1
|
Reyes RA, Batugedara G, Dutta P, Reers AB, Garza R, Ssewanyana I, Jagannathan P, Feeney ME, Greenhouse B, Bol S, Ay F, Bunnik EM. Atypical B cells consist of subsets with distinct functional profiles. iScience 2023; 26:108496. [PMID: 38098745 PMCID: PMC10720271 DOI: 10.1016/j.isci.2023.108496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
Atypical B cells are a population of activated B cells that are commonly enriched in individuals with chronic immune activation but are also part of a normal immune response to infection or vaccination. To better define the role of atypical B cells in the human adaptive immune response, we performed single-cell sequencing of transcriptomes, cell surface markers, and B cell receptors in individuals with chronic exposure to the malaria parasite Plasmodium falciparum, a condition known to lead to accumulation of circulating atypical B cells. We identified three previously uncharacterized populations of atypical B cells with distinct transcriptional and functional profiles and observed marked differences among these three subsets in their ability to produce immunoglobulin G upon T-cell-dependent activation. Our findings help explain the conflicting observations in prior studies regarding the function of atypical B cells and highlight their different roles in the adaptive immune response in chronic inflammatory conditions.
Collapse
Affiliation(s)
- Raphael A. Reyes
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Gayani Batugedara
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Paramita Dutta
- Centers for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ashley B. Reers
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Rolando Garza
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Isaac Ssewanyana
- Infectious Disease Research Collaboration, Kampala, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Prasanna Jagannathan
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Margaret E. Feeney
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Sebastiaan Bol
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ferhat Ay
- Centers for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Evelien M. Bunnik
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
2
|
Tetteh J, Yorke E, Boima V, Yawson AE. Prevalence of malaria infection and the impact of mosquito bed net distribution among children aged 6-59 months in Ghana: Evidence from the Ghana demographic health and malarial indicator surveys. Parasite Epidemiol Control 2023; 21:e00302. [PMID: 37200871 PMCID: PMC10185735 DOI: 10.1016/j.parepi.2023.e00302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023] Open
Abstract
Objective To assess the prevalence of malaria infection and further quantify the impact of mosquito bed net distribution on malaria infection among children aged 6-59 months in Ghana. Methods A cross-sectional study using Ghana Demographic Health (GDHS) and Malaria Indicator (GMIS) surveys (2014 GDHS, 2016 GMIS, and 2019 GMIS). The exposure and the main outcomes were mosquito bed net use (MBU) and malaria infection (MI). Relative percentage change (Δ) and prevalence ratio (PR) were estimated to assess the changes and the risk of MI by MBU respectively. The Propensity-score matching treatment effect model was employed to estimate the average treatment effect (ATE) of MBU on MI. All analyses were performed using Stata 16.1 and p-value<0.05 was deemed significant. Results The study involved 8781 children aged 6-59 months. MI ranged from 25.8%(22.3-29.7) in 2019 GMIS to 40.6%(37.0-44.2) in 2014 GDHS and the prevalence was significantly high among children who used mosquito bed net. The relative percentage change in MI prevalence showed a significant reduction rate and was high among non-MBU (p-value<0.05). In all, the adjusted PR of MI among children exposed to MBU was 1.21(1.08-1.35), 1.13(1.01-1.28), and 1.50(1.20-1.75) in 2014 GDHS, 2016 GMIS, and 2019 GMIS respectively. The average MI among participants who slept in mosquito bed net significantly increased by 8%(0.04 to 0.12), 4%(0.003 to 0.08), and 7%(0.03 to 0.11) in 2014 GDHS, 2016 GMIS, and 2019 GMIS respectively. Conclusion Even though malaria infection prevalence among children aged 6-59 months is decreasing, the reduction rate seems not to be directly linked with mosquito bed nets distribution and/or use in Ghana. For a continued distribution of mosquito bed nets, and for Ghana to achieve her Malaria Strategic Plan (NMSP) 2021-2025, program managers should ensure effective use of the distributed nets in addition to other preventive measures and nuanced consideration of community behaviours in Ghana. The effective use and care of bed nets should be emphasized as part of the distribution.
Collapse
Affiliation(s)
- John Tetteh
- Department of Community Health, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
- Corresponding author at: Department of Community Health, University of Ghana Medical School, College of Health Sciences, P.O. Box 4236, Accra, Ghana.
| | - Ernest Yorke
- Department of Medicine and Therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Vincent Boima
- Department of Medicine and Therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Alfred Edwin Yawson
- Department of Community Health, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
3
|
Namuganga JF, Nankabirwa JI, Maiteki-Ssebuguzi C, Gonahasa S, Opigo J, Staedke SG, Rutazaana D, Ebong C, Dorsey G, Tomko SS, Kizza T, Mawejje HD, Arinaitwe E, Rosenthal PJ, Kamya MR. East Africa International Center of Excellence for Malaria Research: Impact on Malaria Policy in Uganda. Am J Trop Med Hyg 2022; 107:33-39. [PMID: 36228904 PMCID: PMC9662221 DOI: 10.4269/ajtmh.21-1305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/16/2022] [Indexed: 12/24/2022] Open
Abstract
Malaria is the leading cause of disease burden in sub-Saharan Africa. In 2010, the East Africa International Center of Excellence for Malaria Research, also known as the Program for Resistance, Immunology, Surveillance, and Modeling of Malaria (PRISM), was established to provide a comprehensive approach to malaria surveillance in Uganda. We instituted cohort studies and a robust malaria and entomological surveillance network at selected public health facilities that have provided a platform for monitoring trends in malaria morbidity and mortality, tracking the impact of malaria control interventions (indoor residual spraying of insecticide [IRS], use of long-lasting insecticidal nets [LLINs], and case management with artemisinin-based combination therapies [ACTs]), as well as monitoring of antimalarial drug and insecticide resistance. PRISM studies have informed Uganda's malaria treatment policies, guided selection of LLINs for national distribution campaigns, and revealed widespread pyrethroid resistance, which led to changes in insecticides delivered through IRS. Our continuous engagement and interaction with policy makers at the Ugandan Ministry of Health have enabled PRISM to share evidence, best practices, and lessons learned with key malaria stakeholders, participate in malaria control program reviews, and contribute to malaria policy and national guidelines. Here, we present an overview of interactions between PRISM team members and Ugandan policy makers to demonstrate how PRISM's research has influenced malaria policy and control in Uganda.
Collapse
Affiliation(s)
- Jane F. Namuganga
- Infectious Diseases Research Collaboration, Kampala, Uganda;,Address correspondence to Jane F. Namuganga, Plot 2C Nakasero Hill, P.O. Box 7475 Kampala, Uganda. E-mail:
| | - Joaniter I. Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda;,Makerere University College of Health Sciences, Kampala, Uganda
| | | | | | - Jimmy Opigo
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Sarah G. Staedke
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Damian Rutazaana
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Chris Ebong
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Sheena S. Tomko
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Timothy Kizza
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | - Philip J. Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Moses R. Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda;,Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
4
|
Sadoine ML, Smargiassi A, Liu Y, Gachon P, Dueymes G, Dorsey G, Fournier M, Nankabirwa JI, Rek J, Zinszer K. The influence of the environment and indoor residual spraying on malaria risk in a cohort of children in Uganda. Sci Rep 2022; 12:11537. [PMID: 35798826 PMCID: PMC9262898 DOI: 10.1038/s41598-022-15654-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
Studies have estimated the impact of the environment on malaria incidence although few have explored the differential impact due to malaria control interventions. Therefore, the objective of the study was to evaluate the effect of indoor residual spraying (IRS) on the relationship between malaria and environment (i.e. rainfall, temperatures, humidity, and vegetation) using data from a dynamic cohort of children from three sub-counties in Uganda. Environmental variables were extracted from remote sensing sources and averaged over different time periods. General linear mixed models were constructed for each sub-counties based on a log-binomial distribution. The influence of IRS was analysed by comparing marginal effects of environment in models adjusted and unadjusted for IRS. Great regional variability in the shape (linear and non-linear), direction, and magnitude of environmental associations with malaria risk were observed between sub-counties. IRS was significantly associated with malaria risk reduction (risk ratios vary from RR = 0.03, CI 95% [0.03-0.08] to RR = 0.35, CI95% [0.28-0.42]). Model adjustment for this intervention changed the magnitude and/or direction of environment-malaria associations, suggesting an interaction effect. This study evaluated the potential influence of IRS in the malaria-environment association and highlighted the necessity to control for interventions when they are performed to properly estimate the environmental influence on malaria. Local models are more informative to guide intervention program compared to national models.
Collapse
Affiliation(s)
- Margaux L. Sadoine
- grid.14848.310000 0001 2292 3357School of Public Health, Université de Montréal, Montréal, Québec Canada ,grid.14848.310000 0001 2292 3357Public Health Research Center, Université de Montréal, Montréal, Québec Canada
| | - Audrey Smargiassi
- grid.14848.310000 0001 2292 3357School of Public Health, Université de Montréal, Montréal, Québec Canada ,grid.14848.310000 0001 2292 3357Public Health Research Center, Université de Montréal, Montréal, Québec Canada
| | - Ying Liu
- grid.14848.310000 0001 2292 3357School of Public Health, Université de Montréal, Montréal, Québec Canada ,grid.14848.310000 0001 2292 3357Public Health Research Center, Université de Montréal, Montréal, Québec Canada
| | - Philippe Gachon
- grid.38678.320000 0001 2181 0211ESCER (Étude et Simulation du Climat à l’Échelle Régionale) Centre, Université du Québec à Montréal, Montréal, Québec Canada
| | - Guillaume Dueymes
- grid.38678.320000 0001 2181 0211ESCER (Étude et Simulation du Climat à l’Échelle Régionale) Centre, Université du Québec à Montréal, Montréal, Québec Canada
| | - Grant Dorsey
- grid.266102.10000 0001 2297 6811University of California San Francisco, San Francisco, USA
| | - Michel Fournier
- Montreal Regional Department of Public Health, Montréal, Québec Canada
| | - Joaniter I. Nankabirwa
- grid.463352.50000 0004 8340 3103Infectious Disease Research Collaboration, Kampala, Uganda ,grid.11194.3c0000 0004 0620 0548Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - John Rek
- grid.463352.50000 0004 8340 3103Infectious Disease Research Collaboration, Kampala, Uganda
| | - Kate Zinszer
- grid.14848.310000 0001 2292 3357School of Public Health, Université de Montréal, Montréal, Québec Canada ,grid.14848.310000 0001 2292 3357Public Health Research Center, Université de Montréal, Montréal, Québec Canada
| |
Collapse
|
5
|
Abstract
BACKGROUND Insecticide-treated nets (ITNs) and indoor residual spraying (IRS) are used to prevent malaria transmission. Both interventions use insecticides to kill mosquitoes that bite and rest indoors. Adding IRS to ITNs may improve malaria control simply because two interventions can be better than one. Furthermore, IRS may improve malaria control where ITNs are failing due to insecticide resistance. Pyrethroid insecticides are the predominant class of insecticide used for ITNs, as they are more safe than other insecticide classes when in prolonged contact with human skin. While many mosquito populations have developed some resistance to pyrethroid insecticides, a wider range of insecticides can be used for IRS. This review is an update of the previous Cochrane 2019 edition. OBJECTIVES To summarize the effect on malaria of additionally implementing IRS, using non-pyrethroid-like or pyrethroid-like insecticides, in communities currently using ITNs. SEARCH METHODS We searched the Cochrane Infectious Diseases Group Specialized Register; CENTRAL; MEDLINE; and five other databases for records from 1 January 2000 to 8 November 2021, on the basis that ITN programmes did not begin to be implemented as policy before the year 2000. SELECTION CRITERIA We included cluster-randomized controlled trials (cRCTs), interrupted time series (ITS), or controlled before-after studies (CBAs) comparing IRS plus ITNs with ITNs alone. We included studies with at least 50% ITN ownership (defined as the proportion of households owning one or more ITN) in both study arms. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies for eligibility, analyzed risk of bias, and extracted data. We used risk ratio (RR) and 95% confidence intervals (CI). We stratified by type of insecticide, 'pyrethroid-like' and 'non-pyrethroid-like'; the latter could improve malaria control better than adding IRS insecticides that have the same way of working as the insecticide on ITNs ('pyrethroid-like'). We used subgroup analysis of ITN usage in the studies to explore heterogeneity. We assessed the certainty of evidence using the GRADE approach. MAIN RESULTS Eight cRCTs (10 comparisons), one CBA, and one ITS study, all conducted since 2008 in sub-Saharan Africa, met our inclusion criteria. The primary vectors in all sites were mosquitoes belonging to the Anopheles gambiae s.l. complex species; five studies in Benin, Mozambique, Ghana, Sudan, and Tanzania also reported the vector Anopheles funestus. Five cRCTs and both quasi-experimental design studies used insecticides with targets different to pyrethroids (two used bendiocarb, three used pirimiphos-methyl, and one used propoxur. Each of these studies were conducted in areas where the vectors were described as resistant or highly resistant to pyrethroids. Two cRCTs used dichloro-diphenyl-trichlorethane (DDT), an insecticide with the same target as pyrethroids. The remaining cRCT used both types of insecticide (pyrethroid deltamethrin in the first year, switching to bendiocarb for the second year). Indoor residual spraying using 'non-pyrethroid-like' insecticides Six studies were included (four cRCTs, one CBA, and one ITS). Our main analysis for prevalence excluded a study at high risk of bias due to repeated sampling of the same population. This risk did not apply to other outcomes. Overall, the addition of IRS reduced malaria parasite prevalence (RR 0.61, 95% CI 0.42 to 0.88; 4 cRCTs, 16,394 participants; high-certainty evidence). IRS may also reduce malaria incidence on average (rate ratio 0.86, 95% CI 0.61 to 1.23; 4 cRCTs, 323,631 child-years; low-certainty evidence) but the effect was absent in two studies. Subgroup analyses did not explain the qualitative heterogeneity between studies. One cRCT reported no effect on malaria incidence or parasite prevalence in the first year, when a pyrethroid-like insecticide was used for IRS, but showed an effect on both outcomes in the second year, when a non-pyrethroid-like IRS was used. The addition of IRS may also reduce anaemia prevalence (RR 0.71, 95% CI 0.38 to 1.31; 3 cRCTs, 4288 participants; low-certainty evidence). Four cRCTs reported the impact of IRS on entomological inoculation rate (EIR), with variable results; overall, we do not know if IRS had any effect on the EIR in communities using ITNs (very low-certainty evidence). Studies also reported the adult mosquito density and the sporozoite rate, but we could not summarize or pool these entomological outcomes due to differences in the reported data. Three studies measured the prevalence of pyrethroid resistance before and after IRS being introduced: there was no difference detected, but these data are limited. Indoor residual spraying using 'pyrethroid-like' insecticides Adding IRS using a pyrethroid-like insecticide did not appear to markedly alter malaria incidence (rate ratio 1.07, 95% CI 0.80 to 1.43; 2 cRCTs, 15,717 child-years; moderate-certainty evidence), parasite prevalence (RR 1.11, 95% CI 0.86 to 1.44; 3 cRCTs, 10,820 participants; moderate-certainty evidence), or anaemia prevalence (RR 1.12, 95% CI 0.89 to 1.40; 1 cRCT, 4186 participants; low-certainty evidence). Data on EIR were limited so no conclusion was made (very low-certainty evidence). AUTHORS' CONCLUSIONS in communities using ITNs, the addition of IRS with 'non-pyrethroid-like' insecticides was associated with reduced malaria prevalence. Malaria incidence may also be reduced on average, but there was unexplained qualitative heterogeneity, and the effect may therefore not be observed in all settings. When using 'pyrethroid-like' insecticides, there was no detectable additional benefit of IRS in communities using ITNs.
Collapse
Affiliation(s)
- Joseph Pryce
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Nancy Medley
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Leslie Choi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
6
|
Krezanoski PJ, Roh ME, Rek J, Nankabirwa JI, Arinaitwe E, Staedke SG, Nayiga S, Hsiang MS, Smith D, Kamya M, Dorsey G. Marked reduction in antibiotic usage following intensive malaria control in a cohort of Ugandan children. BMC Med 2021; 19:294. [PMID: 34844601 PMCID: PMC8630830 DOI: 10.1186/s12916-021-02167-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/21/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Intensive malaria control may have additional benefits beyond reducing the incidence of symptomatic malaria. We compared antibiotic treatment of children before and after the implementation of highly effective malaria control interventions in Tororo, a historically high transmission area of Uganda. METHODS Two successive cohorts of children, aged 0.5 to 10 years, were followed from September 2011 to October 2019 in a dedicated study clinic. Universal distribution of long-lasting insecticidal nets was conducted in 2013 and 2017. Sustained indoor residual spraying of insecticide (IRS) was initiated in December 2014. Generalized linear mixed-effects models were used to compare the incidence of antimalarial and antibiotic treatments before and after vector control measures were implemented. RESULTS Comparing the period prior to the implementation of IRS to the period after IRS had been sustained for 4-5 years, the adjusted incidence of malaria treatments decreased from 2.68 to 0.05 per person-year (incidence rate ratio [IRR] = 0.02, 95% CI 0.01-0.03, p < 0.001), and the adjusted incidence of antibiotic treatments decreased from 4.14 to 1.26 per person-year (IRR = 0.30, 95% CI 0.27-0.34, p < 0.001). The reduction in antibiotic usage was primarily associated with fewer episodes of symptomatic malaria and fewer episodes of fever with sub-microscopic parasitemia, both of which were frequently treated with antibiotics. CONCLUSIONS In a historically high transmission setting, the implementation of highly effective vector control interventions was followed by a marked reduction in antibiotic treatment of children. This added benefit of malaria control could have important implications for antibiotic prescribing practices, efforts to curtail antimicrobial resistance, and health system costs.
Collapse
Affiliation(s)
- Paul J Krezanoski
- University of California, 1001 Potrero Avenue, San Francisco, CA, 94118, USA.
| | - Michelle E Roh
- University of California, 1001 Potrero Avenue, San Francisco, CA, 94118, USA
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Makerere University College of Health Sciences, Kampala, Uganda
| | | | | | - Susan Nayiga
- Infectious Diseases Research Collaboration, Kampala, Uganda
- London School of Hygiene and Tropical Medicine, London, UK
| | - Michelle S Hsiang
- University of California, 1001 Potrero Avenue, San Francisco, CA, 94118, USA
| | | | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Grant Dorsey
- University of California, 1001 Potrero Avenue, San Francisco, CA, 94118, USA
| |
Collapse
|
7
|
Schneider CG, Taylor JA, Sibilo MQ, Miura K, Mallory KL, Mann C, Karch C, Beck Z, Matyas GR, Long CA, Bergmann-Leitner E, Burkhard P, Angov E. Orientation of Antigen Display on Self-Assembling Protein Nanoparticles Influences Immunogenicity. Vaccines (Basel) 2021; 9:vaccines9020103. [PMID: 33572803 PMCID: PMC7911071 DOI: 10.3390/vaccines9020103] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
Self-assembling protein nanoparticles (SAPN) serve as a repetitive antigen delivery platform with high-density epitope display; however, antigen characteristics such as size and epitope presentation can influence the immunogenicity of the assembled particle and are aspects to consider for a rationally designed effective vaccine. Here, we characterize the folding and immunogenicity of heterogeneous antigen display by integrating (a) dual-stage antigen SAPN presenting the P. falciparum (Pf) merozoite surface protein 1 subunit, PfMSP119, and Pf cell-traversal protein for ookinetes and sporozoites, PfCelTOS, in addition to (b) a homogenous antigen SAPN displaying two copies of PfCelTOS. Mice and rabbits were utilized to evaluate antigen-specific humoral and cellular induction as well as functional antibodies via growth inhibition of the blood-stage parasite. We demonstrate that antigen orientation and folding influence the elicited immune response, and when appropriately designed, SAPN can serve as an adaptable platform for an effective multi-antigen display.
Collapse
Affiliation(s)
- Cosette G. Schneider
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.G.S.); (J.A.T.); (M.Q.S.); (K.L.M.); (C.M.); (E.B.-L.)
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA
| | - Justin A. Taylor
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.G.S.); (J.A.T.); (M.Q.S.); (K.L.M.); (C.M.); (E.B.-L.)
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA
| | - Michael Q. Sibilo
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.G.S.); (J.A.T.); (M.Q.S.); (K.L.M.); (C.M.); (E.B.-L.)
- Parsons Corporation, Centreville, VA 20120, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD 20892, USA; (K.M.); (C.A.L.)
| | - Katherine L. Mallory
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.G.S.); (J.A.T.); (M.Q.S.); (K.L.M.); (C.M.); (E.B.-L.)
- Parsons Corporation, Centreville, VA 20120, USA
| | - Christopher Mann
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.G.S.); (J.A.T.); (M.Q.S.); (K.L.M.); (C.M.); (E.B.-L.)
- Parsons Corporation, Centreville, VA 20120, USA
| | - Christopher Karch
- Laboratory of Antigen and Adjuvants, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.K.); (Z.B.); (G.R.M.)
- Henry Jackson Foundation, Bethesda, MD 20817, USA
| | - Zoltan Beck
- Laboratory of Antigen and Adjuvants, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.K.); (Z.B.); (G.R.M.)
- Henry Jackson Foundation, Bethesda, MD 20817, USA
| | - Gary R. Matyas
- Laboratory of Antigen and Adjuvants, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.K.); (Z.B.); (G.R.M.)
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD 20892, USA; (K.M.); (C.A.L.)
| | - Elke Bergmann-Leitner
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.G.S.); (J.A.T.); (M.Q.S.); (K.L.M.); (C.M.); (E.B.-L.)
| | | | - Evelina Angov
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.G.S.); (J.A.T.); (M.Q.S.); (K.L.M.); (C.M.); (E.B.-L.)
- Correspondence: ; Tel.: +1-301-319-9614
| |
Collapse
|
8
|
Arinaitwe E, Mpimbaza A, Nankabirwa JI, Kamya V, Asiimwe A, Kuule JK, Kamya MR, Drakeley C, Dorsey G, Rosenthal PJ, Staedke SG. Malaria Diagnosed in an Urban Setting Strongly Associated with Recent Overnight Travel: A Case-Control Study from Kampala, Uganda. Am J Trop Med Hyg 2020; 103:1517-1524. [PMID: 32840203 DOI: 10.4269/ajtmh.20-0189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Malaria is frequently diagnosed in urban Kampala, despite low transmission intensity. To evaluate the association between recent travel out of Kampala and malaria, we conducted a matched case-control study. Cases were febrile outpatients with a positive malaria test; controls were febrile outpatients with a negative test. For every two cases, five controls were selected, matching on age. Data were collected on recent overnight travel out of Kampala (past 60 days), destination and duration of travel, and behavioral factors, including sleeping under an insecticide-treated net (ITN) during travel. From July to August 2019, 162 cases and 405 controls were enrolled. The locations of residence of cases and controls were similar. More controls were female (62.7% versus 46.3%, P < 0.001). Overall, 158 (27.9%) participants reported recent overnight travel. Travelers were far more likely to be diagnosed with malaria than those who did not travel (80.4% versus 8.6%, OR 58.9, 95% CI: 23.1-150.1, P < 0.001). Among travelers, traveling to a district not receiving indoor residual spraying of insecticide (OR 35.0, 95% CI: 4.80-254.9, P < 0.001), no ITN use (OR 30.1, 95% CI: 6.37-142.7, P < 0.001), engaging in outdoor activities (OR 22.0, 95% CI: 3.42-141.8, P = 0.001), and age < 16 years (OR 8.36, 95% CI: 2.22-56.2, P = 0.03) were associated with increased odds of malaria. Kampala residents who traveled overnight out of the city were at substantially higher risk of malaria than those who did not travel. For these travelers, personal protection measures, including sleeping under an ITN when traveling, should be advocated.
Collapse
Affiliation(s)
- Emmanuel Arinaitwe
- Infectious Diseases Research Collaboration, Kampala, Uganda.,London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Arthur Mpimbaza
- Child Health and Development Centre, Makerere University College of Health Sciences, Kampala, Uganda.,Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Joaniter I Nankabirwa
- Department of Medicine, Makerere University, Kampala, Uganda.,Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Victor Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Alan Asiimwe
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Julius K Kuule
- Uganda Malaria Research Centre, Ministry of Health, Kampala, Uganda
| | - Moses R Kamya
- Department of Medicine, Makerere University, Kampala, Uganda.,Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, California
| | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, California
| | - Sarah G Staedke
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
9
|
Nankabirwa JI, Arinaitwe E, Rek J, Kilama M, Kizza T, Staedke SG, Rosenthal PJ, Rodriguez-Barraquer I, Briggs J, Greenhouse B, Bousema T, Drakeley C, Roos DS, Tomko SS, Smith DL, Kamya MR, Dorsey G. Malaria Transmission, Infection, and Disease following Sustained Indoor Residual Spraying of Insecticide in Tororo, Uganda. Am J Trop Med Hyg 2020; 103:1525-1533. [PMID: 32700666 DOI: 10.4269/ajtmh.20-0250] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Tororo, a district in Uganda with historically high malaria transmission intensity, has recently scaled up control interventions, including universal long-lasting insecticidal net distribution in 2013 and 2017, and sustained indoor residual spraying (IRS) of insecticide since December 2014. We describe the burden of malaria in Tororo 5 years following the initiation of IRS. We followed a cohort of 531 participants from 80 randomly selected households in Nagongera subcounty, Tororo district, from October 2017 to October 2019. Mosquitoes were collected every 2 weeks using CDC light traps in all rooms where participants slept, symptomatic malaria was identified by passive surveillance, and microscopic and submicroscopic parasitemia were measured every 4 weeks using active surveillance. Over the 2 years of follow-up, 15,780 female anopheline mosquitos were collected, the majority (98.0%) of which were Anopheles arabiensis. The daily human biting rate was 2.07, and the annual entomological inoculation rate was 0.43 infective bites/person/year. Only 38 episodes of malaria were diagnosed (incidence 0.04 episodes/person/year), and there were no cases of severe malaria or malarial deaths. The prevalence of microscopic parasitemia was 1.9%, and the combined prevalence of microscopic and submicroscopic parasitemia was 10.4%, each highest in children aged 5-15 years (3.3% and 14.0%, respectively). After 5 years of intensive vector control measures in Tororo, the burden of malaria was reduced to very low transmission levels. However, a significant proportion of the population remained parasitemic, primarily school-aged children with submicroscopic parasitemia, providing a potential reservoir for malaria transmission.
Collapse
Affiliation(s)
- Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Emmanuel Arinaitwe
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Infectious Diseases Research Collaboration, Kampala, Uganda
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Maxwell Kilama
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Timothy Kizza
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Sarah G Staedke
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Phillip J Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, California
| | | | - Jessica Briggs
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Teun Bousema
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - David S Roos
- On Behalf of ClinEpiDB, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sheena S Tomko
- On Behalf of ClinEpiDB, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David L Smith
- Institute for Health Metrics & Evaluation, University of Washington, Seattle, Washington
| | - Moses R Kamya
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda.,Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
10
|
Mpimbaza A, Sserwanga A, Rutazaana D, Kapisi J, Walemwa R, Suiyanka L, Kyalo D, Kamya M, Opigo J, Snow RW. Changing malaria fever test positivity among paediatric admissions to Tororo district hospital, Uganda 2012-2019. Malar J 2020; 19:416. [PMID: 33213469 PMCID: PMC7678291 DOI: 10.1186/s12936-020-03490-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The World Health Organization (WHO) promotes long-lasting insecticidal nets (LLIN) and indoor residual house-spraying (IRS) for malaria control in endemic countries. However, long-term impact data of vector control interventions is rarely measured empirically. METHODS Surveillance data was collected from paediatric admissions at Tororo district hospital for the period January 2012 to December 2019, during which LLIN and IRS campaigns were implemented in the district. Malaria test positivity rate (TPR) among febrile admissions aged 1 month to 14 years was aggregated at baseline and three intervention periods (first LLIN campaign; Bendiocarb IRS; and Actellic IRS + second LLIN campaign) and compared using before-and-after analysis. Interrupted time-series analysis (ITSA) was used to determine the effect of IRS (Bendiocarb + Actellic) with the second LLIN campaign on monthly TPR compared to the combined baseline and first LLIN campaign periods controlling for age, rainfall, type of malaria test performed. The mean and median ages were examined between intervention intervals and as trend since January 2012. RESULTS Among 28,049 febrile admissions between January 2012 and December 2019, TPR decreased from 60% at baseline (January 2012-October 2013) to 31% during the final period of Actellic IRS and LLIN (June 2016-December 2019). Comparing intervention intervals to the baseline TPR (60.3%), TPR was higher during the first LLIN period (67.3%, difference 7.0%; 95% CI 5.2%, 8.8%, p < 0.001), and lower during the Bendiocarb IRS (43.5%, difference - 16.8%; 95% CI - 18.7%, - 14.9%) and Actellic IRS (31.3%, difference - 29.0%; 95% CI - 30.3%, - 27.6%, p < 0.001) periods. ITSA confirmed a significant decrease in the level and trend of TPR during the IRS (Bendicarb + Actellic) with the second LLIN period compared to the pre-IRS (baseline + first LLIN) period. The age of children with positive test results significantly increased with time from a mean of 24 months at baseline to 39 months during the final IRS and LLIN period. CONCLUSION IRS can have a dramatic impact on hospital paediatric admissions harbouring malaria infection. The sustained expansion of effective vector control leads to an increase in the age of malaria positive febrile paediatric admissions. However, despite large reductions, malaria test-positive admissions continued to be concentrated in children aged under five years. Despite high coverage of IRS and LLIN, these vector control measures failed to interrupt transmission in Tororo district. Using simple, cost-effective hospital surveillance, it is possible to monitor the public health impacts of IRS in combination with LLIN.
Collapse
Affiliation(s)
- Arthur Mpimbaza
- Child Health and Development Centre, Makerere University, College of Health Sciences, Kampala, Uganda.
- Infectious Diseases Research Collaboration, Kampala, Uganda.
| | | | - Damian Rutazaana
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - James Kapisi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Richard Walemwa
- Department of Prevention, Care and Treatment, Infectious Diseases Institute, Kampala, Uganda
| | - Laurissa Suiyanka
- Population Health Unit, Kenya Medical Research Institute/Wellcome Trust Research Programme, Nairobi, Kenya
| | - David Kyalo
- Population Health Unit, Kenya Medical Research Institute/Wellcome Trust Research Programme, Nairobi, Kenya
| | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Jimmy Opigo
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Robert W Snow
- Population Health Unit, Kenya Medical Research Institute/Wellcome Trust Research Programme, Nairobi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Arinaitwe E, Nankabirwa JI, Krezanoski P, Rek J, Kamya V, Epstein A, Rosenthal PJ, Drakeley C, Kamya MR, Dorsey G, Staedke SG. Association between recent overnight travel and use of long-lasting insecticidal nets in rural Uganda: a prospective cohort study in Tororo. Malar J 2020; 19:405. [PMID: 33176793 PMCID: PMC7661187 DOI: 10.1186/s12936-020-03475-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/31/2020] [Indexed: 11/25/2022] Open
Abstract
Background The burden of malaria in Uganda remains high, but has become increasingly heterogenous following intensified malaria control. Travel within Uganda is recognized as a risk factor for malaria, but behaviours associated with travel are not well-understood. To address this knowledge gap, malaria-relevant behaviours of cohort participants were assessed during travel and at home in Uganda. Methods Residents from 80 randomly selected households in Nagongera sub-county, Tororo district were enrolled into a cohort to study malaria in rural Uganda. All participants were given long-lasting insecticidal nets (LLINs) at enrolment and were evaluated every 4 weeks at the study clinic. Participants were asked if they had travelled overnight from their home, and if so, a questionnaire was administered to capture information on travel details and behaviours. Behaviour while travelling was assessed within 4 weeks following travel during the study clinic visit. Behaviour while at home was assessed using a similar questionnaire during two-weekly home visits. Behaviours while travelling vs at home were compared using log binomial regression models with generalized estimating equations adjusting for repeated measures in the same individual. Analysis of factors associated with LLIN adherence, such as destination and duration of travel, time to bed during travel, gender and age at time of travel, were assessed using log binomial regression models with generalized estimating equations adjusting for repeated measures in the same individual. Results Between October 2017 and October 2019, 527 participants were enrolled and assessed for travel. Of these, 123 (23.2%) reported taking 211 overnight trips; 149 (70.6%) trips were within Tororo. Participants were less likely to use LLINs when travelling than when at home (41.0% vs. 56.2%, relative risk [RR] 0.73, 95% CI 0.60–0.89, p = 0.002); this difference was noted for women (38.8% vs 59.2%, RR 0.66, 95% CI 0.52–0.83, p = 0.001) but not men (48.3% vs 46.6%, RR 0.96, 95% CI 0.67–1.40, p = 0.85). In an adjusted analysis, factors associated with LLIN use when travelling included destination (travelling to districts not receiving indoor residual spraying [IRS] 65.8% vs Tororo district 32.2%, RR 1.80, 95% CI 1.31–2.46, p < 0.001) and duration of travel (> 7 nights 60.3% vs one night 24.4%, RR 1.97, 95% CI 1.07–3.64, p = 0.03). Conclusions Travellers, particularly women, were less likely to use LLINs when travelling than when at home. LLIN adherence was higher among those who travelled to non-IRS districts and for more than 1 week, suggesting that perceived malaria risk influences LLIN use. Strategies are needed to raise awareness of the importance of using LLINs while travelling.
Collapse
Affiliation(s)
- Emmanuel Arinaitwe
- London School of Hygiene and Tropical Medicine, London, UK. .,Infectious Diseases Research Collaboration, Kampala, Uganda.
| | - Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Medicine, Makerere University, Kampala, Uganda
| | - Paul Krezanoski
- Department of Medicine, University of California, San Francisco, CA, USA
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Victor Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Adrienne Epstein
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, London, UK
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Medicine, Makerere University, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, CA, USA
| | | |
Collapse
|
12
|
Mpimbaza A, Walemwa R, Kapisi J, Sserwanga A, Namuganga JF, Kisambira Y, Tagoola A, Nanteza JF, Rutazaana D, Staedke SG, Dorsey G, Opigo J, Kamau A, Snow RW. The age-specific incidence of hospitalized paediatric malaria in Uganda. BMC Infect Dis 2020; 20:503. [PMID: 32660434 PMCID: PMC7359223 DOI: 10.1186/s12879-020-05215-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Understanding the relationship between malaria infection risk and disease outcomes represents a fundamental component of morbidity and mortality burden estimations. Contemporary data on severe malaria risks among populations of different parasite exposures are scarce. Using surveillance data, we compared rates of paediatric malaria hospitalisation in areas of varying parasite exposure levels. METHODS Surveillance data at five public hospitals; Jinja, Mubende, Kabale, Tororo, and Apac were assembled among admissions aged 1 month to 14 years between 2017 and 2018. The address of each admission was used to define a local catchment population where national census data was used to define person-year-exposure to risk. Within each catchment, historical infection prevalence was assembled from previously published data and current infection prevalence defined using 33 population-based school surveys among 3400 children. Poisson regression was used to compute the overall and site-specific incidences with 95% confidence intervals. RESULTS Both current and historical Plasmodium falciparum prevalence varied across the five sites. Current prevalence ranged from < 1% in Kabale to 54% in Apac. Overall, the malaria admission incidence rate (IR) was 7.3 per 1000 person years among children aged 1 month to 14 years of age (95% CI: 7.0, 7.7). The lowest rate was described at Kabale (IR = 0.3; 95 CI: 0.1, 0.6) and highest at Apac (IR = 20.3; 95 CI: 18.9, 21.8). There was a correlation between IR across the five sites and the current parasite prevalence in school children, though findings were not statistically significant. Across all sites, except Kabale, malaria admissions were concentrated among young children, 74% were under 5 years. The median age of malaria admissions at Kabale hospital was 40 months (IQR 20, 72), and at Apac hospital was 36 months (IQR 18, 69). Overall, severe anaemia (7.6%) was the most common presentation and unconsciousness (1.8%) the least common. CONCLUSION Malaria hospitalisation rates remain high in Uganda particularly among young children. The incidence of hospitalized malaria in different locations in Uganda appears to be influenced by past parasite exposure, immune acquisition, and current risks of infection. Interruption of transmission through vector control could influence age-specific severe malaria risk.
Collapse
Affiliation(s)
- Arthur Mpimbaza
- Child Health and Development Centre, College of Health Sciences, Makerere University, Kampala, Uganda.
- Infectious Diseases Research Collaboration, Kampala, Uganda.
| | - Richard Walemwa
- Department of Prevention, Care and Treatment, Infectious Diseases Institute, Kampala, Uganda
| | - James Kapisi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | | | - Abner Tagoola
- Jinja Regional Referral, Hospital, Republic of Uganda Ministry of Health, Jinja, Uganda
| | - Jane Frances Nanteza
- Mubende Regional Referral, Hospital, Republic of Uganda Ministry of Health, Mubende, Uganda
| | - Damain Rutazaana
- National Malaria Control Program, Ministry of Health Uganda, Kampala, Uganda
| | | | - Grant Dorsey
- Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, USA
| | - Jimmy Opigo
- National Malaria Control Program, Ministry of Health Uganda, Kampala, Uganda
| | - Alice Kamau
- Population Health Unit, Kenya Medical Research Institute/Wellcome Trust Research Programme, Nairobi, Kenya
| | - Robert W Snow
- Population Health Unit, Kenya Medical Research Institute/Wellcome Trust Research Programme, Nairobi, Kenya
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| |
Collapse
|