNA pathway. We have induced silencing of several genes in Cryptosporidium by transfecting parasites with hybrid complexes formed between recombinant human Argonaute (hAgo2) and Cryptosporidium single-stranded RNA (ssRNA). This novel methodology provides an effective strategy to study the role of selected genes in host-parasite interactions, and also can be used to identify potential targets for chemotherapy. The standardized methodology based on this strategy is described in this chapter.
Collapse
|
11
|
Rueckert S, Betts EL, Tsaousis AD. The Symbiotic Spectrum: Where Do the Gregarines Fit? Trends Parasitol 2019; 35:687-694. [DOI: 10.1016/j.pt.2019.06.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023]
|
12
|
Systematic gene silencing identified Cryptosporidium nucleoside diphosphate kinase and other molecules as targets for suppression of parasite proliferation in human intestinal cells. Sci Rep 2019; 9:12153. [PMID: 31434931 PMCID: PMC6704102 DOI: 10.1038/s41598-019-48544-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/05/2019] [Indexed: 01/06/2023] Open
Abstract
Cryptosporidiosis is a major cause of diarrheal disease. The only drug approved for cryptosporidiosis has limited efficacy in high-risk populations. Therefore novel drugs are urgently needed. We have identified several enzymes as potential targets for drug development and we have optimized a rapid method to silence genes in Cryptosporidium. In this study, we knocked down expression of the four selected genes: Actin (Act), Apicomplexan DNA-binding protein (Ap2), Rhomboid protein 1 (Rom 1), and nucleoside diphosphate kinase (NDK). After gene silencing, we evaluated the role of each target on parasite development using in vitro models of excystation, invasion, proliferation, and egress. We showed that silencing of Act, Ap2, NDK, and Rom1 reduced invasion, proliferation, and egress of Cryptosporidium. However, silencing of NDK markedly inhibited Cryptosporidium proliferation (~70%). We used an infection model to evaluate the anticryptosporidial activity of ellagic acid (EA), an NDK inhibitor. We showed that EA (EC50 = 15–30 µM) reduced parasite burden without showing human cell toxicity. Here, we demonstrated the usefulness of a rapid silencing method to identify novel targets for drug development. Because EA is a dietary supplement already approved for human use, this compound should be studied as a potential treatment for cryptosporidiosis.
Collapse
|
13
|
Cryptosporidium parvum Subtilisin-Like Serine Protease (SUB1) Is Crucial for Parasite Egress from Host Cells. Infect Immun 2019; 87:IAI.00784-18. [PMID: 30782859 DOI: 10.1128/iai.00784-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/28/2019] [Indexed: 01/28/2023] Open
Abstract
Despite the severity and global burden of Cryptosporidium infection, treatments are less than optimal, and there is no effective vaccine. Egress from host cells is a key process for the completion of the life cycle of apicomplexan parasites. For Plasmodium species, subtilisin-like serine protease (SUB1) is a key mediator of egress. For Toxoplasma species, calcium-dependent protein kinases (CDPKs) are critical. In this study, we characterized Cryptosporidium SUB1 expression and evaluated its effect using an infection model. We found increased expression between 12 and 20 h after in vitro infection, prior to egress. We induced silencing of SUB1 (ΔSUB1) mRNA using SUB1 single-stranded antisense RNA coupled with human Argonaute 2. Silencing of SUB1 mRNA expression did not affect parasite viability, excystation, or invasion of target cells. However, knockdown led to a 95% decrease in the proportion of released merozoites in vitro (P < 0.0001). In contrast, silencing of CDPK5 had no effect on egress. Overall, our results indicate that SUB1 is a key mediator of Cryptosporidium egress and suggest that interruption of the life cycle at this stage may effectively inhibit the propagation of infection.
