1
|
Pereira VIC, de Brito Junior LC, Falcão LFM, da Costa Vasconcelos PF, Quaresma JAS, Berg AVVD, Paixão APS, Ferreira RIS, Diks IBC. Monocytes subpopulations pattern in the acute respiratory syndrome coronavirus 2 virus infection and after long COVID-19. Int Immunopharmacol 2023; 124:110994. [PMID: 37804653 DOI: 10.1016/j.intimp.2023.110994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/09/2023]
Abstract
INTRODUTION AND OBJECTIVE The present study sought to characterize the pattern of monocyte subpopulations in patients during the course of the infections caused by SARS-CoV-2 virus or who presented long COVID-19 syndrome compared to monocytes from patients with zika virus (Zika) or chikungunya virus (CHIKV). CASUISTRY Study with 89 peripheral blood samples from patients, who underwent hemogram and serology (IgG and IgM) for detection of Zika (Control Group 1, n = 18) or CHIKV (Control Group 2, n = 9), and from patients who underwent hemogram and reverse transcription polymerase chain reaction for detection of SARS-CoV-2 at the acute phase of the disease (Group 3, n = 19); and of patients who presented long COVID-19 syndrome (Group 4, n = 43). The monocyte and subpopulations counts were performed by flow cytometry. RESULTS No significant difference was observed in the total number of monocytes between the groups. The classical (CD14++CD16-) and intermediate (CD14+CD16+) monocytes counts were increased in patients with acute infection or with long COVID-19 syndrome. The monocytes subpopulations counts were lower in patients with infection Zika or CHIKV. CONCLUSION Increase in the monocyte subpopulations in patients with acute infection or with long COVID-19 syndrome may be an important finding of differentiated from the infection Zika or CHIKV.
Collapse
Affiliation(s)
| | - Lacy Cardoso de Brito Junior
- Institute of Biological Sciences at UFPA. Laboratory of General Pathology - Immunopathology and Cytology at FederalUniversity of Pará. Belém, Pará, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Wang HW, Li HH, Wu SC, Tang CK, Yu HY, Chang YC, Sung PS, Liu WL, Su MP, Yu GY, Huang LR, Chen CH, Hsieh SL. CLEC5A mediates Zika virus-induced testicular damage. J Biomed Sci 2023; 30:12. [PMID: 36803804 PMCID: PMC9936774 DOI: 10.1186/s12929-023-00906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Zika virus (ZIKV) infection is clinically known to induce testicular swelling, termed orchitis, and potentially impact male sterility, but the underlying mechanisms remain unclear. Previous reports suggested that C-type lectins play important roles in mediating virus-induced inflammatory reactions and pathogenesis. We thus investigated whether C-type lectins modulate ZIKV-induced testicular damage. METHODS C-type lectin domain family 5 member A (CLEC5A) knockout mice were generated in a STAT1-deficient immunocompromised background (denoted clec5a-/-stat1-/-) to enable testing of the role played by CLEC5A after ZIKV infection in a mosquito-to-mouse disease model. Following ZIKV infection, mice were subjected to an array of analyses to evaluate testicular damage, including ZIKV infectivity and neutrophil infiltration estimation via quantitative RT-PCR or histology and immunohistochemistry, inflammatory cytokine and testosterone detection, and spermatozoon counting. Furthermore, DNAX-activating proteins for 12 kDa (DAP12) knockout mice (dap12-/-stat1-/-) were generated and used to evaluate ZIKV infectivity, inflammation, and spermatozoa function in order to investigate the potential mechanisms engaged by CLEC5A. RESULTS Compared to experiments conducted in ZIKV-infected stat1-/- mice, infected clec5a-/-stat1-/- mice showed reductions in testicular ZIKV titer, local inflammation and apoptosis in testis and epididymis, neutrophil invasion, and sperm count and motility. CLEC5A, a myeloid pattern recognition receptor, therefore appears involved in the pathogenesis of ZIKV-induced orchitis and oligospermia. Furthermore, DAP12 expression was found to be decreased in the testis and epididymis tissues of clec5a-/-stat1-/- mice. As for CLEC5A deficient mice, ZIKV-infected DAP12-deficient mice also showed reductions in testicular ZIKV titer and local inflammation, as well as improved spermatozoa function, as compared to controls. CLEC5A-associated DAP12 signaling appears to in part regulate ZIKV-induced testicular damage. CONCLUSIONS Our analyses reveal a critical role for CLEC5A in ZIKV-induced proinflammatory responses, as CLEC5A enables leukocytes to infiltrate past the blood-testis barrier and induce testicular and epididymal tissue damage. CLEC5A is thus a potential therapeutic target for the prevention of injuries to male reproductive organs in ZIKV patients.
