1
|
Chen R, Tsai J, Thompson PA, Chen Y, Xiong P, Liu C, Burrows F, Sivina M, Burger JA, Keating MJ, Wierda WG, Plunkett W. The multi-kinase inhibitor TG02 induces apoptosis and blocks B-cell receptor signaling in chronic lymphocytic leukemia through dual mechanisms of action. Blood Cancer J 2021; 11:57. [PMID: 33714981 PMCID: PMC7956145 DOI: 10.1038/s41408-021-00436-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
The constitutive activation of B-cell receptor (BCR) signaling, together with the overexpression of the Bcl-2 family anti-apoptotic proteins, represents two hallmarks of chronic lymphocytic leukemia (CLL) that drive leukemia cell proliferation and sustain their survival. TG02 is a small molecule multi-kinase inhibitor that simultaneously targets both of these facets of CLL pathogenesis. First, its inhibition of cyclin-dependent kinase 9 blocked the activation of RNA polymerase II and transcription. This led to the depletion of Mcl-1 and rapid induction of apoptosis in the primary CLL cells. This mechanism of apoptosis was independent of CLL prognostic factors or prior treatment history, but dependent on the expression of BAX and BAK. Second, TG02, which inhibits the members of the BCR signaling pathway such as Lck and Fyn, blocked BCR-crosslinking-induced activation of NF-κB and Akt, indicating abrogation of BCR signaling. Finally, the combination of TG02 and ibrutinib demonstrated moderate synergy, suggesting a future combination of TG02 with ibrutinib, or use in patients that are refractory to the BCR antagonists. Thus, the dual inhibitory activity on both the CLL survival pathway and BCR signaling identifies TG02 as a unique compound for clinical development in CLL and possibly other B cell malignancies.
Collapse
Affiliation(s)
- Rong Chen
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| | - Jennifer Tsai
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,Department of Emergency Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Philip A Thompson
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Yuling Chen
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Ping Xiong
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Chaomei Liu
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Francis Burrows
- Tragara Pharmaceuticals, Carlsbad, CA, USA.,Kura Oncology, Inc., San Diego, CA, USA
| | - Mariela Sivina
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jan A Burger
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Michael J Keating
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - William G Wierda
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - William Plunkett
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
2
|
Src Family Protein Kinase Controls the Fate of B Cells in Autoimmune Diseases. Inflammation 2020; 44:423-433. [PMID: 33037966 DOI: 10.1007/s10753-020-01355-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/07/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
There are more than 80 kinds of autoimmune diseases known at present, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc), inflammatory bowel disease (IBD), as well as other disorders. Autoimmune diseases have a characteristic of immune responses directly attacking own tissues, leading to systematic inflammation and subsequent tissue damage. B cells play a vital role in the development of autoimmune diseases and differentiate into plasma cells or memory B cells to secrete high-affinity antibody or provide long-lasting function. Drugs targeting B cells show good therapeutic effects for the treatment of autoimmune diseases, such as rituximab (anti-CD20 antibody). Src family protein kinases (SFKs) are believed to play important roles in a variety of cellular functions such as growth, proliferation, and differentiation of B cell via B cell antigen receptor (BCR). Lck/Yes-related novel protein tyrosine kinase (LYN), BLK (B lymphocyte kinase), and Fyn are three different kinds of SFKs mainly expressed in B cells. LYN has a dual role in the BCR signal. On the one hand, positive signals are beneficial to the development and maturation of B cells. On the other hand, LYN can also inhibit excessively activated B cells. BLK is involved in the proliferation, differentiation, and immune tolerance of B lymphocytes, and further affects the function of B cells, which may lead to autoreactive or regulatory cellular responses, increasing the risk of autoimmune diseases. Fyn may affect the development of autoimmune disorders via the differentiation of B cells in the early stage of B cell development. This article reviews the recent advances of SFKs in B lymphocytes in autoimmune diseases.
