1
|
Guo XJ, Zhu BB, Li J, Guo P, Niu YB, Shi JL, Yokoyama W, Huang QS, Shao DY. Cholesterol metabolism in tumor immunity: Mechanisms and therapeutic opportunities for cancer. Biochem Pharmacol 2025; 234:116802. [PMID: 39954742 DOI: 10.1016/j.bcp.2025.116802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/25/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Cholesterol is an essential component of the cell membrane which plays a critical role in the survival of immune and tumor cells. Reprogramming of cholesterol metabolism in both tumor cells and immune cells can impact tumor progression and anti-tumor immune responses. Strategies aimed at modulating cholesterol metabolism have been demonstrated to be effective in hindering tumor growth and boosting anti-tumor immune functions. This review provides a thorough analysis of intracellular cholesterol homeostasis regulation in cells, focusing on key genes and signaling pathways. It particularly emphasizes the regulatory mechanisms and importance of the cholesterol presence state (esterified/free), levels of cholesterol, and its metabolites in immune and tumor cells. Additionally, the review thoroughly explores how cholesterol metabolism and sources (endogenous/exogenous) in the tumor microenvironment (TME) contribute to the interplay among tumor cells, immune suppressor cells, and immune effector cells, promoting cancer progression and immune evasion. It also delves into current insights on the influence of cholesterol metabolites and related drugs in regulating tumor development or immunotherapy. Finally, it presents an overview of recent advancements in clinical and preclinical trials investigating the efficacy of targeted cholesterol metabolism treatments and combination therapies in cancer management, while proposing potential future research directions in tumor immunity. This review is poised to offer fresh perspectives and avenues for examining the potential of cancer immunotherapy centered on cholesterol metabolism regulation.
Collapse
Affiliation(s)
- Xiao-Jia Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China
| | - Bo-Bo Zhu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China
| | - Jing Li
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710072, PR China
| | - Ping Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China
| | - Yin-Bo Niu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China
| | - Jun-Ling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China
| | - Wallace Yokoyama
- Processed Foods Research Unit, Western Regional Research Center, Agricultural Research Service, USDA, Albany, CA 94710, USA
| | - Qing-Sheng Huang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China.
| | - Dong-Yan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, No. 45th, Gaoxin South 9th Road, Nanshan District, Shenzhen City 518063, PR China.
| |
Collapse
|
2
|
Zheng Y, Xu R, Chen X, Lu Y, Zheng J, Lin Y, Lin P, Zhao X, Cui L. Metabolic gatekeepers: harnessing tumor-derived metabolites to optimize T cell-based immunotherapy efficacy in the tumor microenvironment. Cell Death Dis 2024; 15:775. [PMID: 39461979 PMCID: PMC11513100 DOI: 10.1038/s41419-024-07122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
The tumor microenvironment (TME) orchestrates a complex interplay between tumor cells and immune cells, crucially modulating the immune response. This review delves into the pivotal role of metabolic reprogramming in the TME, highlighting how tumor-derived metabolites influence T lymphocyte functionality and the efficacy of cancer immunotherapies. Focusing on the diverse roles of these metabolites, we examine how lactate, lipids, amino acids, and other biochemical signals act not only as metabolic byproducts but as regulatory agents that can suppress or potentiate T cell-mediated immunity. By integrating recent findings, we underscore the dual impact of these metabolites on enhancing tumor progression and inhibiting immune surveillance. Furthermore, we propose innovative therapeutic strategies that target metabolic pathways to restore immune function within the TME. The insights provided in this review pave the way for the development of metabolic interventions aimed at enhancing the success of immunotherapies in oncology, offering new hope for precision medicine in the treatment of cancer.
Collapse
Affiliation(s)
- Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xu Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Alherz FA. Human sulfotransferase SULT2B1 physiological role and the impact of genetic polymorphism on enzyme activity and pathological conditions. Front Genet 2024; 15:1464243. [PMID: 39280099 PMCID: PMC11392796 DOI: 10.3389/fgene.2024.1464243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
Human SULT2B1gene is responsible for expressing SULT2B1a and SULT2B1b enzymes, which are phase II metabolizing enzymes known as pregnenolone and cholesterol sulfotransferase (SULT), respectively. They are expressed in several tissues and contribute to steroids and hydroxysteroids homeostasis. Genetic variation of the SULT2B1 is reported to be associated with various pathological conditions, including autosomal recessive ichthyosis, cardiovascular disease, and different types of cancers. Understanding the pathological impact of SULT2B1 genetic polymorphisms in the human body is crucial to incorporating these findings in evaluating clinical conditions or improving therapeutic efficacy. Therefore, this paper summarized the most relevant reported studies concerning SULT2B1 expression, tissue distribution, substrates, and reported genetic polymorphisms and their mechanisms in enzyme activity and pathological conditions.
Collapse
Affiliation(s)
- Fatemah A Alherz
- Department of Pharmaceutical Science, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Al-Horani RA. Revisiting the effect of cholesteryl sulfate on clotting and fibrinolysis: Inhibition of human thrombin and other human blood proteases. Heliyon 2024; 10:e28017. [PMID: 38533078 PMCID: PMC10963326 DOI: 10.1016/j.heliyon.2024.e28017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Cholesteryl sulfate (CS) was quantitatively synthesized by microwave-assisted sulfonation of cholesterol followed by sodium exchange chromatography. In vitro effects of CS on human thrombin and other serine proteases of the coagulation and fibrinolysis processes were investigated using a series of biochemical and biophysical techniques. CS was found to inhibit thrombin with an IC50 value of 140.8 ± 21.8 μM at pH 7.4 and 25 ○C. Michaelis-Menten kinetics indicated that thrombin inhibition by CS is non-competitive (allosteric) in nature. Fluorescence-based binding studies indicated that CS binds to thrombin with a KD value of 180.9 ± 18.9 μM. Given the lack of competition with heparins and a hirudin peptide in competitive inhibition assays, it appears that CS does not bind to thrombin's exosites 1 or 2 and it rather recognizes a different allosteric exosite. CS was found to partially inhibit thrombin-mediated fibrinogen activation with an IC50 value of 175.5 ± 17.5 μM and efficacy of ∼26.0 ± 6.6%. Likewise, CS selectively doubled the activated partial thromboplastin time with EC2x of 521 μM. Interestingly, CS was found to also inhibit factors Xa and XIa as well as plasmin with IC50 values of ∼85-250 μM and efficacy of 94-100%. Nevertheless, CS most potently inhibited factor XIIa with an IC50 Value of ∼17 μM and efficacy of 60%. Surprisingly, CS did not inhibit factor IXa. These results encourage further in vitro and in vivo investigation of CS to better understand its (patho-) physiological roles in coagulation and hemostasis.
Collapse
Affiliation(s)
- Rami A. Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans LA 70125, USA
| |
Collapse
|
5
|
Kurogi K, Sakakibara Y, Hashiguchi T, Kakuta Y, Kanekiyo M, Teramoto T, Fukushima T, Bamba T, Matsumoto J, Fukusaki E, Kataoka H, Suiko M. A new type of sulfation reaction: C-sulfonation for α,β-unsaturated carbonyl groups by a novel sulfotransferase SULT7A1. PNAS NEXUS 2024; 3:pgae097. [PMID: 38487162 PMCID: PMC10939482 DOI: 10.1093/pnasnexus/pgae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/20/2024] [Indexed: 03/17/2024]
Abstract
Cytosolic sulfotransferases (SULTs) are cytosolic enzymes that catalyze the transfer of sulfonate group to key endogenous compounds, altering the physiological functions of their substrates. SULT enzymes catalyze the O-sulfonation of hydroxy groups or N-sulfonation of amino groups of substrate compounds. In this study, we report the discovery of C-sulfonation of α,β-unsaturated carbonyl groups mediated by a new SULT enzyme, SULT7A1, and human SULT1C4. Enzymatic assays revealed that SULT7A1 is capable of transferring the sulfonate group from 3'-phosphoadenosine 5'-phosphosulfate to the α-carbon of α,β-unsaturated carbonyl-containing compounds, including cyclopentenone prostaglandins as representative endogenous substrates. Structural analyses of SULT7A1 suggest that the C-sulfonation reaction is catalyzed by a novel mechanism mediated by His and Cys residues in the active site. Ligand-activity assays demonstrated that sulfonated 15-deoxy prostaglandin J2 exhibits antagonist activity against the prostaglandin receptor EP2 and the prostacyclin receptor IP. Modification of α,β-unsaturated carbonyl groups via the new prostaglandin-sulfonating enzyme, SULT7A1, may regulate the physiological function of prostaglandins in the gut. Discovery of C-sulfonation of α,β-unsaturated carbonyl groups will broaden the spectrum of potential substrates and physiological functions of SULTs.
Collapse
Affiliation(s)
- Katsuhisa Kurogi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yoichi Sakakibara
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Takuyu Hashiguchi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yoshimitsu Kakuta
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Miho Kanekiyo
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Takamasa Teramoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Tsuyoshi Fukushima
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Jin Matsumoto
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Hiroaki Kataoka
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Masahito Suiko
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| |
Collapse
|
6
|
Bolkun L, Pienkowski T, Sieminska J, Godzien J, Pietrowska K, Kłoczko J, Wierzbowska A, Moniuszko M, Ratajczak M, Kretowski A, Ciborowski M. Metabolomic profile of acute myeloid leukaemia parallels of prognosis and response to therapy. Sci Rep 2023; 13:21809. [PMID: 38071228 PMCID: PMC10710498 DOI: 10.1038/s41598-023-48970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
The heterogeneity of acute myeloid leukemia (AML), a complex hematological malignancy, is caused by mutations in myeloid cells affecting their differentiation and proliferation. Thus, various cytogenetic alterations in AML cells may be characterized by a unique metabolome and require different treatment approaches. In this study, we performed untargeted metabolomics to assess metabolomics differences between AML patients and healthy controls, AML patients with different treatment outcomes, AML patients in different risk groups based on the 2017 European LeukemiaNet (ELN) recommendations for the diagnosis and management of AML, AML patients with and without FLT3-ITD mutation, and a comparison between patients with FLT3-ITD, CBF-AML (Core binding factor acute myelogenous leukemia), and MLL AML (mixed-lineage leukemia gene) in comparison to control subjects. Analyses were performed in serum samples using liquid chromatography coupled with mass spectrometry (LC-MS). The obtained metabolomics profiles exhibited many alterations in glycerophospholipid and sphingolipid metabolism and allowed us to propose biomarkers based on each of the above assessments as an aid for diagnosis and eventual classification, allowing physicians to choose the best-suited treatment approach. These results highlight the application of LC-MS-based metabolomics of serum samples as an aid in diagnostics and a potential minimally invasive prognostic tool for identifying various cytogenetic and treatment outcomes of AML.
Collapse
Affiliation(s)
- Lukasz Bolkun
- Department of Hematology, Medical University of Bialystok, 15-276, Bialystok, Poland
| | - Tomasz Pienkowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
| | - Julia Sieminska
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
| | - Joanna Godzien
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
| | - Karolina Pietrowska
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
| | - Janusz Kłoczko
- Department of Hematology, Medical University of Bialystok, 15-276, Bialystok, Poland
| | | | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Mariusz Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276, Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland.
| |
Collapse
|
7
|
Mucke HA. Patent Highlights April-May 2023. Pharm Pat Anal 2023; 12:253-259. [PMID: 38197382 DOI: 10.4155/ppa-2023-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
8
|
de Médina P, Ayadi S, Soulès R, Payre B, Rup-Jacques S, Silvente-Poirot S, Samadi M, Poirot M. Chemical synthesis and biochemical properties of cholestane-5α,6β-diol-3-sulfonate: A non-hydrolysable analogue of cholestane-5α,6β-diol-3β-sulfate. J Steroid Biochem Mol Biol 2023; 234:106396. [PMID: 37683773 DOI: 10.1016/j.jsbmb.2023.106396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
Cholestane-3β,5α,6β-triol (CT) is a primary metabolite of 5,6-epoxycholesterols (5,6-EC) that is catalyzed by the cholesterol-5,6-epoxide hydrolase (ChEH). CT is a well-known biomarker for Niemann-Pick disease type C (NP-C), a progressive inherited neurodegenerative disease. On the other hand, CT is known to be metabolized by the 11β-hydroxysteroid-dehydrogenase of type 2 (11β-HSD2) into a tumor promoter named oncosterone that stimulates the growth of breast cancer tumors. Sulfation is a major metabolic transformation leading to the production of sulfated oxysterols. The production of cholestane-5α,6β-diol-3β-O-sulfate (CDS) has been reported in breast cancer cells. However, no data related to CDS biological properties have been reported so far. These studies have been hampered because sulfate esters of sterols and steroids are rapidly hydrolyzed by steroid sulfatase to give free steroids and sterols. In order to get insight into the biological properties of CDS, we report herein the synthesis and the characterization of cholestane-5α,6β-diol-3β-sulfonate (CDSN), a non-hydrolysable analogue of CDS. We show that CDSN is a potent inhibitor of 11β-HSD2 that blocks oncosterone production on cell lysate. The inhibition of oncosterone biosynthesis of a whole cell assay was observed but results from the blockage by CDSN of the uptake of CT in MCF-7 cells. While CDSN inhibits MCF-7 cell proliferation, we found that it potentiates the cytotoxic activity of post-lanosterol cholesterol biosynthesis inhibitors such as tamoxifen and PBPE. This effect was associated with an increase of free sterols accumulation and the appearance of giant multilamellar bodies, a structural feature reminiscent of Type C Niemann-Pick disease cells and consistent with a possible inhibition by CDSN of NPC1. Altogether, our data showed that CDSN is biologically active and that it is a valuable tool to study the biological properties of CDS and more specifically its impact on immunity and viral infection.
Collapse
Affiliation(s)
- Philippe de Médina
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: Cholesterol Metabolism and Therapeutic Innovations, Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, France; French network for Nutrition physical Acitivity And Cancer Research (NACRe network), France.
| | - Silia Ayadi
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: Cholesterol Metabolism and Therapeutic Innovations, Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, France
| | - Régis Soulès
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: Cholesterol Metabolism and Therapeutic Innovations, Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, France; French network for Nutrition physical Acitivity And Cancer Research (NACRe network), France
| | - Bruno Payre
- Centre de Microscopie Electronique Appliquée à la Biologie, Faculté de Médecine Rangueil, Toulouse, France
| | - Sandrine Rup-Jacques
- Laboratory of Chemistry and Physics Multi-Scale Approach to Complex Environments, Department of Chemistry, University Lorraine, 57070 Metz, France
| | - Sandrine Silvente-Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: Cholesterol Metabolism and Therapeutic Innovations, Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, France; French network for Nutrition physical Acitivity And Cancer Research (NACRe network), France.
| | - Mohammad Samadi
- Laboratory of Chemistry and Physics Multi-Scale Approach to Complex Environments, Department of Chemistry, University Lorraine, 57070 Metz, France.
| | - Marc Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: Cholesterol Metabolism and Therapeutic Innovations, Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, France; French network for Nutrition physical Acitivity And Cancer Research (NACRe network), France.
| |
Collapse
|
9
|
Laubach K, Turan T, Mathew R, Wilsbacher J, Engelhardt J, Samayoa J. Tumor-intrinsic metabolic reprogramming and how it drives resistance to anti-PD-1/PD-L1 treatment. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:611-641. [PMID: 37842241 PMCID: PMC10571065 DOI: 10.20517/cdr.2023.60] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 10/17/2023]
Abstract
The development of immune checkpoint blockade (ICB) therapies has been instrumental in advancing the field of immunotherapy. Despite the prominence of these treatments, many patients exhibit primary or acquired resistance, rendering them ineffective. For example, anti-programmed cell death protein 1 (anti-PD-1)/anti-programmed cell death ligand 1 (anti-PD-L1) treatments are widely utilized across a range of cancer indications, but the response rate is only 10%-30%. As such, it is necessary for researchers to identify targets and develop drugs that can be used in combination with existing ICB therapies to overcome resistance. The intersection of cancer, metabolism, and the immune system has gained considerable traction in recent years as a way to comprehensively study the mechanisms that drive oncogenesis, immune evasion, and immunotherapy resistance. As a result, new research is continuously emerging in support of targeting metabolic pathways as an adjuvant to ICB to boost patient response and overcome resistance. Due to the plethora of studies in recent years highlighting this notion, this review will integrate the relevant articles that demonstrate how tumor-derived alterations in energy, amino acid, and lipid metabolism dysregulate anti-tumor immune responses and drive resistance to anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- Kyra Laubach
- Computational Oncology, AbbVie, South San Francisco, CA 94080, USA
- Immuno-Oncology, AbbVie, South San Francisco, CA 94080, USA
| | - Tolga Turan
- Computational Oncology, AbbVie, South San Francisco, CA 94080, USA
| | - Rebecca Mathew
- Immuno-Oncology, AbbVie, South San Francisco, CA 94080, USA
| | | | | | - Josue Samayoa
- Computational Oncology, AbbVie, South San Francisco, CA 94080, USA
| |
Collapse
|
10
|
Park JS, