1
|
Shen S, Hu M, Peng Y, Zheng Y, Zhang R. Research Progress in pathogenesis of connective tissue disease-associated interstitial lung disease from the perspective of pulmonary cells. Autoimmun Rev 2024; 23:103600. [PMID: 39151642 DOI: 10.1016/j.autrev.2024.103600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/16/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
The lungs are a principal factor in the increased morbidity and mortality observed in patients with Connective Tissue Disease (CTD), frequently presenting as CTD-associated Interstitial Lung Disease (ILD). Currently, there is a lack of comprehensive descriptions of the pulmonary cells implicated in the development of CTD-ILD. This review leverages the Human Lung Cell Atlas (HLCA) and spatial multi-omics atlases to discuss the advancements in research on the pathogenesis of CTD-ILD from a pulmonary cell perspective. This facilitates a more precise localization of disease sites and a more systematic consideration of disease progression, supporting further mechanistic studies and targeted therapies.
Collapse
Affiliation(s)
- Shuyi Shen
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Ming Hu
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Yi Peng
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Yi Zheng
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Rong Zhang
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| |
Collapse
|
2
|
Wei Y, Wang D, Wu J, Zhang J. JAK2 inhibitors improve RA combined with pulmonary fibrosis in rats by downregulating SMAD3 phosphorylation. Int J Rheum Dis 2024; 27:e15164. [PMID: 38706209 DOI: 10.1111/1756-185x.15164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/01/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND JAK inhibitors are well known for the treatment of rheumatoid arthritis (RA), but whether they can be used to treat pulmonary fibrosis, a common extra-articular disease of RA, remains to be clarified. METHODS A jak2 inhibitor, CEP33779 (CEP), was administered to a rat model of RA-associated interstitial lung disease to observe the degree of improvement in both joint swelling and pulmonary fibrosis. HFL1 cells were stimulated with TGF-β1 to observe the expression of p-JAK2. Then, different concentrations of related gene inhibitors (JAK2, TGFβ-R1/2, and p-STAT3) or silencers (STAT3, JAK2) were administered to HFL1 cells, and the expression levels of related proteins were detected to explore the underlying mechanisms of action. RESULTS CEP not only reduced the degree of joint swelling and inflammation in rats but also improved lung function, inhibited the pro-inflammatory factors IL-1β and IL-6, reduced lung inflammation and collagen deposition, and alleviated lung fibrosis. CEP decreased the expression levels of TGFβ-R2, p-SMAD, p-STAT3, and ECM proteins in rat lung tissues. TGF-β1 induced HFL1 cells to highly express p-JAK2, with the most pronounced expression at 48 h. The levels of p-STAT3, p-SMAD3, and ECM-related proteins were significantly reduced after inhibition of either JAK2 or STAT3. CONCLUSION JAK2 inhibitors may be an important and novel immunotherapeutic drug that can improve RA symptoms while also delaying or blocking the development of associated pulmonary fibrotic disease. The mechanism may be related to the downregulation of p-STAT3 protein via inhibition of the JAK2/STAT signaling pathway, which affects the phosphorylation of SMAD3.