Collapse
|
3
|
Figueiredo CR, Kalirai H, Sacco JJ, Azevedo RA, Duckworth A, Slupsky JR, Coulson JM, Coupland SE. Loss of BAP1 expression is associated with an immunosuppressive microenvironment in uveal melanoma, with implications for immunotherapy development. J Pathol 2020; 250:420-439. [PMID: 31960425 PMCID: PMC7216965 DOI: 10.1002/path.5384] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/28/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022]
Abstract
Immunotherapy using immune checkpoint inhibitors (ICIs) induces durable responses in many metastatic cancers. Metastatic uveal melanoma (mUM), typically occurring in the liver, is one of the most refractory tumours to ICIs and has dismal outcomes. Monosomy 3 (M3), polysomy 8q, and BAP1 loss in primary uveal melanoma (pUM) are associated with poor prognoses. The presence of tumour-infiltrating lymphocytes (TILs) within pUM and surrounding mUM - and some evidence of clinical responses to adoptive TIL transfer - strongly suggests that UMs are indeed immunogenic despite their low mutational burden. The mechanisms that suppress TILs in pUM and mUM are unknown. We show that BAP1 loss is correlated with upregulation of several genes associated with suppressive immune responses, some of which build an immune suppressive axis, including HLA-DR, CD38, and CD74. Further, single-cell analysis of pUM by mass cytometry confirmed the expression of these and other markers revealing important functions of infiltrating immune cells in UM, most being regulatory CD8+ T lymphocytes and tumour-associated macrophages (TAMs). Transcriptomic analysis of hepatic mUM revealed similar immune profiles to pUM with BAP1 loss, including the expression of IDO1. At the protein level, we observed TAMs and TILs entrapped within peritumoural fibrotic areas surrounding mUM, with increased expression of IDO1, PD-L1, and β-catenin (CTNNB1), suggesting tumour-driven immune exclusion and hence the immunotherapy resistance. These findings aid the understanding of how the immune response is organised in BAP1 - mUM, which will further enable functional validation of detected biomarkers and the development of focused immunotherapeutic approaches. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Carlos R Figueiredo
- Department of Molecular and Clinical Cancer Medicine, ITMUniversity of LiverpoolLiverpoolUK
- Department of the Faculty of Medicine, MediCity Research Laboratory and Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Helen Kalirai
- Department of Molecular and Clinical Cancer Medicine, ITMUniversity of LiverpoolLiverpoolUK
| | - Joseph J Sacco
- Department of Molecular and Clinical Cancer Medicine, ITMUniversity of LiverpoolLiverpoolUK
- Department of Medical OncologyThe Clatterbridge Cancer CentreWirralUK
| | - Ricardo A Azevedo
- Department of Cancer BiologyThe University of Texas–MD Anderson Cancer CenterHoustonTXUSA
| | - Andrew Duckworth
- Department of Molecular and Clinical Cancer Medicine, ITMUniversity of LiverpoolLiverpoolUK
| | - Joseph R Slupsky
- Department of Molecular and Clinical Cancer Medicine, ITMUniversity of LiverpoolLiverpoolUK
| | - Judy M Coulson
- Department of Cellular and Molecular PhysiologyUniversity of LiverpoolLiverpoolUK
| | - Sarah E Coupland
- Department of Molecular and Clinical Cancer Medicine, ITMUniversity of LiverpoolLiverpoolUK
- Liverpool Clinical LaboratoriesRoyal Liverpool University HospitalLiverpoolUK
| |
Collapse
|
4
|
Skrzypczynska KM, Zhu JW, Weiss A. Positive Regulation of Lyn Kinase by CD148 Is Required for B Cell Receptor Signaling in B1 but Not B2 B Cells. Immunity 2016; 45:1232-1244. [PMID: 27889108 DOI: 10.1016/j.immuni.2016.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 08/09/2016] [Accepted: 09/01/2016] [Indexed: 12/31/2022]
Abstract
B1 and B2 B cells differ in their ability to respond to T-cell-independent (TI) antigens. Here we report that the Src-family kinase (SFK) regulator CD148 has a unique and critical role in the initiation of B1 but not B2 cell antigen receptor signaling. CD148 loss-of-function mice were found to have defective B1 B-cell-mediated antibody responses against the T-cell-independent antigens NP-ficoll and Pneumovax 23 and had impaired selection of the B1 B cell receptor (BCR) repertoire. These deficiencies were associated with a decreased ability of B1 B cells to induce BCR signaling downstream of the SFK Lyn. Notably, Lyn appeared to be selectively regulated by CD148 and loss of this SFK resulted in opposite signaling phenotypes in B1 and B2 B cells. These findings reveal that the function and regulation of Lyn during B1 cell BCR signaling is distinct from other B cell subsets.
