1
|
Wuo MG, Dulberger CL, Warner TC, Brown RA, Sturm A, Ultee E, Bloom-Ackermann Z, Choi C, Zhu J, Garner EC, Briegel A, Hung DT, Rubin EJ, Kiessling LL. Fluorogenic Probes of the Mycobacterial Membrane as Reporters of Antibiotic Action. J Am Chem Soc 2024; 146:17669-17678. [PMID: 38905328 DOI: 10.1021/jacs.4c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The genus Mycobacterium includes species such as Mycobacterium tuberculosis, which can cause deadly human diseases. These bacteria have a protective cell envelope that can be remodeled to facilitate their survival in challenging conditions. Understanding how such conditions affect membrane remodeling can facilitate antibiotic discovery and treatment. To this end, we describe an optimized fluorogenic probe, N-QTF, that reports on mycolyltransferase activity, which is vital for cell division and remodeling. N-QTF is a glycolipid probe that can reveal dynamic changes in the mycobacterial cell envelope in both fast- and slow-growing mycobacterial species. Using this probe to monitor the consequences of antibiotic treatment uncovered distinct cellular phenotypes. Even antibiotics that do not directly inhibit cell envelope biosynthesis cause conspicuous phenotypes. For instance, mycobacteria exposed to the RNA polymerase inhibitor rifampicin release fluorescent extracellular vesicles (EVs). While all mycobacteria release EVs, fluorescent EVs were detected only in the presence of RIF, indicating that exposure to the drug alters EV content. Macrophages exposed to the EVs derived from RIF-treated cells released lower levels of cytokines, suggesting the EVs moderate immune responses. These data suggest that antibiotics can alter EV content to impact immunity. Our ability to see such changes in EV constituents directly results from exploiting these chemical probes.
Collapse
Affiliation(s)
- Michael G Wuo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, Cambridge, Massachusetts 02139, United States
| | - Charles L Dulberger
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, Massachusetts 02115, United States
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford St, Cambridge, Massachusetts 02138, United States
| | - Theodore C Warner
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, Cambridge, Massachusetts 02139, United States
| | - Robert A Brown
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Alexander Sturm
- Broad Institute of MIT and Harvard, 415 Main St, Cambridge, Massachusetts 02142, United States
| | - Eveline Ultee
- Institute of Biology, Leiden University, Rapenburg 70, 2311 EZ Leiden, The Netherlands
| | - Zohar Bloom-Ackermann
- Broad Institute of MIT and Harvard, 415 Main St, Cambridge, Massachusetts 02142, United States
| | - Catherine Choi
- Broad Institute of MIT and Harvard, 415 Main St, Cambridge, Massachusetts 02142, United States
| | - Junhao Zhu
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford St, Cambridge, Massachusetts 02138, United States
| | - Ariane Briegel
- Institute of Biology, Leiden University, Rapenburg 70, 2311 EZ Leiden, The Netherlands
| | - Deborah T Hung
- Broad Institute of MIT and Harvard, 415 Main St, Cambridge, Massachusetts 02142, United States
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, United States
- Department of Genetics, Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, United States
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Laura L Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Roy T, Seth A, Shafi H, Reddy DVS, Raman SK, Chakradhar JVUS, Verma S, Bharti R, Azmi L, Ray L, Misra A. Transcriptional regulation of suppressors of cytokine signaling during infection with Mycobacterium tuberculosis in human THP-1-derived macrophages and in mice. Microbes Infect 2024; 26:105282. [PMID: 38135025 DOI: 10.1016/j.micinf.2023.105282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Mycobacterium tuberculosis (Mtb) infection leads to upregulation of Suppressors of Cytokine signaling (SOCS) expression in host macrophages (Mϕ). SOCS proteins inhibit cytokine signaling by negatively regulating JAK/STAT. We investigated this host-pathogen dialectic at the level of transcription. We used phorbol-differentiated THP-1 Mϕ infected with Mtb to investigate preferential upregulation of some SOCS isoforms that are known to inhibit signaling by IFN-γ, IL-12, and IL-6. We examined time kinetics of likely transcription factors and signaling molecules upstream of SOCS transcription, and survival of intracellular Mtb following SOCS upregulation. Our results suggest a plausible mechanism that involves PGE2 secretion during infection to induce the PKA/CREB axis, culminating in nuclear translocation of C/EBPβ to induce expression of SOCS1. Mtb-infected Mϕ secreted IL-10, suggesting a mechanism of induction of STAT3, which may subsequently induce SOCS3. We provide evidence of temporal variation in SOCS isoform exspression and decay. Small-interfering RNA-mediated knockdown of SOCS1 and SOCS3 restored the pro-inflammatory milieu and reduced Mtb viability. In mice infected with Mtb, SOCS isoforms persisted across Days 28-85 post infection. Our results suggest that differential temporal regulation of SOCS isoforms by Mtb drives the host immune response towards a phenotype that facilitates the pathogen's survival.