Collapse
Affiliation(s)
- Yimei Wei
- Department of Geriatrics, Chongqing Medical University, Chongqing, China
- Department Geriatrics, Chongqing General Hospital, Chongqing, China
| | - Dandan Wang
- Department Geriatrics, Chongqing General Hospital, Chongqing, China
- Department of Pulmonary Department of Respiratory and Critical Care Medicine, Southwest Medical University, Luzhou, China
| | - Juan Wu
- Department Geriatrics, Chongqing General Hospital, Chongqing, China
| | - Jie Zhang
- Department Geriatrics, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
3
|
Iwai T, Ohyama A, Osada A, Nishiyama T, Shimizu M, Miki H, Asashima H, Kondo Y, Tsuboi H, Mizuno S, Takahashi S, Ishigami A, Matsumoto I. Role of inter-alpha-trypsin inhibitor heavy chain 4 and its citrullinated form in experimental arthritis murine models. Clin Exp Immunol 2024; 215:302-312. [PMID: 38190323 PMCID: PMC10876112 DOI: 10.1093/cei/uxae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/12/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
Inter-α-trypsin inhibitor heavy chain 4 (ITIH4) is a major protein in serum and reported to be upregulated at the onset of rheumatoid arthritis (RA). Its citrullinated form, cit-ITIH4, is specifically found in the serum and synovial fluid of patients with RA. However, the detailed function of ITIH4 in arthritis remains unknown. The aim of this study was to clarify the role of ITIH4 and cit-ITIH4 using experimental arthritis models. ITIH4 and cit-ITIH4 expression was examined in steady-state mice and two different arthritis models, and their pathological effects were examined in Itih4-deficient mice. In naïve C57BL/6 (WT) mice, ITIH4 was expressed as mRNA in the liver and the lung and was expressed as protein in serum and hepatocytes. In K/BxN serum transferred arthritis (K/BxN-STA) and collagen-induced arthritis (CIA), ITIH4 and cit-ITIH4 in sera were increased before the onset of arthritis, and cit-ITIH4 was further increased at the peak of arthritis. In Itih4-deficient mice, citrullinated proteins in serum and joints, especially 120 kDa protein, were clearly diminished; however, there was no significant difference in arthritis severity between WT and itih-/- mice either in the K/BxN-STA or CIA model. CIA mice also exhibited pulmonary lesions and itih4-/- mice tended to show enhanced inflammatory cell aggregation compared to WT mice. Neutrophils in the lungs of itih4-/- mice were significantly increased compared to WT mice. In summary, ITIH4 itself did not alter the severity of arthritis but may inhibit autoimmune inflammation via suppression of neutrophil recruitment.
Collapse
Affiliation(s)
- Tamaki Iwai
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ayako Ohyama
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Atsumu Osada
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Taihei Nishiyama
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masaru Shimizu
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Haruka Miki
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiromitsu Asashima
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuya Kondo
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroto Tsuboi
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Seiya Mizuno
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Japan
| | - Isao Matsumoto
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
4
|
Liu H, Yang Y, Zhang J, Li X. Baricitinib improves pulmonary fibrosis in mice with rheumatoid arthritis-associated interstitial lung disease by inhibiting the Jak2/Stat3 signaling pathway. Adv Rheumatol 2023; 63:45. [PMID: 37641106 DOI: 10.1186/s42358-023-00325-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE The study explored improvements in pulmonary inflammation and fibrosis in a bovine type II collagen-induced rheumatoid arthritis-associated interstitial lung disease mouse model after treatment with baricitinib and the possible mechanism of action. METHODS A rheumatoid arthritis-associated interstitial lung disease mouse model was established, siRNA Jak2 and lentiviral vectors were transfected with human embryonic lung fibroblast cells. And the levels of relevant proteins in mouse lung tissue and human embryonic lung fibroblasts were detected by Western blotting. RESULTS The levels of JAK2, p-JAK2, p-STAT3, p-SMAD3, SMA, TGFβR2, FN and COL4 were increased in the lung tissues of model mice (P < 0.5) and decreased after baricitinib intervention (P < 0.05). The expression levels of p-STAT3, p-SMAD3, SMA, TGFβR2, FN and COL4 were reduced after siRNA downregulation of the JAK2 gene (P < 0.01) and increased after lentiviral overexpression of the JAK2 gene (P < 0.01). CONCLUSION Baricitinib alleviated fibrosis in the lung tissue of rheumatoid arthritis-associated interstitial lung disease mice, and the mechanism of action may involve the downregulation of Smad3 expression via inhibition of the Jak2/Stat3 signaling pathway, with consequent inhibition of the profibrotic effect of transforming growth factor-β1.
