1
|
Berman HL, Goltsman DSA, Anderson M, Relman DA, Callahan BJ. Gardnerella diversity and ecology in pregnancy and preterm birth. mSystems 2024; 9:e0133923. [PMID: 38752784 PMCID: PMC11338264 DOI: 10.1128/msystems.01339-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/08/2024] [Indexed: 06/19/2024] Open
Abstract
The vaginal microbiome has been linked to negative health outcomes including preterm birth. Specific taxa, including Gardnerella spp., have been identified as risk factors for these conditions. Historically, microbiome analysis methods have treated all Gardnerella spp. as one species, but the broad diversity of Gardnerella has become more apparent. We explore the diversity of Gardnerella clades and genomic species in the vaginal microbiome of pregnant women and their associations with microbiome composition and preterm birth. Relative abundance of Gardnerella clades and genomic species and other taxa was quantified in shotgun metagenomic sequencing data from three distinct cohorts of pregnant women. We also assessed the diversity and abundance of Gardnerella variants in 16S rRNA gene amplicon sequencing data from seven previously conducted studies in differing populations. Individual microbiomes often contained multiple Gardnerella variants, and the number of clades was associated with increased microbial load, or the ratio of non-human reads to human reads. Taxon co-occurrence patterns were largely consistent across Gardnerella clades and among cohorts. Some variants previously described as rare were prevalent in other cohorts, highlighting the importance of surveying a diverse set of populations to fully capture the diversity of Gardnerella. The diversity of Gardnerella both across populations and within individual vaginal microbiomes has long been unappreciated, as has been the intra-species diversity of many other members of the vaginal microbiome. The broad genomic diversity of Gardnerella has led to its reclassification as multiple species; here we demonstrate the diversity of Gardnerella found within and between vaginal microbiomes.IMPORTANCEThe present study shows that single microbiomes can contain all currently known species of Gardnerella and that multiple similar species can exist within the same environment. Furthermore, surveys of demographically distinct populations suggest that some species appear more commonly in certain populations. Further studies in broad and diverse populations will be necessary to fully understand the ecological roles of each Gardnerella sp., how they can co-exist, and their distinct impacts on microbial communities, preterm birth, and other health outcomes.
Collapse
Affiliation(s)
- Hanna L. Berman
- Department of
Population Health and Pathobiology, North Carolina State
University, Raleigh,
North Carolina, USA
| | - Daniela S. Aliaga Goltsman
- Department of
Microbiology and Immunology, Stanford University School of
Medicine, Stanford,
California, USA
- Department of
Medicine, Stanford University School of
Medicine, Stanford,
California, USA
| | - Megan Anderson
- Department of
Population Health and Pathobiology, North Carolina State
University, Raleigh,
North Carolina, USA
| | - David A. Relman
- Department of
Microbiology and Immunology, Stanford University School of
Medicine, Stanford,
California, USA
- Department of
Medicine, Stanford University School of
Medicine, Stanford,
California, USA
- Infectious Diseases
Section, Veterans Affairs Palo Alto Health Care
System, Palo Alto,
California, USA
| | - Benjamin J. Callahan
- Department of
Population Health and Pathobiology, North Carolina State
University, Raleigh,
North Carolina, USA
- Bioinformatics
Research Center, North Carolina State
University, Raleigh,
North Carolina, USA
| |
Collapse
|
2
|
Carter KA, France MT, Rutt L, Bilski L, Martinez-Greiwe S, Regan M, Brotman RM, Ravel J. Sexual transmission of urogenital bacteria: whole metagenome sequencing evidence from a sexual network study. mSphere 2024; 9:e0003024. [PMID: 38358269 PMCID: PMC10964427 DOI: 10.1128/msphere.00030-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 02/16/2024] Open
Abstract