Collapse
Affiliation(s)
- Katarzyna M Skrzypczynska
- Howard Hughes Medical Institute, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Departments of Medicine and of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143-0795, USA
| | - Jing W Zhu
- Howard Hughes Medical Institute, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Departments of Medicine and of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143-0795, USA
| | - Arthur Weiss
- Howard Hughes Medical Institute, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Departments of Medicine and of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143-0795, USA.
| |
Collapse
|
5
|
LV WEI, DUAN QIANGLIN, WANG LEMIN, GONG ZHU, YANG FAN, SONG YANLI. Expression of B-cell-associated genes in peripheral blood mononuclear cells of patients with symptomatic pulmonary embolism. Mol Med Rep 2014; 11:2299-305. [DOI: 10.3892/mmr.2014.2978] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 10/24/2014] [Indexed: 11/06/2022] Open
|
6
|
Tsantikos E, Gottschalk TA, Maxwell MJ, Hibbs ML. Role of the Lyn tyrosine kinase in the development of autoimmune disease. ACTA ACUST UNITED AC 2014. [DOI: 10.2217/ijr.14.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Packard TA, Cambier JC. B lymphocyte antigen receptor signaling: initiation, amplification, and regulation. F1000PRIME REPORTS 2013; 5:40. [PMID: 24167721 PMCID: PMC3790562 DOI: 10.12703/p5-40] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
B lymphocytes and their differentiated daughters are charged with responding to the myriad pathogens in our environment and production of protective antibodies. A sample of the protective antibody produced by each clone is utilized as a component of the cell's antigen receptor (BCR). Transmembrane signals generated upon antigen binding to this receptor provide the primary directive for the cell's subsequent response. In this report, we discuss recent progress and current controversy regarding B cell receptor signal initiation, transduction and regulation.
Collapse
Affiliation(s)
- Thomas A. Packard
- Integrated Department of Immunology, University of Colorado School of Medicine & National Jewish Health1400 Jackson St, Denver, CO 80206
| | - John C. Cambier
- Integrated Department of Immunology, University of Colorado School of Medicine & National Jewish Health1400 Jackson St, Denver, CO 80206
| |
Collapse
|
8
|
Cambier JC. Autoimmunity risk alleles: hotspots in B cell regulatory signaling pathways. J Clin Invest 2013; 123:1928-31. [PMID: 23619359 DOI: 10.1172/jci69289] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Autoimmunity is the consequence of the combination of genetic predisposition and environmental effects, such as infection, injury, and constitution of the gut microbiome. In this edition of the JCI, Dai et al. describe the use of knockin technology to test the mechanism of action of a polymorphism in the protein tyrosine phosphatase nonreceptor 22 (PTPN22) (LYP) that is associated with susceptibility to multiple autoimmune diseases. The function of this allele, and that of a disproportionate number of autoimmune disease risk alleles, suggests that inhibitory signaling pathways that maintain B lymphocyte immune tolerance may represent an Achilles' heel in the prevention of autoimmunity.
Collapse
Affiliation(s)
- John C Cambier
- Integrated Department of Immunology, University of Colorado School of Medicine and National Jewish Health, Denver, Colorado, USA.
| |
Collapse
|
9
|
Chaimowitz NS, Falanga YT, Ryan JJ, Conrad DH. Fyn kinase is required for optimal humoral responses. PLoS One 2013; 8:e60640. [PMID: 23593269 PMCID: PMC3620480 DOI: 10.1371/journal.pone.0060640] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/01/2013] [Indexed: 11/18/2022] Open
Abstract
The generation of antigen-specific antibodies and the development of immunological memory require collaboration between B and T cells. T cell-secreted IL-4 is important for B cell survival, isotype switch to IgG1 and IgE, affinity maturation, and the development of germinal centers (GC). Fyn, a member of the Src family tyrosine kinase, is widely expressed in many cell types, including lymphocytes. This kinase is known to interact with both the B cell and T cell receptor (BCR and TCR, respectively). While Fyn deletion does not impair the development of immature T cells and B cells, TCR signaling is altered in mature T cells. The current study demonstrates that Fyn deficient (KO) B cells have impaired IL-4 signaling. Fyn KO mice displayed low basal levels of IgG1, IgE and IgG2c, and delayed antigen-specific IgG1 and IgG2b production, with a dramatic decrease in antigen-specific IgG2c following immunization with a T-dependent antigen. Defects in antibody production correlated with significantly reduced numbers of GC B cells, follicular T helper cells (TFH), and splenic plasma cells (PC). Taken together, our data demonstrate that Fyn kinase is required for optimal humoral responses.