Collapse
Affiliation(s)
- Hongli Liu
- Department of Geriatrics, Chongqing Medical University, Chongqing, 400010, China
| | - Yan Yang
- Department of Geriatrics, Chongqing Medical University, Chongqing, 400010, China
| | - Jie Zhang
- Department of Geriatrics, Chongqing General Hospital, Chongqing, 400010, China.
| | - Xuelin Li
- Department of Geriatrics, Chongqing General Hospital, Chongqing, 400010, China
| |
Collapse
|
5
|
Qiu Y, Liu C, Shi Y, Hao N, Tan W, Wang F. Integrating bioinformatic resources to identify characteristics of rheumatoid arthritis-related usual interstitial pneumonia. BMC Genomics 2023; 24:450. [PMID: 37563706 PMCID: PMC10413595 DOI: 10.1186/s12864-023-09548-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is often accompanied by a common extra-articular manifestation known as RA-related usual interstitial pneumonia (RA-UIP), which is associated with a poor prognosis. However, the mechanism remains unclear. To identify potential mechanisms, we conducted bioinformatics analysis based on high-throughput sequencing of the Gene Expression Omnibus (GEO) database. RESULTS Weighted gene co-expression network analysis (WGCNA) analysis identified 2 RA-positive related modules and 4 idiopathic pulmonary fibrosis (IPF)-positive related modules. A total of 553 overlapped differentially expressed genes (DEG) were obtained, of which 144 in the above modules were further analyzed. The biological process of "oxidative phosphorylation" was found to be the most relevant with both RA and IPF. Additionally, 498 up-regulated genes in lung tissues of RA-UIP were screened out and enriched by 7 clusters, of which 3 were closely related to immune regulation. The analysis of immune infiltration showed a characteristic distribution of peripheral immune cells in RA-UIP, compared with IPF-UIP in lung tissues. CONCLUSIONS These results describe the complex molecular and functional landscape of RA-UIP, which will help illustrate the molecular pathological mechanism of RA-UIP and identify new biomarkers and therapeutic targets for RA-UIP in the future.
Collapse
Affiliation(s)
- Yulu Qiu
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chang Liu
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yumeng Shi
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Nannan Hao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenfeng Tan
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Fang Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Ba X, Wang H, Huang Y, Yan J, Han L, Lin W, Shen P, Huang Y, Yang S, Qin K, Tu S, Chen Z. Simiao pill attenuates collagen-induced arthritis and bleomycin-induced pulmonary fibrosis in mice by suppressing the JAK2/STAT3 and TGF-β/Smad2/3 signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116274. [PMID: 36841380 DOI: 10.1016/j.jep.2023.116274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/03/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHAMACOLOGICAL RELEVANCE Simiao Pill (SM) as a classic prescription of traditional Chinese medicine treatment of damp-heat arthralgia, the earliest from 'Cheng Fan Bian Du ', written by the Qing Dynasty doctor Zhang Bingcheng. Previous studies have shown that SM has obvious curative effect on rheumatoid arthritis, which provides a basis for the application of SM in rheumatoid arthritis related complications. AIM OF THE STUDY Interstitial lung disease (ILD), as the most severe complication of rheumatoid arthritis (RA), lacks effective clinical treatments and a corresponding animal model. Simiao pill (SM) is a traditional Chinese medicine prescription extensively used as a complementary and alternative treatment for RA. However, the effect and mechanism of SM on RA-ILD have not yet been reported. This study aimed to investigate an appropriate animal model that can simulate RA-ILD, and the efficacy, safety, and mechanism of SM on RA-ILD. METHODS Collagen-induced arthritis (CIA) and bleomycin-induced pulmonary fibrosis model were combined to construct the CIA-BLM model. After the intervention of SM, the protective effects of SM on RA-ILD were determined by detecting the CIA mouse arthritis index (AI), Spleen index, and the extent of pulmonary fibrosis. The joint inflammation and pulmonary fibrosis were detected by immunohistochemistry, H&E staining, safranin- O fast green Sirius red staining, trap staining, and Masson staining. Finally, the mechanism was verified by Western blot and immunohistochemistry. RESULTS Our work showed that SM significantly reduced joint swelling, arthritis index, pulmonary fibrosis score, and spleen index in CIA mice. The pathological examination results indicated Si-Miao Pill suppressed inflammation, pulmonary fibrosis, bone erosion, and cartilage degradation of the ankle joint. Besides, SM up-regulated expressions of E-cadherin, whereas down-regulated expressions of α-SMA. Further studies confirmed that SM regulated JAK2/STAT3 and TGF-β/SMAD2/3. CONCLUSION SM can not only effectively improve joint inflammation by JAK2/STAT3 Pathway but also inhibit pulmonary fibrosis by TGF-β/SMAD2/3. The fibrosis induced by CIA-BLM model was more stable and obvious than that induced by CIA model alone.
Collapse
Affiliation(s)
- Xin Ba
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yao Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - JiaHui Yan
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Han
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - WeiJi Lin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Shen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - SiSi Yang
- Division of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Qin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - ShengHao Tu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Lin X, Chen J, Tao C, Luo L, He J, Wang Q. Osthole regulates N6-methyladenosine-modified TGM2 to inhibit the progression of rheumatoid arthritis and associated interstitial lung disease. MedComm (Beijing) 2023; 4:e219. [PMID: 36845072 PMCID: PMC9945862 DOI: 10.1002/mco2.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease, and RA interstitial lung disease (ILD) is a severe complication of RA. This investigation aims to determine the effect and underlying mechanism of osthole (OS), which could be extracted from Cnidium, Angelica, and Citrus plants and evaluate the role of transglutaminase 2 (TGM2) in RA and RA-ILD. In this work, OS downregulated TGM2 to exert its additive effect with methotrexate and suppress the proliferation, migration, and invasion of RA-fibroblast-like synoviocytes (FLS) by attenuating NF-κB signaling, resulting in the suppression of RA progression. Interestingly, WTAP-mediated N6-methyladenosine modification of TGM2 and Myc-mediated WTAP transcription cooperatively contributed to the formation of a TGM2/Myc/WTAP-positive feedback loop through upregulating NF-κB signaling. Moreover, OS could downregulate the activation of the TGM2/Myc/WTAP-positive feedback circuit. Furthermore, OS restrained the proliferation and polarization of M2 macrophages to inhibit the aggregation of lung interstitial CD11b+ macrophages, and the effectiveness and non-toxicity of OS in suppressing RA and RA-ILD progression were verified in vivo. Finally, bioinformatics analyses validated the importance and the clinical significance of the OS-regulated molecular network. Taken together, our work emphasized OS as an effective drug candidate and TGM2 as a promising target for RA and RA-ILD treatment.
Collapse
Affiliation(s)
- Xian Lin
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenChina
- Institute of Immunology and Inflammatory DiseasesShenzhen Peking University‐The Hong Kong University of Science and Technology Medical Center; Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenChina
| | - Jian Chen
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenChina
- Institute of Immunology and Inflammatory DiseasesShenzhen Peking University‐The Hong Kong University of Science and Technology Medical Center; Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenChina
| | - Cheng Tao
- School of PharmacyGuangdong Medical UniversityDongguanChina
| | - Lianxiang Luo
- The Marine Biomedical Research InstituteGuangdong Medical UniversityZhanjiangChina
- The Marine Biomedical Research Institute of Guangdong ZhanjiangZhanjiangChina
| | - Juan He
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenChina
- Institute of Immunology and Inflammatory DiseasesShenzhen Peking University‐The Hong Kong University of Science and Technology Medical Center; Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenChina
| | - Qingwen Wang
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenChina
- Institute of Immunology and Inflammatory DiseasesShenzhen Peking University‐The Hong Kong University of Science and Technology Medical Center; Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenChina
| |
Collapse
|
8
|
Lilja S, Li X, Smelik M, Lee EJ, Loscalzo J, Marthanda PB, Hu L, Magnusson M, Sysoev O, Zhang H, Zhao Y, Sjöwall C, Gawel D, Wang H, Benson M. Multi-organ single-cell analysis reveals an on/off switch system with potential for personalized treatment of immunological diseases. Cell Rep Med 2023; 4:100956. [PMID: 36858042 PMCID: PMC10040389 DOI: 10.1016/j.xcrm.2023.100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/30/2022] [Accepted: 02/03/2023] [Indexed: 03/03/2023]
Abstract
Prioritization of disease mechanisms, biomarkers, and drug targets in immune-mediated inflammatory diseases (IMIDs) is complicated by altered interactions between thousands of genes. Our multi-organ single-cell RNA sequencing of a mouse IMID model, namely collagen-induced arthritis, shows highly complex and heterogeneous expression changes in all analyzed organs, even though only joints showed signs of inflammation. We organized those into a multi-organ multicellular disease model, which shows predicted molecular interactions within and between organs. That model supports that inflammation is switched on or off by altered balance between pro- and anti-inflammatory upstream regulators (URs) and downstream pathways. Meta-analyses of human IMIDs show a similar, but graded, on/off switch system. This system has the potential to prioritize, diagnose, and treat optimal combinations of URs on the levels of IMIDs, subgroups, and individual patients. That potential is supported by UR analyses in more than 600 sera from patients with systemic lupus erythematosus.
Collapse
Affiliation(s)
- Sandra Lilja
- Department of Pediatrics, Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden; Mavatar, Inc, Vasagatan, 11120 Stockholm, Sweden
| | - Xinxiu Li
- Department of Pediatrics, Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden; Medical Digital Twin Research Group, Division of Ear, Nose and Throat Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Martin Smelik
- Department of Pediatrics, Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden; Medical Digital Twin Research Group, Division of Ear, Nose and Throat Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Eun Jung Lee
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, Ganwong 26460, Korea
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pratheek Bellur Marthanda
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Lang Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Mattias Magnusson
- The National Board of Health and Welfare, Socialstyrelsen, 11259 Stockholm, Sweden
| | - Oleg Sysoev
- Department of Computer and Information Science, Linköping University, 58183 Linköping, Sweden
| | - Huan Zhang
- Department of Pediatrics, Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
| | - Yelin Zhao
- Department of Pediatrics, Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden; Medical Digital Twin Research Group, Division of Ear, Nose and Throat Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Christopher Sjöwall
- Biomedical and Clinical Sciences, Division of Inflammation and Infection/Rheumatology, Linköping University, 58183 Linköping, Sweden
| | - Danuta Gawel
- Mavatar, Inc, Vasagatan, 11120 Stockholm, Sweden
| | - Hui Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Mikael Benson
- Department of Pediatrics, Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden; Medical Digital Twin Research Group, Division of Ear, Nose and Throat Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 17165 Stockholm, Sweden.
| |
Collapse
|
9
|
Activation of angiotensin II type 2 receptor attenuates lung injury of collagen-induced arthritis by alleviating endothelial cell injury and promoting Ly6C lo monocyte transition. Eur J Pharmacol 2023; 941:175466. [PMID: 36528072 DOI: 10.1016/j.ejphar.2022.175466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
As one of the most frequent extra-articular manifestations of rheumatoid arthritis (RA), interstitial lung disease (ILD) is still challenging due to unrevealed pathophysiological mechanism. To address this question, in the present study, we used the classical collagen-induced arthritis (CIA) mouse model to determine the related-immune mechanism of lung injury and possible pharmacological treatment for RA-ILD. At the peak of arthritis, we found CIA mice developed apparent lung injury, characterized by interstitial thickening, inflammatory cell infiltration, and lymphocyte follicle formation. Additionally, the endothelial injury occurred as the number of endothelial cells (ECs) and their CD31 expression decreased. Along with those, monocytes, predominantly Ly6Chi monocytes with pro-inflammatory phenotype, were also increased. While in the remission period of arthritis, ECs gradually increased with retrieved CD31 expression, leading to decreased infiltrating monocytes, but boosted Ly6Clo population. Ly6Clo monocytes were prone to locate around damaged ECs, promoted ECs proliferation and vascular tube formation, and lessened the expression of adhesion molecules. In addition, we evaluated angiotensin II type 2 receptor (Agtr2), which has been demonstrated to be protective against lung injury, could be beneficial in RA-ILD. We found elevated Agtr2 in CIA lung tissue, and activation of Agtr2, within its specific agonist C21, alleviated the pulmonary inflammation in vivo, reduced ECs injury, and promoted monocytes conversion from Ly6Chi to Ly6Clo monocytes in vitro. Our data reveal a potential pathological mechanism of RA-ILD that involves ECs damage and inflammatory monocytes infiltration and provide a potential drug target, Agtr2, for RA-ILD treatment.