Sexual transmission of the urogenital microbiota may contribute to adverse sexual and reproductive health outcomes. The extent of sexual transmission of the urogenital microbiota is unclear as prior studies largely investigated specific pathogens. We used epidemiologic data and whole metagenome sequencing to characterize urogenital microbiota strain concordance between participants of a sexual network study. Individuals who screened positive for genital Chlamydia trachomatis were enrolled and referred their sexual contacts from the prior 60-180 days. Snowball recruitment of sexual contacts continued for up to four waves. Vaginal swabs and penile urethral swabs were collected for whole metagenome sequencing. We evaluated bacterial strain concordance using inStrain and network analysis. We defined concordance as ≥99.99% average nucleotide identity over ≥50% shared coverage; we defined putative sexual transmission as concordance between sexual contacts with <5 single-nucleotide polymorphisms per megabase. Of 138 participants, 74 (54%) were female; 120 (87%) had genital chlamydia; and 43 (31%) were recruited contacts. We identified 115 strain-concordance events among 54 participants representing 25 bacterial species. Seven events (6%) were between sexual contacts including putative heterosexual transmission of Fannyhessea vaginae, Gardnerella leopoldii, Prevotella amnii, Sneathia sanguinegens, and Sneathia vaginalis (one strain each), and putative sexual transmission of Lactobacillus iners between female contacts. Most concordance events (108, 94%) were between non-contacts, including eight female participants connected through 18 Lactobacillus crispatus and 3 Lactobacillus jensenii concordant strains, and 14 female and 2 male participants densely interconnected through 52 Gardnerella swidsinskii concordance events.IMPORTANCEEpidemiologic evidence consistently indicates bacterial vaginosis (BV) is sexually associated and may be sexually transmitted, though sexual transmission remains subject to debate. This study is not capable of demonstrating BV sexual transmission; however, we do provide strain-level metagenomic evidence that strongly supports heterosexual transmission of BV-associated species. These findings strengthen the evidence base that supports ongoing investigations of concurrent male partner treatment for reducing BV recurrence. Our data suggest that measuring the impact of male partner treatment on F. vaginae, G. leopoldii, P. amnii, S. sanguinegens, and S. vaginalis may provide insight into why a regimen does or does not perform well. We also observed a high degree of strain concordance between non-sexual-contact female participants. We posit that this may reflect limited dispersal capacity of vaginal bacteria coupled with individuals' comembership in regional transmission networks where transmission may occur between parent and child at birth, cohabiting individuals, or sexual contacts.
Collapse
Affiliation(s)
- Kayla A. Carter
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Michael T. France
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lindsay Rutt
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lisa Bilski
- School of Nursing, University of Maryland, Baltimore, Maryland, USA
| | | | - Mary Regan
- School of Nursing, University of Maryland, Baltimore, Maryland, USA
| | - Rebecca M. Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Lanza M, Scuderi SA, Capra AP, Casili G, Filippone A, Campolo M, Cuzzocrea S, Esposito E, Paterniti I. Effect of a combination of pea protein, grape seed extract and lactic acid in an in vivo model of bacterial vaginosis. Sci Rep 2023; 13:2849. [PMID: 36807330 PMCID: PMC9938223 DOI: 10.1038/s41598-023-28957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2023] [Indexed: 02/19/2023] Open
Abstract
Bacterial vaginosis (BV) is a common vaginal dysbiosis characterized by a malodorous discharge and irritation. The imbalance of the vaginal microbiota plays a key role in the development of BV. It has been demonstrated that Gardnerella vaginalis (GV), a facultative anaerobic bacillus, is involved in BV. Due to the rising number of antimicrobial-resistant species, recurrence of BV is becoming more frequent in women; thus, alternative treatments to antibiotics are needed. Natural substances have recently shown a great efficacy for the treatment of vaginal dysbiosis. Thus, this study aimed to investigate the beneficial effect of a product containing pea protein (PP), grape seed extract (GS) and lactic acid (LA) in an in vivo model of Gardnerella vaginalis-induced vaginosis by intravaginal administration of GV suspension (1 × 106 CFU/20 µL saline). Our results demonstrated that the product containing PP, GS and LA significantly reduced GV proliferation. More specifically, it significantly preserved tissue architecture and reduced neutrophil infiltration, inflammatory markers and sialidase activity when used both as a pre- or a post-treatment. Moreover, the product displayed strong bioadhesive properties. Therefore, our data suggested that the product containing PP, GS and LA could be used as alternative preventive or curative treatment for the management of BV.