Collapse
Affiliation(s)
- Trisha Roy
- CSIR- Central Drug Research Institute, Lucknow 226031, U.P, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 200102, India
| | - Anuradha Seth
- CSIR- Central Drug Research Institute, Lucknow 226031, U.P, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 200102, India
| | - Hasham Shafi
- CSIR- Central Drug Research Institute, Lucknow 226031, U.P, India
| | - D V Siva Reddy
- CSIR- Central Drug Research Institute, Lucknow 226031, U.P, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 200102, India
| | | | | | - Sonia Verma
- CSIR- Central Drug Research Institute, Lucknow 226031, U.P, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 200102, India
| | - Reena Bharti
- CSIR- Central Drug Research Institute, Lucknow 226031, U.P, India
| | - Lubna Azmi
- CSIR- Central Drug Research Institute, Lucknow 226031, U.P, India
| | - Lipika Ray
- CSIR- Central Drug Research Institute, Lucknow 226031, U.P, India
| | - Amit Misra
- CSIR- Central Drug Research Institute, Lucknow 226031, U.P, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 200102, India.
| |
Collapse
|
3
|
Kalra R, Tiwari D, Dkhar HK, Bhagyaraj E, Kumar R, Bhardwaj A, Gupta P. Host factors subverted by Mycobacterium tuberculosis: Potential targets for host directed therapy. Int Rev Immunol 2021; 42:43-70. [PMID: 34678117 DOI: 10.1080/08830185.2021.1990277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Despite new approaches in the diagnosis and treatment of tuberculosis (TB), it continues to be a major health burden. Several immunotherapies that potentiate the immune response have come up as adjuncts to drug therapies against drug resistant TB strains; however, there needs to be an urgent appraisal of host specific drug targets for improving their clinical management and to curtail disease progression. Presently, various host directed therapies (HDTs) exist (repurposed drugs, nutraceuticals, monoclonal antibodies and immunomodulatory agents), but these mostly address molecules that combat disease progression. AREAS COVERED The current review discusses major Mycobacterium tuberculosis (M. tuberculosis) survival paradigms inside the host and presents a plethora of host targets subverted by M. tuberculosis which can be further explored for future HDTs. The host factors unique to M. tuberculosis infection (in humans) have also been identified through an in-silico interaction mapping. EXPERT OPINION HDTs could become the next-generation adjunct therapies in order to counter antimicrobial resistance and virulence, as well as to reduce the duration of existing TB treatments. However, current scientific efforts are largely directed toward combatants rather than host molecules co-opted by M. tuberculosis for its survival. This might drive the immune system to a hyper-inflammatory condition; therefore, we emphasize that host factors subverted by M. tuberculosis, and their subsequent neutralization, must be considered for development of better HDTs.
