1
|
Bahadori S, Archambault MJ, Sebastiao M, Bourgault S, Giguère D. Convergent Synthesis of a Group B Streptococcus Type III Epitope Toward a Semisynthetic Carbohydrate-Based Vaccine. J Org Chem 2024; 89:13978-13992. [PMID: 39033407 DOI: 10.1021/acs.joc.4c01216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
In this work, we synthesized an hexasaccharide derived from the capsular polysaccharide of group B Streptococcus type III capsular polysaccharide. Our convergent 3 + 3 strategy avoided the use of benzyl protecting groups allowing the installation of an azide anchoring group and providing a high yield for the final deprotection steps. Moreover, the minimal hexasaccharidic epitope was conjugated to CRM197 and BSA via copper-catalyzed azide-alkyne cycloaddition for the preparation of a semisynthetic carbohydrate-based vaccine.
Collapse
Affiliation(s)
- Sam Bahadori
- Département de Chimie, Université Laval, 1045 Av. de la Médecine, Québec City, Quebec G1V 0A6, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, Quebec H2X 3Y7, Canada
| | - Marie-Jeanne Archambault
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, Quebec H2X 3Y7, Canada
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal, Quebec H3C 3P8, Canada
| | - Mathew Sebastiao
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, Quebec H2X 3Y7, Canada
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal, Quebec H3C 3P8, Canada
| | - Steve Bourgault
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, Quebec H2X 3Y7, Canada
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal, Quebec H3C 3P8, Canada
| | - Denis Giguère
- Département de Chimie, Université Laval, 1045 Av. de la Médecine, Québec City, Quebec G1V 0A6, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, Quebec H2X 3Y7, Canada
| |
Collapse
|
2
|
Nonne F, Iacono LD, Bertuzzi S, Unione L, Proietti D, Norais N, Margarit I, Adamo R, Jiménez-Barbero J, Carboni F, Romano MR. A Multidisciplinary Structural Approach to the Identification of the Haemophilus influenzae Type b Capsular Polysaccharide Protective Epitope. ACS CENTRAL SCIENCE 2024; 10:978-987. [PMID: 38799664 PMCID: PMC11117310 DOI: 10.1021/acscentsci.3c01515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 05/29/2024]
Abstract
Glycoconjugate vaccines so far licensed are generally composed of a native or size-reduced capsular polysaccharide conjugated to carrier proteins. Detailed information on the structural requirements necessary for CPS recognition is becoming the key to accelerating the development of next-generation improved glycoconjugate vaccines. Structural glycobiology studies using oligosaccharides (OS) complexed with functional monoclonal antibodies represent a powerful tool for gaining information on CPS immunological determinants at the atomic level. Herein, the minimal structural epitope of Haemophilus influenzae type b (Hib) CPS recognized by a functional human monoclonal antibody (hmAb) is reported. Short and well-defined Hib oligosaccharides originating from the depolymerization of the native CPS have been used to elucidate saccharide-mAb interactions by using a multidisciplinary approach combining surface plasmon resonance (SPR), saturation transfer difference-nanomagnetic resonance (STD-NMR), and X-ray crystallography. Our study demonstrates that the minimal structural epitope of Hib is comprised within two repeating units (RUs) where ribose and ribitol are directly engaged in the hmAb interaction, and the binding pocket fully accommodates two RUs without any additional involvement of a third one. Understanding saccharide antigen structural characteristics can provide the basis for the design of innovative glycoconjugate vaccines based on alternative technologies, such as synthetic or enzymatic approaches.