Collapse
Affiliation(s)
- Marika Lanza
- grid.10438.3e0000 0001 2178 8421Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D ’Alcontres, 31, 98166 Messina, Italy
| | - Sarah Adriana Scuderi
- grid.10438.3e0000 0001 2178 8421Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D ’Alcontres, 31, 98166 Messina, Italy
| | - Anna Paola Capra
- grid.10438.3e0000 0001 2178 8421Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D ’Alcontres, 31, 98166 Messina, Italy
| | - Giovanna Casili
- grid.10438.3e0000 0001 2178 8421Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D ’Alcontres, 31, 98166 Messina, Italy
| | - Alessia Filippone
- grid.10438.3e0000 0001 2178 8421Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D ’Alcontres, 31, 98166 Messina, Italy
| | - Michela Campolo
- grid.10438.3e0000 0001 2178 8421Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D ’Alcontres, 31, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- grid.10438.3e0000 0001 2178 8421Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D ’Alcontres, 31, 98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D 'Alcontres, 31, 98166, Messina, Italy.
| | - Irene Paterniti
- grid.10438.3e0000 0001 2178 8421Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D ’Alcontres, 31, 98166 Messina, Italy
| |
Collapse
|
4
|
Ma X, Wang X, Ye S, Liu J, Yuan H, Wang N. Biofilm and pathogenic factor analysis of Gardnerella vaginalis associated with bacterial vaginosis in Northeast China. Front Microbiol 2022; 13:1033040. [PMID: 36619994 PMCID: PMC9815022 DOI: 10.3389/fmicb.2022.1033040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Gardnerella vaginalis is a major pathogen responsible for bacterial vaginosis (BV). However, the recurrence of infection and the antibiotic resistance of biofilms remain significant challenges for the treatment of BV. In this study, we aimed to analyze the pathogenic factors and drug sensitivity associated with the clinical treatment of BV in Northeast China. Methods Subgroups were identified by clade-specific polymerase chain reaction (PCR). Biofilm formation was measured by crystal violet staining, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The inhibition and eradication of biofilm formation were measured by XTT and broth recovery-based methods. Results Of the 24 samples of G. vaginalis, 11 samples and American Type Culture Collection (ATCC) 14018 formed biofilms; the remainder did not. The positive rates of detection for the sialidase A and vly genes in the 24 G. vaginalis samples were 100% and 79.2%, respectively. Moreover, 21 samples (87.5%) showed resistance to metronidazole and 16 (66.7%) presented with sensitivity towards clindamycin. The biofilm MIC80 (BMIC80) of metronidazole for ATCC14018 was 16 μg/ml while that of clindamycin was 0.125 μg/ml. The minimum biofilm eradication concentration (MBEC) of metronidazole was > 256 μg/ml while that of clindamycin was > 2 μg/ml. Discussion Our results revealed that G. vaginalis is more resistant to metronidazole than clindamycin and neither metronidazole nor clindamycin are able to effectively eradicate vaginal biofilms. Thus, the role of antibiotics and biofilms in BV requires further investigation.
Collapse
Affiliation(s)
- Xiaolu Ma
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiaoxi Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shengna Ye
- Department of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Jinnan Liu
- Department of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Hong Yuan
- Department of Clinical Laboratory Medicine, Dalian Municipal Central Hospital, Dalian, Liaoning, China
| | - Nan Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China,*Correspondence: Nan Wang,
| |
Collapse
|
5
|
Qin H, Xiao B. Research Progress on the Correlation Between Gardnerella Typing and Bacterial Vaginosis. Front Cell Infect Microbiol 2022; 12:858155. [PMID: 35402309 PMCID: PMC8990036 DOI: 10.3389/fcimb.2022.858155] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022] Open
Abstract
Bacterial vaginosis (BV) is the most common infectious disease of the reproductive tract in women of childbearing age. It often manifests as an imbalance in the vaginal microbiome, including a decrease in Lactobacillus and an increase in anaerobic bacteria. While Gardnerella spp. are considered a major cause of BV, they are also detected in the vaginal microbiome of healthy women. G. vaginalis was the only recognized species of Gardnerella until a recent study characterized three new species, G. leopoldii, G. piotii, and G. swidsinskii. This review describes the different types and genetic diversity of Gardnerella, as well as new findings on the correlation between different Gardnerella spp. and BV.