Collapse
|
14
|
Abstract
The intestinal apicomplexan parasite
Cryptosporidium is a major cause of diarrheal disease in humans worldwide. However, treatment options are severely limited. The search for novel interventions is imperative, yet there are several challenges to drug development, including intractability of the parasite and limited technical tools to study it. This review addresses recent, exciting breakthroughs in this field, including novel cell culture models, strategies for genetic manipulation, transcriptomics, and promising new drug candidates. These advances will stimulate the ongoing quest to understand
Cryptosporidium and the pathogenesis of cryptosporidiosis and to develop new approaches to combat this disease.
Collapse
Affiliation(s)
- Seema Bhalchandra
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, 02111, USA
| | - Daviel Cardenas
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, 02111, USA
| | - Honorine D Ward
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, 02111, USA.,Medicine, Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
| |
Collapse
|
15
|
Chavez MA, White AC. Novel treatment strategies and drugs in development for cryptosporidiosis. Expert Rev Anti Infect Ther 2018; 16:655-661. [PMID: 30003818 DOI: 10.1080/14787210.2018.1500457] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Cryptosporidium is a protozoan pathogen that can cause diarrheal disease in healthy and immunosuppressed individuals, worldwide. Recent studies have highlighted the impact of cryptosporidiosis on children in resource-limited countries. Nitazoxanide is the only Food and Drug Administration approved treatment, but it is not consistently effective therapy for cryptosporidiosis in the most vulnerable populations. Areas covered: This review focused on recent published studies evaluating novel drugs and new compounds for the treatment of cryptosporidiosis. Expert commentary: Combinations of approved drugs have demonstrated some activity. Broad screens have demonstrated activity against Cryptosporidium for a number of available drugs, including statins and clofazimine, and the latter has advanced into clinical trials. Cryptosporidium calcium-dependent protein kinase 1 (CDPK1) has been identified as an attractive target for treatment, and bumped kinase inhibitors have been developed which inhibit CDPK1 and are active against Cryptosporidium growth both in vitro and in vivo. Inhibition of Plasmodium lipid kinase PI(4)K8 of Cryptosporidium by KDU731 greatly reduced oocyst shedding and improved diarrhea in calves with limited effects on the human PI(4)K. Another novel potent inhibitor MMV665917 was efficacious in mouse models with cidal activity against Cryptosporidium. Additional compounds have proved active in vitro. So far, only clofazimine has entered human trials.
Collapse
Affiliation(s)
- Miguel A Chavez
- a Department of Internal Medicine , University of Texas Medical Branch , Galveston , Texas , USA
| | - A Clinton White
- b Infectious Diseases Division, Department of Internal Medicine , University of Texas Medical Branch , Galveston , Texas , USA
| |
Collapse
|
16
|
|
17
|
Structurally modulated codelivery of siRNA and Argonaute 2 for enhanced RNA interference. Proc Natl Acad Sci U S A 2018; 115:E2696-E2705. [PMID: 29432194 DOI: 10.1073/pnas.1719565115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Small interfering RNA (siRNA) represents a promising class of inhibitors in both fundamental research and the clinic. Numerous delivery vehicles have been developed to facilitate siRNA delivery. Nevertheless, achieving highly potent RNA interference (RNAi) toward clinical translation requires efficient formation of RNA-induced gene-silencing complex (RISC) in the cytoplasm. Here we coencapsulate siRNA and the central RNAi effector protein Argonaute 2 (Ago2) via different delivery carriers as a platform to augment RNAi. The physical clustering between siRNA and Ago2 is found to be indispensable for enhanced RNAi. Moreover, by utilizing polyamines bearing the same backbone but distinct cationic side-group arrangements of ethylene diamine repeats as the delivery vehicles, we find that the molecular structure of these polyamines modulates the degree of siRNA/Ago2-mediated improvement of RNAi. We apply this strategy to silence the oncogene STAT3 and significantly prolong survival in mice challenged with melanoma. Our findings suggest a paradigm for RNAi via the synergistic coassembly of RNA with helper proteins.