Collapse
Affiliation(s)
- Natalia S. Chaimowitz
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Yves T. Falanga
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - John J. Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Daniel H. Conrad
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
10
|
Barua D, Hlavacek WS, Lipniacki T. A computational model for early events in B cell antigen receptor signaling: analysis of the roles of Lyn and Fyn. THE JOURNAL OF IMMUNOLOGY 2012; 189:646-58. [PMID: 22711887 DOI: 10.4049/jimmunol.1102003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BCR signaling regulates the activities and fates of B cells. BCR signaling encompasses two feedback loops emanating from Lyn and Fyn, which are Src family protein tyrosine kinases (SFKs). Positive feedback arises from SFK-mediated trans phosphorylation of BCR and receptor-bound Lyn and Fyn, which increases the kinase activities of Lyn and Fyn. Negative feedback arises from SFK-mediated cis phosphorylation of the transmembrane adapter protein PAG1, which recruits the cytosolic protein tyrosine kinase Csk to the plasma membrane, where it acts to decrease the kinase activities of Lyn and Fyn. To study the effects of the positive and negative feedback loops on the dynamical stability of BCR signaling and the relative contributions of Lyn and Fyn to BCR signaling, we consider in this study a rule-based model for early events in BCR signaling that encompasses membrane-proximal interactions of six proteins, as follows: BCR, Lyn, Fyn, Csk, PAG1, and Syk, a cytosolic protein tyrosine kinase that is activated as a result of SFK-mediated phosphorylation of BCR. The model is consistent with known effects of Lyn and Fyn deletions. We find that BCR signaling can generate a single pulse or oscillations of Syk activation depending on the strength of Ag signal and the relative levels of Lyn and Fyn. We also show that bistability can arise in Lyn- or Csk-deficient cells.
Collapse
Affiliation(s)
- Dipak Barua
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | |
Collapse
|
11
|
Curtiss ML, Hostager BS, Stepniak E, Singh M, Manhica N, Knisz J, Traver G, Rennert PD, Colgan JD, Rothman PB. Fyn binds to and phosphorylates T cell immunoglobulin and mucin domain-1 (Tim-1). Mol Immunol 2011; 48:1424-31. [PMID: 21513984 DOI: 10.1016/j.molimm.2011.03.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 03/25/2011] [Accepted: 03/28/2011] [Indexed: 12/30/2022]
Abstract
The gene encoding T cell immunoglobulin and mucin domain-1 (Tim-1) is linked to atopy and asthma susceptibility in mice and humans. Tim-1 is a transmembrane protein expressed on activated lymphocytes and appears to have a role as a co-stimulatory receptor in T cells. The protein has not been shown to have enzymatic activity but contains a site within its cytoplasmic tail predicted to be a target for tyrosine kinases. Here, we show that Tim-1 can associate with the kinase Fyn, a member of the Src family of tyrosine kinases. This association does not require Fyn's kinase activity and is independent of the phosphorylation of a conserved tyrosine present within the cytoplasmic tail of Tim-1. Fyn is necessary for phosphorylation of this tyrosine in Tim-1 and the phosphorylation of Tim-1 varies with the levels of Fyn present in cells. These data suggest a role for Fyn in the signaling downstream of Tim-1.