Collapse
|
10
|
Lee H, Lee SI, Kim HO. Recent Advances in Basic and Clinical Aspects of Rheumatoid Arthritis-associated Interstitial Lung Diseases. JOURNAL OF RHEUMATIC DISEASES 2022; 29:61-70. [PMID: 37475899 PMCID: PMC10327618 DOI: 10.4078/jrd.2022.29.2.61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 07/22/2023]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease that mainly affects the joints and systemic organs, such as the skin, eyes, heart, gastrointestinal tract, and lungs. In particular, among various pulmonary involvements, interstitial lung disease (ILD) is closely related to the selection of anti-rheumatic drugs and the long-term prognosis of patients with RA. Although the exact pathogenesis of RA-ILD is not well defined, several mechanistic pathways, similar to those of idiopathic pulmonary fibrosis, have been elucidated recently. Conversely, RA-related autoantibodies, including anti-cyclic citrullinated peptide antibody, are detectable in circulation and in the lungs, even in the absence of articular symptoms. RA-ILD can also predate years before the occurrence of joint symptoms. This evidence supports the fact that local dysregulated mucosal immunity in the lung causes systemic autoimmunity, resulting in clinically evident polyarthritis of RA. Because the early diagnosis of RA-ILD is important, imaging tests, such as computed tomography and pulmonary function tests, are being used for early diagnosis, but there is no clear guideline for the early diagnosis of RA-ILD and selection of optimal disease-modifying anti-rheumatic drugs for the treatment of patients with RA with ILD. In addition, the efficacy of nintedanib, a new anti-fibrotic agent, for RA-ILD treatment, has been investigated recently. This review collectively discusses the basic and clinical aspects, such as pathogenesis, animal models, diagnosis, and treatment, of RA-ILD.
Collapse
Affiliation(s)
- Hanna Lee
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Sang-Il Lee
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Hyun-Ok Kim
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Gyeongsang National University School of Medicine, Changwon, Korea
| |
Collapse
|
11
|
Riccardi A, Martinroche G, Contin-Bordes C, Avouac J, Gobeaux C, Cauvet A, Guerini H, Truchetet ME, Allanore Y. Erosive arthritis autoantibodies in systemic sclerosis. Semin Arthritis Rheum 2021; 52:151947. [PMID: 35000789 DOI: 10.1016/j.semarthrit.2021.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/03/2021] [Accepted: 11/22/2021] [Indexed: 01/23/2023]
Abstract
OBJECTIVE We aimed to evaluate in two large SSc French cohorts the prevalence and associated factors with the autoantibodies linked to erosive arthritis. METHODS 448 SSc patients were recruited from May 2015 to January 2019. Standardized clinical and laboratory variables were collected in accordance with the EUSTAR database. ELISAs for IgM rheumatoid factor (RF), IgG anti-citrullinated proteins (ACPA) and IgG anti-carbamylated proteins antibodies (anti-CarP) were all determined in a central laboratory. The prevalence and clinical associations of the different antibodies were investigated. RESULTS RF positivity was observed in 113 patients (25%) compared to 39 (9%) for ACPA and 63 (14%) for anti-CarP antibodies. Through multivariate regression analysis, both RF and ACPA positivity resulted to be associated with RA overlap disease (OR 5.7, 95% CI 2.3-13.8 and OR 44.1, 95% CI 15.4-126.3, respectively). Additionally, ACPA was found to be significantly related to synovitis/ tenosynovitis (OR 1.7, 95% CI 1.0-2.6). RF positivity was associated to a "vascular subset" (i.e. any major vascular complication) (OR 2.1, 95% CI 1.3-3.4). Moreover, anti-CarP antibodies were associated with a fibrotic subset and with digital ulcers (OR 2.0, 95% CI 1.1-3.6 and OR 1.9, 95% CI 1.1-3.4). CONCLUSION We corroborated that ACPA could be useful in identifying patients with a more prominent joint disease and RA overlap disease. Of the most interest we found that anti-CarP antibodies could be a relevant biomarker related to fibrotic skin and lung disease.