Collapse
|
18
|
Hulverson MA, Vinayak S, Choi R, Schaefer DA, Castellanos-Gonzalez A, Vidadala RSR, Brooks CF, Herbert GT, Betzer DP, Whitman GR, Sparks HN, Arnold SLM, Rivas KL, Barrett LK, White AC, Maly DJ, Riggs MW, Striepen B, Van Voorhis WC, Ojo KK. Bumped-Kinase Inhibitors for Cryptosporidiosis Therapy. J Infect Dis 2017; 215:1275-1284. [PMID: 28329187 PMCID: PMC5853794 DOI: 10.1093/infdis/jix120] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/01/2017] [Indexed: 01/13/2023] Open
Abstract
Bumped kinase inhibitors (BKIs) of Cryptosporidium parvum calcium-dependent protein kinase 1 (CpCDPK1) are leading candidates for treatment of cryptosporidiosis-associated diarrhea. Potential cardiotoxicity related to anti-human ether-à-go-go potassium channel (hERG) activity of the first-generation anti-Cryptosporidium BKIs triggered further testing for efficacy. A luminescence assay adapted for high-throughput screening was used to measure inhibitory activities of BKIs against C. parvum in vitro. Furthermore, neonatal and interferon γ knockout mouse models of C. parvum infection identified BKIs with in vivo activity. Additional iterative experiments for optimum dosing and selecting BKIs with minimum levels of hERG activity and frequencies of other safety liabilities included those that investigated mammalian cell cytotoxicity, C. parvum proliferation inhibition in vitro, anti-human Src inhibition, hERG activity, in vivo pharmacokinetic data, and efficacy in other mouse models. Findings of this study suggest that fecal concentrations greater than parasite inhibitory concentrations correlate best with effective therapy in the mouse model of cryptosporidiosis, but a more refined model for efficacy is needed.
Collapse
Affiliation(s)
- Matthew A Hulverson
- Division of Allergy & Infectious Disease, Center for Emerging & Reemerging Infectious Disease (CERID), University of Washington, Seattle, Washington 98109, USA
| | - Sumiti Vinayak
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| | - Ryan Choi
- Division of Allergy & Infectious Disease, Center for Emerging & Reemerging Infectious Disease (CERID), University of Washington, Seattle, Washington 98109, USA
| | - Deborah A Schaefer
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson
| | | | | | - Carrie F Brooks
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| | - Gillian T Herbert
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| | - Dana P Betzer
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson
| | - Grant R Whitman
- Division of Allergy & Infectious Disease, Center for Emerging & Reemerging Infectious Disease (CERID), University of Washington, Seattle, Washington 98109, USA
| | | | - Samuel L M Arnold
- Division of Allergy & Infectious Disease, Center for Emerging & Reemerging Infectious Disease (CERID), University of Washington, Seattle, Washington 98109, USA
| | - Kasey L Rivas
- Division of Allergy & Infectious Disease, Center for Emerging & Reemerging Infectious Disease (CERID), University of Washington, Seattle, Washington 98109, USA
| | - Lynn K Barrett
- Division of Allergy & Infectious Disease, Center for Emerging & Reemerging Infectious Disease (CERID), University of Washington, Seattle, Washington 98109, USA
| | - A Clinton White
- Infectious Disease Division, Department of Internal Medicine, University of Texas Medical Branch, Galveston
| | - Dustin J Maly
- Chemistry & Biochemistry, University of Washington, Seattle
| | - Michael W Riggs
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson
| | - Boris Striepen
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
- Department of Cellular Biology, University of Georgia, Athens
| | - Wesley C Van Voorhis
- Division of Allergy & Infectious Disease, Center for Emerging & Reemerging Infectious Disease (CERID), University of Washington, Seattle, Washington 98109, USA
| | - Kayode K Ojo
- Division of Allergy & Infectious Disease, Center for Emerging & Reemerging Infectious Disease (CERID), University of Washington, Seattle, Washington 98109, USA
| |
Collapse
|
19
|
Tools for attenuation of gene expression in malaria parasites. Int J Parasitol 2017; 47:385-398. [PMID: 28153780 DOI: 10.1016/j.ijpara.2016.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/15/2016] [Accepted: 11/28/2016] [Indexed: 12/30/2022]
Abstract
An understanding of the biology of Plasmodium parasites, which are the causative agents of the disease malaria, requires study of gene function. Various reverse genetic tools have been described for determining gene function. These tools can be broadly grouped as trans- and cis-acting. Trans-acting tools control gene functions through synthetic nucleic acid probe molecules matching the sequence of the gene of interest. Once delivered to the parasite, the probe engages with the mRNA of the target gene and attenuates its function. Cis-acting tools control gene function through elements introduced into the gene of interest by DNA transfection. The expression of the modified gene can be controlled using external agents, typically small molecule ligands. In this review, we discuss the strengths and weaknesses of these tools to guide researchers in selecting the appropriate tool for studies of gene function, and for guiding future refinements of these tools.
Collapse
|
20
|
Castellanos-Gonzalez A, Sparks H, Nava S, Huang W, Zhang Z, Rivas K, Hulverson MA, Barrett LK, Ojo KK, Fan E, Van Voorhis WC, White AC. A Novel Calcium-Dependent Kinase Inhibitor, Bumped Kinase Inhibitor 1517, Cures Cryptosporidiosis in Immunosuppressed Mice. J Infect Dis 2016; 214:1850-1855. [PMID: 27738055 DOI: 10.1093/infdis/jiw481] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/30/2016] [Indexed: 11/14/2022] Open
Abstract
Cryptosporidium is recognized as one of the main causes of childhood diarrhea worldwide. However, the current treatment for cryptosporidiosis is suboptimal. Calcium flux is essential for entry in apicomplexan parasites. Calcium-dependent protein kinases (CDPKs) are distinct from protein kinases of mammals, and the CDPK1 of the apicomplexan Cryptosporidium lack side chains that typically block a hydrophobic pocket in protein kinases. We exploited this to develop bumped kinase inhibitors (BKIs) that selectively target CDPK1. We have shown that several BKIs of Cryptosporidium CDPK1 potently reduce enzymatic activity and decrease parasite numbers when tested in vitro. In the present work, we studied the anticryptosporidial activity of BKI-1517, a novel BKI. The half maximal effective concentration for Cryptosporidium parvum in HCT-8 cells was determined to be approximately 50 nM. Silencing experiments of CDPK1 suggest that BKI-1517 acts on CDPK1 as its primary target. In a mouse model of chronic infection, 5 of 6 SCID/beige mice (83.3%) were cured after treatment with a single daily dose of 120 mg/kg BKI-1517. No side effects were observed. These data support advancing BKI-1517 as a lead compound for drug development for cryptosporidiosis.
Collapse
Affiliation(s)
| | - Hayley Sparks
- Infectious Disease Division, Department of Internal Medicine, University of Texas Medical Branch, Galveston
| | - Samantha Nava
- Infectious Disease Division, Department of Internal Medicine, University of Texas Medical Branch, Galveston
| | - Wenlin Huang
- Allergy and Infectious Diseases Division, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle
| | - Zhongsheng Zhang
- Allergy and Infectious Diseases Division, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle
| | - Kasey Rivas
- Allergy and Infectious Diseases Division, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle
| | - Matthew A Hulverson
- Allergy and Infectious Diseases Division, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle
| | - Lynn K Barrett
- Allergy and Infectious Diseases Division, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle
| | - Kayode K Ojo
- Allergy and Infectious Diseases Division, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle
| | - Erkang Fan
- Allergy and Infectious Diseases Division, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle
| | - Wesley C Van Voorhis
- Allergy and Infectious Diseases Division, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle
| | - Arthur Clinton White
- Infectious Disease Division, Department of Internal Medicine, University of Texas Medical Branch, Galveston
| |
Collapse
|