Collapse
Affiliation(s)
- Rashi Kalra
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Drishti Tiwari
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Hedwin Kitdorlang Dkhar
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Ella Bhagyaraj
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Rakesh Kumar
- Bioinformatics Center, CSIR-Institute of Microbial Technology, Chandigarh-160036, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Anshu Bhardwaj
- Bioinformatics Center, CSIR-Institute of Microbial Technology, Chandigarh-160036, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Pawan Gupta
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh-160036, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
4
|
Wen Q, Li Y, Han Z, Liu H, Zhang S, Chen Y, He J, Du X, Fu Y, Zhang L, Zhang Z, Huang Y, Zhou X, Zhou C, Hu S, Ma L. β-Arrestin 2 Regulates Inflammatory Responses against Mycobacterium tuberculosis Infection through ERK1/2 Signaling. THE JOURNAL OF IMMUNOLOGY 2021; 206:2623-2637. [PMID: 34001657 DOI: 10.4049/jimmunol.2001346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/23/2021] [Indexed: 11/19/2022]
Abstract
Mycobacterium tuberculosis, the pathogen that causes tuberculosis, exhibits complex host-pathogen interactions. Pattern recognition receptors and their downstream signaling pathways play crucial roles in determining the outcome of infection. In particular, the scaffold protein β-arrestin 2 mediates downstream signaling of G protein-coupled receptors. However, the role of β-arrestin 2 in conferring immunity against M. tuberculosis has not yet been explored. We found that β-arrestin 2 was upregulated in the lesioned regions of lung tissues in patients with tuberculosis. M. tuberculosis infection upregulated β-arrestin 2 expression in human macrophages, and silencing of β-arrestin 2 significantly enhanced bactericidal activity by enhancing the expression of proinflammatory cytokines such as TNF-α. β-Arrestin 2 was shown to inhibit the activation of the TLR2/ERK1/2 pathway and its transcriptional regulation activity upon M. tuberculosis infection. Furthermore, β-arrestin 2 transcriptionally regulates TNF-α by binding to CREB1. These observations revealed that the upregulation of β-arrestin 2 is critical for M. tuberculosis to escape immune surveillance through an unknown mechanism. Our research offers a novel interference modality to enhance the immune response against tuberculosis by targeting β-arrestin 2 to modulate the TLR2-β-arrestin 2-ERK1/2-CREB1-TNF-α regulatory axis.
Collapse
Affiliation(s)
- Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yanfen Li
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zhenyu Han
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Honglin Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Shimeng Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yaoxin Chen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jianchun He
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xialin Du
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yuling Fu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Lijie Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zelin Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yulan Huang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xinying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Chaoying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Shengfeng Hu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
5
|
Olmos-Ortiz A, Olivares-Huerta A, García-Quiroz J, Zariñán T, Chavira R, Zaga-Clavellina V, Avila E, Halhali A, Durand M, Larrea F, Díaz L. Placentas associated with female neonates from pregnancies complicated by urinary tract infections have higher cAMP content and cytokines expression than males. Am J Reprod Immunol 2021; 86:e13434. [PMID: 33905581 DOI: 10.1111/aji.13434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022] Open
Abstract
PROBLEM The cAMP pathway is involved in important biological processes including immune regulation and hormone signaling. At the feto-maternal unit, cAMP participates in placental function/physiology and the establishment of immunoendocrine networks. Low cAMP in male fetuses cord blood has been linked to poorer perinatal outcomes; however, cAMP placental content and its relationship with immune factors and fetal sex in an infectious condition have not been investigated. METHOD OF STUDY Sex-dependent changes in cAMP content and its association with cytokines and antimicrobial peptides expression were studied in human placentas collected from normal pregnancies and with urinary tract infections (UTI). Radioimmunoassay was used to quantify cAMP in placental tissue, while immune markers expression was studied by qPCR. Additionally, cAMP effect on antimicrobial peptides expression was studied in cultured trophoblasts challenged with lipopolysaccharide, to mimic an infection. RESULTS In UTI, placentas from female neonates had higher cAMP tissue content and increased expression of TNFA, IL1B, and IL10 than those from males, where IFNG was more elevated. While cAMP negatively correlated with maternal bacteriuria and IFNG, it positively correlated with the antimicrobial peptide S100A9 expression in a sex-specific fashion. In cultured trophoblasts, cAMP significantly stimulated β-defensin-1 while reduced the lipopolysaccharide-dependent stimulatory effect on β-defensin-2, β-defensins-3, and S100A9. CONCLUSION Our results showed higher cAMP content and defense cytokines expression in placentas associated with female neonates from pregnancies complicated by UTI. The associations between cAMP and bacteriuria/immune markers, together with cAMP's ability to differentially regulate placental antimicrobial peptides expression, suggest a dual modulatory role for cAMP in placental immunity.