Collapse
Affiliation(s)
- Antonella Riccardi
- Department of Precision Medicine, Rheumatology Unit, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Cécile Contin-Bordes
- Immunology Department, CHU Bordeaux Hospital, Bordeaux, France; ImmunoConcEpt, CNRS, UMR 5164, University of Bordeaux, France
| | - Jérôme Avouac
- Department of Rheumatology, Descartes University, APHP, Cochin Hospital, Paris, France
| | - Camille Gobeaux
- Department of Biochemistry, Université de Paris, Cochin Hospital, Paris, France
| | - Anne Cauvet
- INSERM U1016, Institut Cochin, Université de Paris, France
| | - Henri Guerini
- Radiology B department, Cochin Hospital, Université de Paris, France
| | - Marie-Elise Truchetet
- ImmunoConcEpt, CNRS, UMR 5164, University of Bordeaux, France; Department of Rheumatology, Descartes University, APHP, Cochin Hospital, Paris, France; Department of Biochemistry, Université de Paris, Cochin Hospital, Paris, France; INSERM U1016, Institut Cochin, Université de Paris, France; Radiology B department, Cochin Hospital, Université de Paris, France; Rheumatology Department, CHU Bordeaux Hospital, Bordeaux, France
| | - Yannick Allanore
- Department of Rheumatology, Descartes University, APHP, Cochin Hospital, Paris, France; Department of Biochemistry, Université de Paris, Cochin Hospital, Paris, France; INSERM U1016, Institut Cochin, Université de Paris, France; Radiology B department, Cochin Hospital, Université de Paris, France; Rheumatology Department, CHU Bordeaux Hospital, Bordeaux, France.
| |
Collapse
|
12
|
Xiong L, Xiong L, Ye H, Ma WL. Animal models of rheumatoid arthritis-associated interstitial lung disease. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:37-47. [PMID: 33216465 PMCID: PMC7860593 DOI: 10.1002/iid3.377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is an irreversible pathologic condition of unknown cause, commonly involving the joint and the lung with variable amounts of fibrotic change. In contrast to rheumatoid arthritis or other chronic interstitial lung diseases such as interstitial pulmonary fibrosis, there is so far no extensively accepted or implemented animal model for this disease. AIMS To provide guidance for those who are investigating the pathogenesis of RA-ILD with animal models. MATERIALS AND METHODS An analysis of papers from PubMed during 1978-2020. RESULTS We outline the present status quo for animal models of RA-ILD about their modeling methods and pathogenesis, compare their pros and cons with respect to their ability to mimic the clinical and histological features of human disease and discuss their applicability for future research. DISCUSSION There is no doubt that these animal models do provide valuable information relating to the pathogenesis of RA-ILD and the development of effective therapeutic drugs. Nevertheless, these animal models can not entirely recapitulate clinical pathology and have some limitations in experimental research application. Therefore, it should be emphasized that we should improve and explore animal models in more accordance with the pathogenesis and clinical characteristics of human RA-ILD. CONCLUSION These established animal models of the disease can significantly progress our understanding of the etiology of RA-ILD, the fundamental mechanisms of its pathogenesis and the identification of new bio-markers, and can contribute to the development and implementation of novel treatment strategies.
Collapse
Affiliation(s)
- Li Xiong
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Xiong
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Ye
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan, China
| | - Wan-Li Ma
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan, China
| |
Collapse
|