Collapse
Affiliation(s)
- Francesca Nonne
- GSK
Vaccines Institute for Global Health, 53100 Siena, Italy
| | | | - Sara Bertuzzi
- CIC
bioGUNE, Basque Research
Technology Alliance, BRTA, Bizkaia Technology Park, 48160 Derio, Spain
| | - Luca Unione
- CIC
bioGUNE, Basque Research
Technology Alliance, BRTA, Bizkaia Technology Park, 48160 Derio, Spain
- IKERBASQUE, Basque Foundation for Science and Technology, Euskadi Plaza 5, 48009 Bilbao, Spain
| | | | | | | | | | - Jesús Jiménez-Barbero
- CIC
bioGUNE, Basque Research
Technology Alliance, BRTA, Bizkaia Technology Park, 48160 Derio, Spain
- IKERBASQUE, Basque Foundation for Science and Technology, Euskadi Plaza 5, 48009 Bilbao, Spain
- Department
of Organic & Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain
- Centro de
Investigación Biomédica En Red de Enfermedades Respiratorias, 28029 Madrid, Spain
| | | | | |
Collapse
|
3
|
Rohokale R, Guo Z. Development in the Concept of Bacterial Polysaccharide Repeating Unit-Based Antibacterial Conjugate Vaccines. ACS Infect Dis 2023; 9:178-212. [PMID: 36706246 PMCID: PMC9930202 DOI: 10.1021/acsinfecdis.2c00559] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The surface of cells is coated with a dense layer of glycans, known as the cell glycocalyx. The complex glycans in the glycocalyx are involved in various biological events, such as bacterial pathogenesis, protection of bacteria from environmental stresses, etc. Polysaccharides on the bacterial cell surface are highly conserved and accessible molecules, and thus they are excellent immunological targets. Consequently, bacterial polysaccharides and their repeating units have been extensively studied as antigens for the development of antibacterial vaccines. This Review surveys the recent developments in the synthetic and immunological investigations of bacterial polysaccharide repeating unit-based conjugate vaccines against several human pathogenic bacteria. The major challenges associated with the development of functional carbohydrate-based antibacterial conjugate vaccines are also considered.
Collapse
Affiliation(s)
- Rajendra Rohokale
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States of America
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States of America
| |
Collapse
|
4
|
Del Bino L, Østerlid KE, Wu DY, Nonne F, Romano MR, Codée J, Adamo R. Synthetic Glycans to Improve Current Glycoconjugate Vaccines and Fight Antimicrobial Resistance. Chem Rev 2022; 122:15672-15716. [PMID: 35608633 PMCID: PMC9614730 DOI: 10.1021/acs.chemrev.2c00021] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antimicrobial resistance (AMR) is emerging as the next potential pandemic. Different microorganisms, including the bacteria Acinetobacter baumannii, Clostridioides difficile, Escherichia coli, Enterococcus faecium, Klebsiella pneumoniae, Neisseria gonorrhoeae, Pseudomonas aeruginosa, non-typhoidal Salmonella, and Staphylococcus aureus, and the fungus Candida auris, have been identified by the WHO and CDC as urgent or serious AMR threats. Others, such as group A and B Streptococci, are classified as concerning threats. Glycoconjugate vaccines have been demonstrated to be an efficacious and cost-effective measure to combat infections against Haemophilus influenzae, Neisseria meningitis, Streptococcus pneumoniae, and, more recently, Salmonella typhi. Recent times have seen enormous progress in methodologies for the assembly of complex glycans and glycoconjugates, with developments in synthetic, chemoenzymatic, and glycoengineering methodologies. This review analyzes the advancement of glycoconjugate vaccines based on synthetic carbohydrates to improve existing vaccines and identify novel candidates to combat AMR. Through this literature survey we built an overview of structure-immunogenicity relationships from available data and identify gaps and areas for further research to better exploit the peculiar role of carbohydrates as vaccine targets and create the next generation of synthetic carbohydrate-based vaccines.
Collapse
Affiliation(s)
| | - Kitt Emilie Østerlid
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Dung-Yeh Wu
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | - Jeroen Codée
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
5
|
Kuttel MM. Comparative Molecular Modelling of Capsular Polysaccharide Conformations in Streptococcus suis Serotypes 1, 2, 1/2 and 14 Identifies Common Epitopes for Antibody Binding. Front Mol Biosci 2022; 9:830854. [PMID: 35211512 PMCID: PMC8861514 DOI: 10.3389/fmolb.2022.830854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/18/2022] [Indexed: 11/21/2022] Open
Abstract
Streptococcus suis is an encapsulated, commensal, potentially pathogenic bacterium that infects swine globally and causes sporadic life-threatening zoonotic septicemia and meningitis infections in humans. The capsular polysaccharide is a primary virulence factor for S. suis. As S. suis serotype 2 is the most prevalent serotype globally, the serotype 2 CPS is the primary target of current efforts to develop an effective glycoconjugate veterinary vaccine against S. suis. Possible cross-protection with related serotypes would broaden the coverage of a vaccine. The CPS in serotypes 2 and 1/2 differ at a single residue (Gal versus GalNAc), and both are similar to serotypes 1 and 14: all contain a terminal sialic acid on a side chain. However, despite this similarity, there is complex pattern of cross-protection for these serotypes, with varying estimations of the importance of sialic acid in a protective epitope. Further, a pentasaccharide without the terminal sialic acid has been identified as minimal epitope for serotype 2. Here we use molecular simulation to model the molecule conformations of the CPS in serotypes 2, 1/2, 1 and 14, as well as three vaccine candidate oligosaccharides. The common epitopes we identify assist in rationalizing the apparently contradictory immunological data and provide a basis for rational design of S. suis vaccines in the future.
Collapse
|
6
|
Marzhoseyni Z, Shojaie L, Tabatabaei SA, Movahedpour A, Safari M, Esmaeili D, Mahjoubin-Tehran M, Jalili A, Morshedi K, Khan H, Okhravi R, Hamblin MR, Mirzaei H. Streptococcal bacterial components in cancer therapy. Cancer Gene Ther 2022; 29:141-155. [PMID: 33753868 DOI: 10.1038/s41417-021-00308-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 02/01/2023]
Abstract
The incidence rate of cancer is steadily increasing all around the world, and there is an urgent need to develop novel and more effective treatment strategies. Recently, bacterial therapy has been investigated as a new approach to target cancer, and is becoming a serious option. Streptococcus strains are among the most common and well-studied virulent bacteria that cause a variety of human infections. Everyone has experienced a sore throat during their lifetime, or has been asymptomatically colonized by streptococci. The ability of Streptococcus bacteria to fight cancer was discovered more than 100 years ago, and over the years has undergone clinical trials, but the mechanism is not yet completely understood. Recently, several animal models and human clinical trials have been reported. Streptococcal strains can have an intrinsic anti-tumor activity, or can activate the host immune system to fight the tumor. Bacteria can selectively accumulate and proliferate in the hypoxic regions of solid tumors. Moreover, the bacteria can be genetically engineered to secrete toxins or enzymes that can specifically attack the tumors.
Collapse
Affiliation(s)
- Zeynab Marzhoseyni
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Layla Shojaie
- Research Center for Liver Diseases, Keck School of Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Seyed Alireza Tabatabaei
- Department of Internal Medicine, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmood Safari
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Davoud Esmaeili
- Department of Microbiology and Applied Microbiology Research Center, Systems Biology and Poisonings Institute and Department of Microbiology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Jalili
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Korosh Morshedi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Ranaa Okhravi
- Department of Medical Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
7
|
Pietri GP, Tontini M, Brogioni B, Oldrini D, Robakiewicz S, Henriques P, Calloni I, Abramova V, Santini L, Malić S, Miklić K, Lisnic B, Bertuzzi S, Unione L, Balducci E, de Ruyck J, Romano MR, Jimenez-Barbero J, Bouckaert J, Jonjic S, Rovis TL, Adamo R. Elucidating the Structural and Minimal Protective Epitope of the Serogroup X Meningococcal Capsular Polysaccharide. Front Mol Biosci 2021; 8:745360. [PMID: 34722634 PMCID: PMC8551719 DOI: 10.3389/fmolb.2021.745360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Despite the considerable progress toward the eradication of meningococcal disease with the introduction of glycoconjugate vaccines, previously unremarkable serogroup X has emerged in recent years, recording several outbreaks throughout the African continent. Different serogroup X polysaccharide-based vaccines have been tested in preclinical trials, establishing the principles for further improvement. To elucidate the antigenic determinants of the MenX capsular polysaccharide, we generated a monoclonal antibody, and its bactericidal nature was confirmed using the rabbit serum bactericidal assay. The antibody was tested by the inhibition enzyme-linked immunosorbent assay and surface plasmon resonance against a set of oligosaccharide fragments of different lengths. The epitope was shown to be contained within five to six α-(1–4) phosphodiester mannosamine repeating units. The molecular interactions between the protective monoclonal antibody and the MenX capsular polysaccharide fragment were further detailed at the atomic level by saturation transfer difference nuclear magnetic resonance (NMR) spectroscopy. The NMR results were used for validation of the in silico docking analysis between the X-ray crystal structure of the antibody (Fab fragment) and the modeled hexamer oligosaccharide. The antibody recognizes the MenX fragment by binding all six repeating units of the oligosaccharide via hydrogen bonding, salt bridges, and hydrophobic interactions. In vivo studies demonstrated that conjugates containing five to six repeating units can produce high functional antibody levels. These results provide an insight into the molecular basis of MenX vaccine-induced protection and highlight the requirements for the epitope-based vaccine design.
Collapse
Affiliation(s)
- Gian Pietro Pietri
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | | | | | - Stefania Robakiewicz
- Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Villeneuve D'Ascq, France
| | | | - Ilaria Calloni
- Chemical Glycobiology Lab CIC BioGUNE Technology Park, Derio, Spain
| | - Vera Abramova
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | - Suzana Malić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Karmela Miklić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Sara Bertuzzi
- Chemical Glycobiology Lab CIC BioGUNE Technology Park, Derio, Spain
| | - Luca Unione
- Chemical Glycobiology Lab CIC BioGUNE Technology Park, Derio, Spain
| | | | - Jérôme de Ruyck
- Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Villeneuve D'Ascq, France
| | | | - Jesus Jimenez-Barbero
- Chemical Glycobiology Lab CIC BioGUNE Technology Park, Derio, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Department of Organic Chemistry II, University of the Basque Country, Universidad Del País Vasco/Euskal Herriko Unibertsitatea, Leioa, Spain
| | - Julie Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Villeneuve D'Ascq, France
| | - Stipan Jonjic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Tihana Lenac Rovis
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | |
Collapse
|
8
|
Brokaw A, Furuta A, Dacanay M, Rajagopal L, Adams Waldorf KM. Bacterial and Host Determinants of Group B Streptococcal Vaginal Colonization and Ascending Infection in Pregnancy. Front Cell Infect Microbiol 2021; 11:720789. [PMID: 34540718 PMCID: PMC8446444 DOI: 10.3389/fcimb.2021.720789] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Group B streptococcus (GBS) is a gram-positive bacteria that asymptomatically colonizes the vaginal tract. However, during pregnancy maternal GBS colonization greatly predisposes the mother and baby to a wide range of adverse outcomes, including preterm birth (PTB), stillbirth, and neonatal infection. Although many mechanisms involved in GBS pathogenesis are partially elucidated, there is currently no approved GBS vaccine. The development of a safe and effective vaccine that can be administered during or prior to pregnancy remains a principal objective in the field, because current antibiotic-based therapeutic strategies do not eliminate all cases of invasive GBS infections. Herein, we review our understanding of GBS disease pathogenesis at the maternal-fetal interface with a focus on the bacterial virulence factors and host defenses that modulate the outcome of infection. We follow GBS along its path from an asymptomatic colonizer of the vagina to an invasive pathogen at the maternal-fetal interface, noting factors critical for vaginal colonization, ascending infection, and vertical transmission to the fetus. Finally, at each stage of infection we emphasize important host-pathogen interactions, which, if targeted therapeutically, may help to reduce the global burden of GBS.
Collapse
Affiliation(s)
- Alyssa Brokaw
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Anna Furuta
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Matthew Dacanay
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
| | - Lakshmi Rajagopal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Kristina M Adams Waldorf
- Department of Global Health, University of Washington, Seattle, WA, United States.,Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States.,Department of Obstetrics and Gynecology, University of Washington and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Prasanna M, Podsiadla-Bialoskorska M, Mielecki D, Ruffier N, Fateh A, Lambert A, Fanuel M, Camberlein E, Szolajska E, Grandjean C. On the use of adenovirus dodecahedron as a carrier for glycoconjugate vaccines. Glycoconj J 2021; 38:437-446. [PMID: 33852106 DOI: 10.1007/s10719-021-09999-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/28/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
Virus-Like Particles (VLPs) have been used as immunogenic molecules in numerous recombinant vaccines. VLPs can also serve as vaccine platform to exogenous antigens, usually peptides incorporated within the protein sequences which compose the VLPs or conjugated to them. We herein described the conjugation of a synthetic tetrasaccharide mimicking the Streptococcus pneumoniae serotype 14 capsular polysaccharide to recombinant adenoviral type 3 dodecahedron, formed by the self-assembling of twelve penton bases and investigated the induced immune response when administered subcutaneously (s.c.). Whether formulated in the form of a dodecahedron or disassembled, the glycoconjugate induced an anti-protein response after two and three immunizations equivalent to that observed when the native dodecahedron was administered. On the other hand, the glycoconjugate induced a weak anti-IgM response which diminishes after two doses but no IgM-to-IgG switch was observed in mice against the serotype 14 capsular polysaccharide. In definitive, the whole conjugation process preserved both particulate nature and immunogenicity of the adenoviral dodecahedron. Further studies are needed to fully exploit adenoviral dodecahedron potential in terms of plasticity towards sequence engineering and of its capacity to stimulate the immune system via the intranasal route of administration as well as to shift the response to the carbohydrate antigen by playing both with the carbohydrate to protein ratio and the length of the synthetic carbohydrate antigen.
Collapse
Affiliation(s)
- Maruthi Prasanna
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, CNRS, UMR 6286, F-44000, Nantes, France
| | | | - Damian Mielecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warszawa, Poland
| | - Nicolas Ruffier
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, CNRS, UMR 6286, F-44000, Nantes, France.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warszawa, Poland
| | - Amina Fateh
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, CNRS, UMR 6286, F-44000, Nantes, France
| | - Annie Lambert
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, CNRS, UMR 6286, F-44000, Nantes, France
| | - Mathieu Fanuel
- UR BIA, INRAE, F-44316, Nantes, France.,BIBS facility, INRAE, F-44316, Nantes, France
| | - Emilie Camberlein
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, CNRS, UMR 6286, F-44000, Nantes, France
| | - Ewa Szolajska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warszawa, Poland
| | - Cyrille Grandjean
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, CNRS, UMR 6286, F-44000, Nantes, France.
| |
Collapse
|
10
|
Molecular modeling provides insights into the loading of sialic acid-containing antigens onto CRM 197: the role of chain flexibility in conjugation efficiency and glycoconjugate architecture. Glycoconj J 2021; 38:411-419. [PMID: 33721150 PMCID: PMC7957279 DOI: 10.1007/s10719-021-09991-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/26/2021] [Accepted: 03/10/2021] [Indexed: 11/21/2022]
Abstract
Vaccination is the most cost-effective way to control disease caused by encapsulated bacteria; the capsular polysaccharide (CPS) is the primary virulence factor and vaccine target. Neisseria meningitidis (Nm) serogroups B, C, Y and W all contain sialic acid, a common surface feature of human pathogens. Two protein-based vaccines against serogroup B infection are available for human use while four tetravalent conjugate vaccines including serogroups C, W and Y have been licensed. The tetravalent Menveo® conjugate vaccine is well-defined: a simple monomeric structure of oligosaccharides terminally conjugated to amino groups of the carrier protein CRM197. However, not only is there a surprisingly low limit for antigen chain attachment to CRM197, but different serogroup saccharides have consistently different CRM197 loading, the reasons for which are unclear. Understanding this phenomenon is important for the long-term goal of controlling conjugation to prepare conjugate vaccines of optimal immunogenicity. Here we use molecular modeling to explore whether antigen flexibility can explain the varying antigen loading of the conjugates. Because flexibility is difficult to separate from other structural factors, we focus on sialic-acid containing CPS present in current glycoconjugate vaccines: serogroups NmC, NmW and NmY. Our simulations reveal a correlation between Nm antigen flexibility (NmW > NmC > NmY) and the number of chains attached to CRM197, suggesting that increased flexibility enables accommodation of additional chains on the protein surface. Further, in silico models of the glycoconjugates confirm the relatively large hydrodynamic size of the saccharide chains and indicate steric constraints to further conjugation.
Collapse
|
11
|
Oldrini D, del Bino L, Arda A, Carboni F, Henriques P, Angiolini F, Quintana JI, Calloni I, Romano MR, Berti F, Jimenez‐Barbero J, Margarit I, Adamo R. Structure-Guided Design of a Group B Streptococcus Type III Synthetic Glycan-Conjugate Vaccine. Chemistry 2020; 26:7018-7025. [PMID: 32058627 PMCID: PMC7317837 DOI: 10.1002/chem.202000284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/13/2020] [Indexed: 12/15/2022]
Abstract
Identification of glycan functional epitopes is of paramount importance for rational design of glycoconjugate vaccines. We recently mapped the structural epitope of the capsular polysaccharide from type III Group B Streptococcus (GBSIII), a major cause of invasive disease in newborns, by using a dimer fragment (composed of two pentasaccharide repeating units) obtained by depolymerization complexed with a protective mAb. Although reported data had suggested a highly complex epitope contained in a helical structure composed of more than four repeating units, we showed that such dimer conjugated to a carrier protein with a proper glycosylation degree elicited functional antibodies comparably to the full-length conjugated polysaccharide. Here, starting from the X-ray crystallographic structure of the polysaccharide fragment-mAb complex, we synthesized a hexasaccharide comprising exclusively the relevant positions involved in binding. Combining competitive surface plasmon resonance and saturation transfer difference NMR spectroscopy as well as in-silico modeling, we demonstrated that this synthetic glycan was recognized by the mAb similarly to the dimer. The hexasaccharide conjugated to CRM197 , a mutant of diphtheria toxin, elicited a robust functional immune response that was not inferior to the polysaccharide conjugate, indicating that it may suffice as a vaccine antigen. This is the first evidence of an X-ray crystallography-guided design of a synthetic carbohydrate-based conjugate vaccine.
Collapse
Affiliation(s)
- Davide Oldrini
- Research CenterGlaxoSmithKline PlcVia Fiorentina 153100SienaItaly
| | - Linda del Bino
- Research CenterGlaxoSmithKline PlcVia Fiorentina 153100SienaItaly
| | - Ana Arda
- Chemical Glycobiology Lab, CIC bioGUNEBasque Research Technology Alliance (BRTA)Bizkaia Technology Park48160DerioSpain
| | - Filippo Carboni
- Research CenterGlaxoSmithKline PlcVia Fiorentina 153100SienaItaly
| | - Pedro Henriques
- Research CenterGlaxoSmithKline PlcVia Fiorentina 153100SienaItaly
| | | | - Jon I. Quintana
- Chemical Glycobiology Lab, CIC bioGUNEBasque Research Technology Alliance (BRTA)Bizkaia Technology Park48160DerioSpain
| | - Ilaria Calloni
- Chemical Glycobiology Lab, CIC bioGUNEBasque Research Technology Alliance (BRTA)Bizkaia Technology Park48160DerioSpain
| | - Maria R. Romano
- Research CenterGlaxoSmithKline PlcVia Fiorentina 153100SienaItaly
| | - Francesco Berti
- Research CenterGlaxoSmithKline PlcVia Fiorentina 153100SienaItaly
| | - Jesus Jimenez‐Barbero
- Chemical Glycobiology Lab, CIC bioGUNEBasque Research Technology Alliance (BRTA)Bizkaia Technology Park48160DerioSpain
- IkerbasqueBasque Foundation for Science48013BilbaoBizkaiaSpain
- Department Organic Chemistry IIUniversity of the Basque Country UPV/EHU48940LeioaBizkaiaSpain
| | | | - Roberto Adamo
- Research CenterGlaxoSmithKline PlcVia Fiorentina 153100SienaItaly
| |
Collapse
|