Collapse
Affiliation(s)
- Miranda L Curtiss
- Department of Internal Medicine, University of Iowa Carver College of Medicine. 200 Hawkins Drive, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Saunders AE, Johnson P. Modulation of immune cell signalling by the leukocyte common tyrosine phosphatase, CD45. Cell Signal 2010; 22:339-48. [PMID: 19861160 DOI: 10.1016/j.cellsig.2009.10.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 10/18/2009] [Indexed: 01/01/2023]
Abstract
CD45 is a leukocyte specific transmembrane glycoprotein and a receptor-like protein tyrosine phosphatase (PTP). CD45 can be expressed as several alternatively spliced isoforms that differ in the extracellular domain. The isoforms are regulated in a cell type and activation state-dependent manner, yet their function has remained elusive. The Src family kinase members Lck and Lyn are key substrates for CD45 in T and B lymphocytes, respectively. CD45 lowers the threshold of antigen receptor signalling, which impacts T and B cell activation and development. CD45 also regulates antigen triggered Fc receptor signalling in mast cells and Toll-like receptor (TLR) signalling in dendritic cells, thus broadening the role of CD45 to other recognition receptors involved in adaptive and innate immunity. In addition, CD45 can affect immune cell adhesion and migration and can modulate cytokine production and signalling. Here we review what is known about the substrate specificity and regulation of CD45 and summarise its effect on immune cell signalling pathways, from its established role in T and B antigen receptor signalling to its emerging role regulating innate immune cell recognition and cytokine production.
Collapse
Affiliation(s)
- A E Saunders
- Department of Microbiology and Immunology, Life Sciences Institute, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | |
Collapse
|
13
|
Levi M, Shalgi R. The role of Fyn kinase in the release from metaphase in mammalian oocytes. Mol Cell Endocrinol 2010; 314:228-33. [PMID: 19733625 DOI: 10.1016/j.mce.2009.08.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 08/30/2009] [Indexed: 01/06/2023]
Abstract
Meiosis in mammalian oocytes starts during embryonic life and arrests for the first time before birth, at prophase of the first meiotic division. The second meiotic arrest occurs after spindle formation at metaphase of the second meiotic division (MII) in selected oocytes designated for ovulation. The fertilizing spermatozoon induces the release from MII arrest only after the oocyte's spindle assembly checkpoint (SAC) was deactivated. Src family kinases (SFKs) are nine non-receptor protein tyrosine kinases that regulate many key cellular functions. Fyn is an SFK expressed in many cell types, including oocytes. Recent studies, including ours, imply a role for Fyn in exit from meiotic and mitotic metaphases. Other studies demonstrate that SFKs, particularly Fyn, are required for regulation of microtubules polymerization and spindle stabilization. Altogether, Fyn is suggested to play an essential role in signaling events that implicate SAC pathway and hence in regulating the exit from metaphase in oocytes and zygote.
Collapse
Affiliation(s)
- M Levi
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel
| | | |
Collapse
|
14
|
Epstein-Barr virus latent membrane protein 2A preferentially signals through the Src family kinase Lyn. J Virol 2008; 82:8520-8. [PMID: 18579586 DOI: 10.1128/jvi.00843-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Latent membrane protein 2A (LMP2A) is a viral protein expressed during Epstein-Barr virus (EBV) latency in EBV-infected B cells both in cell culture and in vivo. LMP2A has important roles in modulating B-cell receptor signal transduction and provides survival and developmental signals to B cells in vivo. Although Lyn has been shown to be important in mediating LMP2A signaling, it is still unclear if Lyn is used preferentially or if LMP2A associates promiscuously with other Src family kinase (SFK) members. To investigate the role of various SFKs in LMP2A signaling, we crossed LMP2A transgenic mice (TgE) with Lyn(-/-), Fyn(-/-), or Blk(-/-) mice. TgE Lyn(-/-) mice had a larger immunoglobulin M (IgM)-positive B-cell population than TgE mice, suggesting that the absence of Lyn prevents LMP2A from delivering survival and developmental signals to the B cells. Both TgE Fyn(-/-) and TgE Blk(-/-) mice have an IgM-negative population of splenic B cells, similar to the TgE mice. LMP2A was also transiently transfected into the human EBV-negative B-cell line BJAB to determine which SFK members associate with LMP2A. Lyn was detected in LMP2A immunoprecipitates, whereas Fyn was not. Both Lyn and Fyn were able to bind to an LMP2A mutant which contained a sequence shown previously to bind tightly to the SH2 domain of multiple SFK members. From these results, we conclude that LMP2A preferentially associates with and signals through Lyn compared to its association with other SFKs. This preferential association is due in part to the SH2 domain of Lyn associating with LMP2A.