Collapse
|
6
|
Łaniewski P, Herbst-Kralovetz MM. Bacterial vaginosis and health-associated bacteria modulate the immunometabolic landscape in 3D model of human cervix. NPJ Biofilms Microbiomes 2021; 7:88. [PMID: 34903740 PMCID: PMC8669023 DOI: 10.1038/s41522-021-00259-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/11/2021] [Indexed: 12/20/2022] Open
Abstract
Bacterial vaginosis (BV) is an enigmatic polymicrobial condition characterized by a depletion of health-associated Lactobacillus and an overgrowth of anaerobes. Importantly, BV is linked to adverse gynecologic and obstetric outcomes: an increased risk of sexually transmitted infections, preterm birth, and cancer. We hypothesized that members of the cervicovaginal microbiota distinctly contribute to immunometabolic changes in the human cervix, leading to these sequelae. Our 3D epithelial cell model that recapitulates the human cervical epithelium was infected with clinical isolates of cervicovaginal bacteria, alone or as a polymicrobial community. We used Lactobacillus crispatus as a representative health-associated commensal and four common BV-associated species: Gardnerella vaginalis, Prevotella bivia, Atopobium vaginae, and Sneathia amnii. The immunometabolic profiles of these microenvironments were analyzed using multiplex immunoassays and untargeted global metabolomics. A. vaginae and S. amnii exhibited the highest proinflammatory potential through induction of cytokines, iNOS, and oxidative stress-associated compounds. G. vaginalis, P. bivia, and S. amnii distinctly altered physicochemical barrier-related proteins and metabolites (mucins, sialic acid, polyamines), whereas L. crispatus produced an antimicrobial compound, phenyllactic acid. Alterations to the immunometabolic landscape correlate with symptoms and hallmarks of BV and connected BV with adverse women’s health outcomes. Overall, this study demonstrated that 3D cervical epithelial cell colonized with cervicovaginal microbiota faithfully reproduce the immunometabolic microenvironment previously observed in clinical studies and can successfully be used as a robust tool to evaluate host responses to commensal and pathogenic bacteria in the female reproductive tract.
Collapse
Affiliation(s)
- Paweł Łaniewski
- Department of Basic Medical Sciences, College of Medicine - Phoenix, University of Arizona, Phoenix, AZ, 85004, USA
| | - Melissa M Herbst-Kralovetz
- Department of Basic Medical Sciences, College of Medicine - Phoenix, University of Arizona, Phoenix, AZ, 85004, USA. .,Department of Obstetrics and Gynecology, College of Medicine - Phoenix, University of Arizona, Phoenix, AZ, 85004, USA.
| |
Collapse
|
7
|
Wu S, Hu W, Xiao W, Li Y, Huang Y, Zhang X. Metagenomic Next-Generation Sequencing Assists in the Diagnosis of Gardnerella vaginalis in Males with Pleural Effusion and Lung Infection: A Case Report and Literature Review. Infect Drug Resist 2021; 14:5253-5259. [PMID: 34908857 PMCID: PMC8665863 DOI: 10.2147/idr.s337248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/25/2021] [Indexed: 01/16/2023] Open
Abstract
Gardnerella vaginalis is a pathogen responsible for bacterial vaginosis, which is commonly found in female vaginas and rarely causes infections outside the female genitalia. Here, we report the use of metagenomic next-generation sequencing (mNGS) to detect and confirm pulmonary infection and pleural effusion caused by G. vaginalis in a 47-year-old man. The patient's symptoms and imaging improved after 2 weeks of oral ornidazole, and he was cured after 3 months. Overall, the findings of this case demonstrate that mNGS is a useful tool for diagnosis of unexplained lung infections and pleural effusions. Its effectiveness in rapid and accurate etiological diagnosis and monitoring of diseases can allow detection of the etiology of difficult cases that return negative results after traditional cultures.