Collapse
Affiliation(s)
- Andrea Olmos-Ortiz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México.,Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - Alberto Olivares-Huerta
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Janice García-Quiroz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Teresa Zariñán
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México, México
| | - Roberto Chavira
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Verónica Zaga-Clavellina
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México, México
| | - Euclides Avila
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Ali Halhali
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Marta Durand
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Fernando Larrea
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| |
Collapse
|
6
|
Kiran D, Basaraba RJ. Lactate Metabolism and Signaling in Tuberculosis and Cancer: A Comparative Review. Front Cell Infect Microbiol 2021; 11:624607. [PMID: 33718271 PMCID: PMC7952876 DOI: 10.3389/fcimb.2021.624607] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022] Open
Abstract
Infection with Mycobacterium tuberculosis (Mtb) leading to tuberculosis (TB) disease continues to be a major global health challenge. Critical barriers, including but not limited to the development of multi-drug resistance, lack of diagnostic assays that detect patients with latent TB, an effective vaccine that prevents Mtb infection, and infectious and non-infectious comorbidities that complicate active TB, continue to hinder progress toward a TB cure. To complement the ongoing development of new antimicrobial drugs, investigators in the field are exploring the value of host-directed therapies (HDTs). This therapeutic strategy targets the host, rather than Mtb, and is intended to augment host responses to infection such that the host is better equipped to prevent or clear infection and resolve chronic inflammation. Metabolic pathways of immune cells have been identified as promising HDT targets as more metabolites and metabolic pathways have shown to play a role in TB pathogenesis and disease progression. Specifically, this review highlights the potential role of lactate as both an immunomodulatory metabolite and a potentially important signaling molecule during the host response to Mtb infection. While long thought to be an inert end product of primarily glucose metabolism, the cancer research field has discovered the importance of lactate in carcinogenesis and resistance to chemotherapeutic drug treatment. Herein, we discuss similarities between the TB granuloma and tumor microenvironments in the context of lactate metabolism and identify key metabolic and signaling pathways that have been shown to play a role in tumor progression but have yet to be explored within the context of TB. Ultimately, lactate metabolism and signaling could be viable HDT targets for TB; however, critical additional research is needed to better understand the role of lactate at the host-pathogen interface during Mtb infection before adopting this HDT strategy.
Collapse
Affiliation(s)
| | - Randall J. Basaraba
- Metabolism of Infectious Diseases Laboratory, Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
7
|
The role of non-coding RNA on macrophage modification in tuberculosis infection. Microb Pathog 2020; 149:104592. [PMID: 33098931 DOI: 10.1016/j.micpath.2020.104592] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB), a serious disease caused by Mycobacterium tuberculosis (Mtb), remains the world's top infectious killer. It is well-established that TB can circumvent the host's immune response for long-term survival. Macrophages serve as the major host cells for TB growth and persistence and their altered functions are critical for the response of the host defense against TB exposure (elimination, latency, reactivation, and bacillary dissemination). Noncoding RNAs are crucial posttranscriptional regulators of macrophage discrimination. Therefore, this review highlights the regulatory mechanism underlying the relationship between noncoding RNAs and macrophages in TB infection, which may facilitate the identification of potential therapeutic targets and effective diagnosis biomarkers for TB disease.
Collapse
|
8
|
Atmakuri K, Penn-Nicholson A, Tanner R, Dockrell HM. Meeting report: 5th Global Forum on TB Vaccines, 20-23 February 2018, New Delhi India. Tuberculosis (Edinb) 2018; 113:55-64. [PMID: 30514514 DOI: 10.1016/j.tube.2018.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 01/19/2023]
Abstract
The 5th Global Forum on TB Vaccines was held in New Delhi, India from 20 to 23 February 2018. This was the largest Global Forum on TB Vaccines to date with nearly 350 participants from more than 30 countries. The program included over 60 speakers in 12 special, plenary and breakout sessions and 72 posters. This Global Forum brought a great sense of momentum and excitement to the field. New vaccines are in clinical trials, new routes of delivery are being tested, novel assays and biomarker signatures are being developed, and the results from the first prevention of infection clinical trial with the H4:IC31 vaccine candidate and BCG revaccination were presented. Speakers and participants acknowledged the significant challenges that the TB vaccine R&D field continues to face - including limited funding, and the need for novel effective vaccine candidates and tools such as improved diagnostics and biomarkers to accurately predict protective efficacy. New solutions and approaches to address these challenges were discussed. The following report presents highlights from talks presented at this Global Forum. A full program, abstract book and presentations (where publicly available) from the Forum may be found at tbvaccinesforum.org.
Collapse
Affiliation(s)
- Krishnamohan Atmakuri
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, 121001, India.
| | - Adam Penn-Nicholson
- South African Tuberculosis Vaccine Initiative, Wernher and Beit South Building, Health Sciences Faculty, Observatory, 7925 Cape Town, Anzio Road, Observatory, Cape Town, 7935, South Africa.
| | - Rachel Tanner
- The Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, University of Oxford, Oxford, OX3 7DQ, UK.
| | - Hazel M Dockrell
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|