Collapse
|
15
|
Abstract
The type I Fc epsilon receptor (Fc epsilon RI) is one of the better understood members of its class and is central to the immunological activation of mast cells and basophils, the key players in immunoglobulin E (IgE)-dependent immediate hypersensitivity. This review provides background information on several distinct regulatory mechanisms controlling this receptor's stimulus-response coupling network. First, we review the current understanding of this network's operation, and then we focus on the inhibitory regulatory mechanisms. In particular, we discuss the different known cytosolic molecules (e.g. kinases, phosphatases, and adapters) as well as cell membrane proteins involved in negatively regulating the Fc epsilon RI-induced secretory responses. Knowledge of this field is developing at a fast rate, as new proteins endowed with regulatory functions are still being discovered. Our understanding of the complex networks by which these proteins exert regulation is limited. Although the scope of this review does not include addressing several important biochemical and biophysical aspects of the regulatory mechanisms, it does provide general insights into a central field in immunology.
Collapse
Affiliation(s)
- Jakub Abramson
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
16
|
Caballero A, Katkere B, Wen XY, Drake L, Nashar TO, Drake JR. Functional and structural requirements for the internalization of distinct BCR-ligand complexes. Eur J Immunol 2007; 36:3131-45. [PMID: 17125144 DOI: 10.1002/eji.200636447] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Antigen (Ag) binding to the BCR rapidly initiates two important events: a phosphorylation cascade that results in the production of secondary signaling intermediaries and the internalization of Ag-BCR complexes. Previous studies using anti-BCR antibodies (Ab) have suggested that BCR signaling is an essential requirement for BCR endocytosis and have further implicated lipid rafts as essential platforms for both BCR functions. However, published data from our laboratory indicate that lipid rafts and consequently raft-mediated signaling are dispensable for BCR-mediated internalization of Ag-specific BCR. Therefore, we investigated the relationship between BCR signaling and endocytosis by defining the role of early kinase signaling in the BCR-mediated internalization of a model Ag (haptenated protein). The results demonstrate that Src kinases and Syk-mediated BCR signaling are not essential for BCR-mediated Ag internalization. Moreover, by comparing Ag and Ab, it was determined that while both localize to clathrin-coated pits, the internalization of Ab-BCR complexes is more susceptible to inhibition of signaling and highly sensitive to disruption of lipid rafts and the actin cytoskeleton compared to Ag-BCR complexes. Thus, these results demonstrate that the nature of the ligand ultimately determines the functional requirements and relative contribution of lipid rafts and other membrane structures to the internalization of BCR-ligand complexes.
Collapse
Affiliation(s)
- Adriana Caballero
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | | | |
Collapse
|
17
|
Xu Y, Harder KW, Huntington ND, Hibbs ML, Tarlinton DM. Lyn tyrosine kinase: accentuating the positive and the negative. Immunity 2005; 22:9-18. [PMID: 15664155 DOI: 10.1016/j.immuni.2004.12.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 12/29/2004] [Accepted: 12/30/2004] [Indexed: 12/21/2022]
Abstract
Lyn, one of several Src-family tyrosine kinases in immune cells, is noted for its ability to negatively regulate signaling pathways through phosphorylation of inhibitory receptors, enzymes, and adaptors. Somewhat paradoxically, it is also a key mediator in several pathways of B cell activation, such as CD19 and CD180. Whether Lyn functions to promote or inhibit immune cell activation depends on the stimulus and the developmental state, meaning that the consequences of Lyn activity are context dependent. The importance of regulating Lyn activity is exemplified by the pathological conditions that develop in both lyn-/- and lyn gain-of-function mice (lynup/up), including lethal antibody-mediated autoimmune diseases and myeloid neoplasia. Here, we review the outcomes of altered Lyn activity within the framework of B cell development and differentiation and the circumstances that appear to dictate the outcome.