Collapse
Affiliation(s)
- Simin Wu
- Department of Respiratory Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, 434000, Hubei, People’s Republic of China
| | - Weihua Hu
- Department of Respiratory Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, 434000, Hubei, People’s Republic of China
| | - Wei Xiao
- Department of Respiratory Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, 434000, Hubei, People’s Republic of China
| | - Yongxia Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, People’s Republic of China
| | - Yan Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, 434000, Hubei, People’s Republic of China
| | - Xu Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, 434000, Hubei, People’s Republic of China
| |
Collapse
|
8
|
Abstract
Up to 50% of women receiving first-line antibiotics for bacterial vaginosis (BV) experience recurrence within 12 weeks. Evidence suggests that reinfection from an untreated regular sexual partner contributes to recurrence. We conducted a pilot study of 34 heterosexual couples to describe the impact of concurrent partner treatment on the composition of the genital microbiota over a 12-week period. We also determined the acceptability and tolerability of concurrent partner treatment and obtained preliminary estimates of the efficacy of the intervention to inform a randomized controlled trial (RCT). Women received first-line antibiotic treatment for BV (i.e., oral metronidazole or intravaginal clindamycin), and their male partner received oral metronidazole, 400 mg, and 2% clindamycin cream applied topically to penile skin, both twice daily for 7 days. The genital microbiota was characterized at three anatomical sites (women, vaginal; men, cutaneous penile and first-pass urine [representing the urethra]) using 16S rRNA gene sequencing. Immediately posttreatment, concurrent partner treatment significantly reduced the abundance of BV-associated bacteria (false-discovery rate [FDR] corrected P value < 0.05) and altered the overall microbiota composition of all three anatomical sites (P = 0.001). Suppression of BV-associated bacteria was sustained in the majority (81%) of women over the 12-week period (FDR P value < 0.05), despite BV-associated bacteria reemerging at both genital sites in men. In this cohort of women at high risk for recurrence, five recurred within 12 weeks of treatment (17%; 95% confidence interval [CI], 6 to 34%). Importantly, men tolerated and adhered to combination therapy. Our findings provide support for an RCT of combined oral and topical male partner treatment for BV. IMPORTANCE Recurrence of BV following standard treatment is unacceptably high. Posttreatment recurrence is distressing for women, and it imposes a considerable burden on the health care system. Recurrences result in multiple presentations to clinical services and repeated antibiotic use, and the associated obstetric and gynecological sequelae are significant. New treatments to improve long-term BV cure are urgently needed. Here, we used 16S rRNA gene sequencing to investigate changes in the microbiota composition at three genital sites (vagina, penile skin, and male urethra) of heterosexual couples undergoing concurrent partner treatment for bacterial vaginosis (BV). We found that concurrent partner treatment immediately and significantly altered the composition of the genital microbiota of both partners, with a reduction in BV-associated bacteria seen at all three sites. BV cure at 12 weeks posttreatment was higher than expected. These microbiological data provide evidence for continued investigation of partner treatment as a strategy to improve BV cure.
Collapse
|
9
|
Vodstrcil LA, Muzny CA, Plummer EL, Sobel JD, Bradshaw CS. Bacterial vaginosis: drivers of recurrence and challenges and opportunities in partner treatment. BMC Med 2021; 19:194. [PMID: 34470644 PMCID: PMC8411528 DOI: 10.1186/s12916-021-02077-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/28/2021] [Indexed: 12/16/2022] Open
Abstract
Bacterial vaginosis (BV) is the most common vaginal dysbiosis to affect women globally, yet an unacceptably high proportion of women experience BV recurrence within 6 months of recommended antibiotic therapy. The low rate of sustained cure highlights our limited understanding of the pathogenesis of BV recurrence, which has been attributed to possible persistence and re-emergence of BV-associated bacteria (BVAB) or a BV-associated biofilm following antimicrobials and/or reinfection occurring from sexual partners.There is a robust body of evidence to support the exchange of bacteria between partners during sexual activity, and while the hypothesis that women treated for BV are subsequently reinfected with BVAB following sex with an untreated sexual partner is not new, failure of past partner treatment trials has eroded confidence in this concept. If reinfection is a key driver of recurrence, current antimicrobial regimens directed to women alone are unlikely to achieve a high level of sustained cure, and the approach of partner treatment to reduce reinfection is justified. In this manuscript, we present the molecular and epidemiological evidence that underlies the hypothesis that BV is sexually transmitted, and summarise why research that continues to consider sexual partnerships is necessary. We also outline the significant barriers and challenges that we have identified while undertaking partner treatment studies, and we discuss the factors that impact on our ability to determine their effectiveness.Ultimately, the pathogenesis of BV recurrence is likely to be multifaceted and not attributable to a single mechanism in all women. If we are to achieve sustained cure for women, it is likely that combined and individualised approaches to eradicate BVAB, support an optimal vaginal microbiome, and prevent reinfection from partners will be required.
Collapse
Affiliation(s)
- Lenka A Vodstrcil
- Central Clinical School - Melbourne Sexual Health Centre, Monash University, 580 Swanston St, Carlton, Victoria, 3053, Australia.
- Melbourne Sexual Health Centre, Alfred Health, Carlton, Victoria, Australia.
- Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia.
| | - Christina A Muzny
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Erica L Plummer
- Central Clinical School - Melbourne Sexual Health Centre, Monash University, 580 Swanston St, Carlton, Victoria, 3053, Australia
- Melbourne Sexual Health Centre, Alfred Health, Carlton, Victoria, Australia
| | - Jack D Sobel
- Division of Infectious Diseases, Wayne State University, Detroit, MI, USA
| | - Catriona S Bradshaw
- Central Clinical School - Melbourne Sexual Health Centre, Monash University, 580 Swanston St, Carlton, Victoria, 3053, Australia
- Melbourne Sexual Health Centre, Alfred Health, Carlton, Victoria, Australia
- Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Turner E, Sobel JD, Akins RA. Prognosis of recurrent bacterial vaginosis based on longitudinal changes in abundance of Lactobacillus and specific species of Gardnerella. PLoS One 2021; 16:e0256445. [PMID: 34424942 PMCID: PMC8382169 DOI: 10.1371/journal.pone.0256445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/07/2021] [Indexed: 02/03/2023] Open
Abstract
Refractory responses to standard-of-care oral metronidazole among recurrent bacterial vaginosis (BV) patients is not rare, and recurrence within a year is common. A better understanding of the bacterial determinants of these outcomes is essential. In this study we ask whether changes in specific species of Gardnerella are associated with poor short or long term clinical outcomes, and if and how resurgence of Lactobacillus species affects these outcomes. We quantify Lactobacillus isolates as a proportion of total vaginal bacteria using the LbRC5 qPCR assay, and 5 prevalent species of Gardnerella using primers that target species-specific polymorphisms within the cpn60 gene. The study includes 43 BV patients: 18 refractory, 16 recurrent, and 11 remission patients, sampled daily for up to two weeks post-treatment; clinical outcomes were tracked for up to 9 months. Persistently high titers of Gardnerella Gsp07 were associated with refractory responses, and persistently low abundance of Gardnerella Gsp07 and G. swidsinskii / G. leopoldii were associated with remission. Lactobacillus species abundance rose in 4-14 days after initiation of treatment in most but not all recurrent and remission patients, although increases were more sustained among remission patients. The findings suggest that Gardnerella Gsp07 and G. swidsinskii / G. leopoldii are markers of poor clinical outcome or may directly or indirectly suppress recovery of Lactobacillus species, thereby interfering with clinical recovery. Therapies that target these strains may improve patient outcome.