Collapse
Affiliation(s)
- Hsin-Wei Wang
- grid.59784.370000000406229172National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401 Taiwan ,grid.59784.370000000406229172National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, 350401 Taiwan
| | - Hsing-Han Li
- grid.59784.370000000406229172National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401 Taiwan ,grid.59784.370000000406229172National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, 350401 Taiwan ,grid.266100.30000 0001 2107 4242Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093 USA
| | - Shih-Cheng Wu
- grid.59784.370000000406229172National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401 Taiwan ,grid.19188.390000 0004 0546 0241Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 10048 Taiwan ,grid.412094.a0000 0004 0572 7815Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 10021 Taiwan
| | - Cheng-Kang Tang
- grid.59784.370000000406229172National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401 Taiwan ,grid.260542.70000 0004 0532 3749Program of Plant Protection and Health, Academy of Circular Economy, National Chung Hsing University, Taichung, 402202 Taiwan
| | - Hui-Ying Yu
- grid.59784.370000000406229172National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401 Taiwan ,grid.19188.390000 0004 0546 0241Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 10617 Taiwan
| | - Ya-Chen Chang
- grid.59784.370000000406229172National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401 Taiwan
| | - Pei-Shan Sung
- grid.28665.3f0000 0001 2287 1366Genomics Research Center, Academia Sinica, Taipei, 11529 Taiwan
| | - Wei-Liang Liu
- grid.59784.370000000406229172National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, 350401 Taiwan
| | - Matthew P. Su
- grid.27476.300000 0001 0943 978XDepartment of Biological Science, Nagoya University, Nagoya, 464-8602 Japan ,grid.27476.300000 0001 0943 978XInstitute for Advanced Research, Nagoya University, Nagoya, 464-8601 Japan
| | - Guann-Yi Yu
- grid.59784.370000000406229172National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401 Taiwan
| | - Li-Rung Huang
- grid.59784.370000000406229172Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 350401 Taiwan
| | - Chun-Hong Chen
- grid.59784.370000000406229172National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401 Taiwan ,grid.59784.370000000406229172National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, 350401 Taiwan
| | - Shie-Liang Hsieh
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan. .,Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan. .,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan. .,Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, 11217, Taiwan. .,Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
3
|
Zika Virus Replication in a Mast Cell Model is Augmented by Dengue Virus Antibody-Dependent Enhancement and Features a Selective Immune Mediator Secretory Profile. Microbiol Spectr 2022; 10:e0177222. [PMID: 35862953 PMCID: PMC9431662 DOI: 10.1128/spectrum.01772-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibodies generated against one dengue serotype can enhance infection of another by a phenomenon called antibody-dependent enhancement (ADE). Additionally, antigenic similarities between Zika and dengue viruses can promote Zika virus infection by way of ADE
in vitro
using these very same anti-dengue antibodies.
Collapse
|
4
|
Cord-Blood-Derived Professional Antigen-Presenting Cells: Functions and Applications in Current and Prospective Cell Therapies. Int J Mol Sci 2021; 22:ijms22115923. [PMID: 34072923 PMCID: PMC8199409 DOI: 10.3390/ijms22115923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/21/2022] Open
Abstract
Human umbilical cord blood (UCB) represents a valuable source of hematopoietic stem cells, particularly for patients lacking a matching donor. UCB provides practical advantages, including a lower risk of graft-versus-host-disease and permissive human leukocyte antigen mismatching. These advantageous properties have so far been applied for stem cell, mesenchymal stromal cell, and chimeric antigen receptor T cell therapies. However, UCB-derived professional antigen-presenting cells are increasingly being utilized in the context of immune tolerance and regenerative therapy. Here, we review the cell-specific characteristics as well as recent advancements in UCB-based cell therapies focusing on dendritic cells, monocytes, B lymphocytes, innate lymphoid cells, and macrophages.
Collapse
|
5
|
Gist of Zika Virus pathogenesis. Virology 2021; 560:86-95. [PMID: 34051478 DOI: 10.1016/j.virol.2021.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/03/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022]
Abstract
Zika virus (ZIKV) is a mosquito-borne neurotropic flavivirus. ZIKV infection may lead to microcephaly in developing fetus and Guillain-Barré Syndrome (GBS) like symptoms in adults. ZIKV was first reported in humans in 1952 from Uganda and the United Republic of Tanzania. Later, ZIKV outbreak was reported in 2007 from the Yap Island. ZIKV re-emerged as major outbreak in the year 2013 from French Polynesia followed by second outbreak in the year 2015 from Brazil. ZIKV crosses the blood-tissue barriers to enter immune-privileged organs. Clinical manifestations in ZIKV disease includes rash, fever, conjunctivitis, muscle and joint pain, headache, transverse myelitis, meningoencephalitis, Acute Disseminated Encephalomyelitis (ADEM). The understanding of the molecular mechanism of ZIKV pathogenesis is very important to develop potential diagnostic and therapeutic interventions for ZIKV infected patients.
Collapse
|
6
|
Zika Virus Pathogenesis: A Battle for Immune Evasion. Vaccines (Basel) 2021; 9:vaccines9030294. [PMID: 33810028 PMCID: PMC8005041 DOI: 10.3390/vaccines9030294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) infection and its associated congenital and other neurological disorders, particularly microcephaly and other fetal developmental abnormalities, constitute a World Health Organization (WHO) Zika Virus Research Agenda within the WHO’s R&D Blueprint for Action to Prevent Epidemics, and continue to be a Public Health Emergency of International Concern (PHEIC) today. ZIKV pathogenicity is initiated by viral infection and propagation across multiple placental and fetal tissue barriers, and is critically strengthened by subverting host immunity. ZIKV immune evasion involves viral non-structural proteins, genomic and non-coding RNA and microRNA (miRNA) to modulate interferon (IFN) signaling and production, interfering with intracellular signal pathways and autophagy, and promoting cellular environment changes together with secretion of cellular components to escape innate and adaptive immunity and further infect privileged immune organs/tissues such as the placenta and eyes. This review includes a description of recent advances in the understanding of the mechanisms underlying ZIKV immune modulation and evasion that strongly condition viral pathogenesis, which would certainly contribute to the development of anti-ZIKV strategies, drugs, and vaccines.
Collapse
|
7
|
Activation of an Effective Immune Response after Yellow Fever Vaccination Is Associated with the Genetic Background and Early Response of IFN-γ and CLEC5A. Viruses 2021; 13:v13010096. [PMID: 33445752 PMCID: PMC7828179 DOI: 10.3390/v13010096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
The yellow fever vaccine (YF17DD) is highly effective with a single injection conferring protection for at least 10 years. The YF17DD induces polyvalent responses, with a TH1/TH2 CD4+ profile, robust T CD8+ responses, and synthesis of interferon-gamma (IFN-γ), culminating in high titers of neutralizing antibodies. Furthermore, C-type lectin domain containing 5A (CLEC5A) has been implicated in innate outcomes in other flaviviral infections. Here, we conducted a follow-up study in volunteers immunized with YF17DD, investigating the humoral response, cellular phenotypes, gene expression, and single nucleotide polymorphisms (SNPs) of IFNG and CLEC5A, to clarify the role of these factors in early response after vaccination. Activation of CLEC5A+ monocytes occurred five days after vaccination (DAV). Following, seven DAV data showed activation of CD4+ and CD8+T cells together with early positive correlations between type II IFN and genes of innate antiviral response (STAT1, STAT2, IRF7, IRF9, OAS1, and RNASEL) as well as antibody levels. Furthermore, individuals with genotypes rs2430561 AT/AA, rs2069718 AG/AA (IFNG), and rs13237944 AC/AA (CLEC5A), exhibited higher expression of IFNG and CLEC5A, respectively. Together, we demonstrated that early IFN-γ and CLEC5A responses, associated with rs2430561, rs2069718, and rs13237944 genotypes, may be key mechanisms in the long-lasting immunity elicited by YF17DD.
Collapse
|
8
|
Kovacs AAZ. Zika, the Newest TORCH Infectious Disease in the Americas. Clin Infect Dis 2021; 70:2673-2674. [PMID: 31346608 DOI: 10.1093/cid/ciz709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Andrea A Z Kovacs
- Maternal, Child, and Adolescent Center for Infectious Diseases and Virology, Division of Pediatric Infectious Diseases, Keck Medicine of the University of Southern California, Los Angeles
| |
Collapse
|
9
|
Winkler CW, Evans AB, Carmody AB, Peterson KE. Placental Myeloid Cells Protect against Zika Virus Vertical Transmission in a Rag1-Deficient Mouse Model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:143-152. [PMID: 32493813 PMCID: PMC8328348 DOI: 10.4049/jimmunol.1901289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/04/2020] [Indexed: 11/19/2022]
Abstract
The ability of Zika virus (ZIKV) to cross the placenta and infect the fetus is a key mechanism by which ZIKV causes microcephaly. How the virus crosses the placenta and the role of the immune response in this process remain unclear. In the current study, we examined how ZIKV infection affected innate immune cells within the placenta and fetus and whether these cells influenced virus vertical transmission (VTx). We found myeloid cells were elevated in the placenta of pregnant ZIKV-infected Rag1-/- mice treated with an anti-IFNAR Ab, primarily at the end of pregnancy as well as transiently in the fetus several days before birth. These cells, which included maternal monocyte/macrophages, neutrophils, and fetal myeloid cells contained viral RNA and infectious virus, suggesting they may be infected and contributing to viral replication and VTx. However, depletion of monocyte/macrophage myeloid cells from the dam during ZIKV infection resulted in increased ZIKV infection in the fetus. Myeloid cells in the fetus were not depleted in this experiment, likely because of an inability of liposome particles containing the cytotoxic drug to cross the placenta. Thus, the increased virus infection in the fetus was not the result of an impaired fetal myeloid response or breakdown of the placental barrier. Collectively, these data suggest that monocyte/macrophage myeloid cells in the placenta play a significant role in inhibiting ZIKV VTx to the fetus, possibly through phagocytosis of virus or virus-infected cells.
Collapse
Affiliation(s)
- Clayton W Winkler
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840; and
| | - Alyssa B Evans
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840; and
| | - Aaron B Carmody
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Karin E Peterson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840; and
| |
Collapse
|
10
|
Ayala-Nunez NV, Follain G, Delalande F, Hirschler A, Partiot E, Hale GL, Bollweg BC, Roels J, Chazal M, Bakoa F, Carocci M, Bourdoulous S, Faklaris O, Zaki SR, Eckly A, Uring-Lambert B, Doussau F, Cianferani S, Carapito C, Jacobs FMJ, Jouvenet N, Goetz JG, Gaudin R. Zika virus enhances monocyte adhesion and transmigration favoring viral dissemination to neural cells. Nat Commun 2019; 10:4430. [PMID: 31562326 PMCID: PMC6764950 DOI: 10.1038/s41467-019-12408-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
Zika virus (ZIKV) invades and persists in the central nervous system (CNS), causing severe neurological diseases. However the virus journey, from the bloodstream to tissues through a mature endothelium, remains unclear. Here, we show that ZIKV-infected monocytes represent suitable carriers for viral dissemination to the CNS using human primary monocytes, cerebral organoids derived from embryonic stem cells, organotypic mouse cerebellar slices, a xenotypic human-zebrafish model, and human fetus brain samples. We find that ZIKV-exposed monocytes exhibit higher expression of adhesion molecules, and higher abilities to attach onto the vessel wall and transmigrate across endothelia. This phenotype is associated to enhanced monocyte-mediated ZIKV dissemination to neural cells. Together, our data show that ZIKV manipulates the monocyte adhesive properties and enhances monocyte transmigration and viral dissemination to neural cells. Monocyte transmigration may represent an important mechanism required for viral tissue invasion and persistence that could be specifically targeted for therapeutic intervention. Zika virus (ZIKV) can infect the central nervous system, but it is not clear how it reaches the brain. Here, Ayala-Nunez et al. show in ex vivo and in vivo models that ZIKV can hitch a ride in monocytes in a Trojan Horse manner to cross the endothelium and disseminate the virus.
Collapse
Affiliation(s)
- Nilda Vanesa Ayala-Nunez
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, 34293, Montpellier, France.,Université de Strasbourg, INSERM, 67000, Strasbourg, France
| | | | - François Delalande
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, CNRS-Université de Strasbourg, ECPM, 67087, Strasbourg, France
| | - Aurélie Hirschler
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, CNRS-Université de Strasbourg, ECPM, 67087, Strasbourg, France
| | - Emma Partiot
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, 34293, Montpellier, France
| | - Gillian L Hale
- Infectious Diseases Pathology Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Centers for Disease Control and Prevention, 1600 Clifton Rd NE, MS: G32, Atlanta, GA, 30329-4027, USA
| | - Brigid C Bollweg
- Infectious Diseases Pathology Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Centers for Disease Control and Prevention, 1600 Clifton Rd NE, MS: G32, Atlanta, GA, 30329-4027, USA
| | - Judith Roels
- University of Amsterdam, Swammerdam Institute for Life Sciences, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Maxime Chazal
- Viral Genomics and Vaccination Unit, UMR3569 CNRS, Virology Department, Institut Pasteur, 75015, Paris, France
| | - Florian Bakoa
- Viral Genomics and Vaccination Unit, UMR3569 CNRS, Virology Department, Institut Pasteur, 75015, Paris, France
| | - Margot Carocci
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S1255, FMTS, 67000, Strasbourg, France
| | - Sandrine Bourdoulous
- INSERM U1016, Institut Cochin, CNRS UMR8104, Université Paris Descartes, Paris, France
| | - Orestis Faklaris
- MRI Core facility, Biocampus, CNRS UMS 3426, 34293, Montpellier, France
| | - Sherif R Zaki
- Infectious Diseases Pathology Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Centers for Disease Control and Prevention, 1600 Clifton Rd NE, MS: G32, Atlanta, GA, 30329-4027, USA
| | - Anita Eckly
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S1255, FMTS, 67000, Strasbourg, France
| | - Béatrice Uring-Lambert
- Hôpitaux universitaires de Strasbourg, laboratoire central d'immunologie, 67000, Strasbourg, France
| | - Frédéric Doussau
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, CNRS-Université de Strasbourg, ECPM, 67087, Strasbourg, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, CNRS-Université de Strasbourg, ECPM, 67087, Strasbourg, France
| | - Frank M J Jacobs
- University of Amsterdam, Swammerdam Institute for Life Sciences, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Nolwenn Jouvenet
- Viral Genomics and Vaccination Unit, UMR3569 CNRS, Virology Department, Institut Pasteur, 75015, Paris, France
| | | | - Raphael Gaudin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, 34293, Montpellier, France. .,Université de Strasbourg, INSERM, 67000, Strasbourg, France.
| |
Collapse
|