Collapse
Affiliation(s)
- Yuekang Xu
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3050, Australia
| | | | | | | | | |
Collapse
|
18
|
Moon BG, Takaki S, Nishizumi H, Yamamoto T, Takatsu K. Abrogation of autoimmune disease in Lyn-deficient mice by the deletion of IL-5 receptor alpha chain gene. Cell Immunol 2004; 228:110-8. [PMID: 15219462 DOI: 10.1016/j.cellimm.2004.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Accepted: 04/20/2004] [Indexed: 11/18/2022]
Abstract
Lyn, the src-family protein tyrosine kinase, plays a crucial role in the regulation of B cell antigen receptor (BCR)- and IL-5-receptor (IL-5R)-mediated signaling. Lyn-deficient mice have been reported to exhibit an increase in B-1 cell numbers, splenomegaly and accumulation of lymphoblast-like cells in the spleen with age, resulting in hyperimmunoglobulinemia and glomerulonephritis caused by the deposition of autoantibody complexes. To elucidate the role of IL-5 in B-1 cell activation, autoantibody production and autoimmune diseases, Lyn-deficient mice were crossed with IL-5Ralpha chain (IL-5Ralpha)-deficient mice and generated Lyn- and IL-5Ralpha-deficient (DKO) mice. In contrast to Lyn-deficient mice, DKO mice showed significantly reduced splenomegaly and lymphoadenopathy and reduced B-1 cell number in the peritoneal cavity. DKO mice also secreted low levels of IgM and IgG autoantibodies. Biochemical and histological analyses revealed that DKO mice showed milder pathogenesis of autoimmune-like disorders than Lyn-deficient mice. These results suggest involvement of IL-5 in enhanced B-1 cell activation, autoantibody production, and development of autoimmune disease in Lyn-deficient mice.
Collapse
Affiliation(s)
- Byoung-gon Moon
- Division of Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
19
|
Tretter T, Ross AE, Dordai DI, Desiderio S. Mimicry of pre-B cell receptor signaling by activation of the tyrosine kinase Blk. ACTA ACUST UNITED AC 2003; 198:1863-73. [PMID: 14662906 PMCID: PMC2194155 DOI: 10.1084/jem.20030729] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
During B lymphoid ontogeny, assembly of the pre–B cell receptor (BCR) is a principal developmental checkpoint at which several Src-related kinases may play redundant roles. Here the Src-related kinase Blk is shown to effect functions associated with the pre-BCR. B lymphoid expression of an active Blk mutant caused proliferation of B progenitor cells and enhanced responsiveness of these cells to interleukin 7. In mice lacking a functional pre-BCR, active Blk supported maturation beyond the pro–B cell stage, suppressed VH to DJH rearrangement, relieved selection for productive heavy chain rearrangement, and stimulated κ rearrangement. These alterations were accompanied by tyrosine phosphorylation of immunoglobulin β and Syk, as well as changes in gene expression consistent with developmental maturation. Thus, sustained activation of Blk induces responses normally associated with the pre-BCR.
Collapse
Affiliation(s)
- Theresa Tretter
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
20
|
Saijo K, Schmedt C, Su IH, Karasuyama H, Lowell CA, Reth M, Adachi T, Patke A, Santana A, Tarakhovsky A. Essential role of Src-family protein tyrosine kinases in NF-kappaB activation during B cell development. Nat Immunol 2003; 4:274-9. [PMID: 12563261 DOI: 10.1038/ni893] [Citation(s) in RCA: 239] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Accepted: 01/13/2003] [Indexed: 02/02/2023]
Abstract
The nature of signals that govern the development of immunoglobulin heavy chain-dependent B cells is largely unknown. Using mice deficient for the B cell-expressed Src-family protein tyrosine kinases (SFKs) Blk, Fyn and Lyn, we show an essential role of these kinases in pre-B cell receptor (pre-BCR)- mediated NF-kappaB activation and B cell development. This signaling defect is SFK specific, as a deficiency in Syk, which controls pre-B cell development, does not affect NF-kappaB induction. Impaired NF-kappaB induction was overcome by the activation of protein kinase C (PKC)-lambda, thus suggesting the involvement of PKC-lambda in pre-BCR-mediated SFK-dependent activation of NF-kappaB. Our data show the existence of a functionally distinct SFK signaling module responsible for pre-BCR-mediated NF-kappaB activation and B cell development.
Collapse
Affiliation(s)
- Kaoru Saijo
- Laboratory of Lymphocyte Signaling, The Rockefeller University, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
|