Collapse
Affiliation(s)
- Essence Turner
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Jack D. Sobel
- Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Robert A. Akins
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|
11
|
Schwebke JR, Lensing SY, Lee J, Muzny CA, Pontius A, Woznicki N, Aguin T, Sobel JD. Treatment of Male Sexual Partners of Women With Bacterial Vaginosis: A Randomized, Double-Blind, Placebo-Controlled Trial. Clin Infect Dis 2021; 73:e672-e679. [PMID: 33383580 DOI: 10.1093/cid/ciaa1903] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND We aimed to determine if treatment of male sexual partners of women with recurrent bacterial vaginosis (BV) with oral metronidazole 2×/day for 7 days (ie, multidose metronidazole) significantly decreased BV recurrence rates in the female. METHODS This was a multicenter, 2-arm, double-blind, placebo-controlled study. Women with recurrent BV and current diagnosis of BV by Amsel and Nugent were enrolled. Multidose metronidazole for 7 days was dispensed to women. Male partners were randomized to placebo versus multidose metronidazole for 7 days and asked to refrain from unprotected sex for 14 days. Female follow-up visits were conducted at day 21 and 8 and 16 weeks. Male follow-up visits occurred at days 14-21. BV cure was defined as 0-2 Amsel criteria and Nugent score 0-6 in the female partner with the primary endpoint at 16 weeks. RESULTS 214 couples were enrolled. In the intent-to-treat population, there was no significant difference between treatment arms for the primary outcome. BV treatment failure occurred in 81% and 80% of women in the metronidazole and placebo arms through the third follow-up visit, respectively (P > .999). However, women whose male partners adhered to study medication were less likely to fail treatment (adjusted relative risk, .85; 95% CI, .73-.99; P = .035). This finding persisted in post hoc comparisons in the metronidazole arm. CONCLUSIONS Overall, this study did not find that male partner treatment with multidose metronidazole significantly reduces BV recurrence in female partners, although women whose partners adhered to multidose metronidazole were less likely to fail treatment. CLINICAL TRIALS REGISTRATION (NCT02209519).
Collapse
Affiliation(s)
- Jane R Schwebke
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shelly Y Lensing
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jeannette Lee
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Christina A Muzny
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Angela Pontius
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nicole Woznicki
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Tina Aguin
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Jack D Sobel
- Division of Infectious Diseases, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
12
|
In silico trio-biomarkers for bacterial vaginosis revealed by species dominance network analysis. Comput Struct Biotechnol J 2021; 19:2979-2989. [PMID: 34136097 PMCID: PMC8170074 DOI: 10.1016/j.csbj.2021.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
BV (bacterial vaginosis) influences 20%–40% of women but its etiology is still poorly understood. An open question about the BV is which of the hundreds of bacteria found in the human vaginal microbiome (HVM) are the major force driving the vaginal microbiota dysbiosis. Here, we recast the question of microbial causality of BV by asking if there are any prevalent ‘signatures’ (network motifs) in the vaginal microbiome networks associated with it? We apply a new framework [species dominance network analysis by Ma & Ellison (2019): Ecological Monographs) to detect critical structures in HVM networks associated with BV risks and etiology. We reanalyzed the 16 s-rRNA gene sequencing datasets of a mixed-cohort of 25 BV patients and healthy women. In these datasets, we detected 15 trio-motifs that occurred exclusively in BV patients. We failed to find any of these 15 trio-motifs in three additional cohorts of 1535 healthy women. Most member-species of the 15 trio motifs are BV-associated anaerobic bacteria (BVAB), Ravel’s community-state type indicators, or the most dominant species; virtually all species interactions in these trios are high-salience skeletons, suggesting that those trios are strongly connected ‘cults’ associated with the occurrence of BV. The presence of the trio motifs unique to BV may act as indicators for its personalized diagnosis and could help elucidate a more mechanistic interpretation of its risks and etiology. We caution that scarcity of large longitudinal datasets of HVM also limited further verifications of our findings, and these findings require further clinical tests to launch their applications.
Collapse
Key Words
- ABV, asymptomatic bacterial vaginosis
- BV (Bacterial vaginosis)
- BV, bacterial vaginosis
- BV-associated anaerobic bacteria (BVAB)
- BVAB, BV-associated anaerobic bacteria
- CPN, core/periphery network
- CST, community state type
- Community dominance
- Core/periphery network (CPN)
- DSR, diversity-stability relationship
- Diversity-stability relationship (DSR)
- HEA, healthy treatment
- HSN, high-salience skeleton network
- HVM, human vaginal microbiome
- High-salience skeleton networks (HSN)
- MAO, most abundant species or OTU
- MDO, most dominant species or OTU
- OTU, operational taxonomic unit
- SBV, symptomatic BV
- SDN, species dominance network
- Species dominance
- Species dominance network (SDN)
Collapse
|
13
|
Abstract
Purpose of Review The purpose of this review is to summarize current evidence for and against the treatment of asymptomatic bacterial vaginosis (BV) in women. Recent Findings Asymptomatic BV is common although its pathogenesis remains incompletely understood. In favor of treating asymptomatic BV is the large body of data supporting that it is sexually transmitted. Along these lines and similar to other STIs, treatment of BV, regardless of symptom status, should be considered to reduce adverse outcomes of infection (i.e. adverse birth outcomes, infertility, post-gynecologic surgery infections, etc.) and prevent further sexual transmission of BV pathogen(s) to sexual partners. One study has found that treatment of women with asymptomatic BV led to a significant reduction in incident chlamydial infections over a 6 month follow-up period, compared to observation-only women. Additionally, some women with asymptomatic BV actually have symptomatic BV but do not recognize these symptoms as an infection. Nevertheless, limitations of the trial regarding treatment of asymptomatic BV as well as the 2020 United States Preventative Task Force recommendation against screening and treatment of asymptomatic BV in pregnant women dampen enthusiasm for recommending treatment in this setting. Summary Treatment of asymptomatic BV remains controversial. Additional studies are needed to further investigate the pathogenesis of BV, which will directly influence advances in its diagnosis, treatment, and prevention.
Collapse
Affiliation(s)
- Christina A Muzny
- Division of Infectious Diseases, University of Alabama at Birmingham; Birmingham, AL, USA
| | - Jane R Schwebke
- Division of Infectious Diseases, University of Alabama at Birmingham; Birmingham, AL, USA
| |
Collapse
|
14
|
Morrill S, Gilbert NM, Lewis AL. Gardnerella vaginalis as a Cause of Bacterial Vaginosis: Appraisal of the Evidence From in vivo Models. Front Cell Infect Microbiol 2020; 10:168. [PMID: 32391287 PMCID: PMC7193744 DOI: 10.3389/fcimb.2020.00168] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Koch's postulates dictate the use of experimental models to illustrate features of human disease and provide evidence for a singular organism as the cause. The underlying cause(s) of bacterial vaginosis (BV) has been debated in the literature for over half a century. In 1955, it was first reported that a bacterium now known as Gardnerella vaginalis may be the cause of a condition (BV) resulting in higher vaginal pH, thin discharge, a fishy odor, and the presence of epithelial cells covered in bacteria. Here we review contemporary and historical studies on BV with a focus on reports of experimental infections in human or animal models using Gardnerella vaginalis. We evaluate experimental evidence for the hypothesis that G. vaginalis is sufficient to trigger clinical features of BV or relevant health complications associated with the condition. Additionally, we evaluate in vivo models of co-infection employing G. vaginalis together with other bacterial species to investigate evidence for the hypothesis that G. vaginalis may encourage colonization or virulence of other potential pathogens. Together, these studies paint a complex picture in which G. vaginalis has both direct and indirect roles in the features, health complications, and co-infections associated with BV. We briefly review the current taxonomic landscape and genetic diversity pertinent to Gardnerella and note the limitations of sequence-based studies using different marker genes and priming sites. Although much more study is needed to refine our understanding of how BV develops and persists within the human host, applications of the experimental aspects of Koch's postulates have provided an important glimpse into some of the causal relationships that may govern this condition in vivo.
Collapse
Affiliation(s)
- Sydney Morrill
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, United States
| | - Nicole M Gilbert
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, United States.,Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Amanda L Lewis
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, United States.,Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
15
|
Fenner A. Gardnerella clade associated with sexual behaviours. Nat Rev Urol 2019; 16:640. [PMID: 31575990 DOI: 10.1038/s41585-019-0247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|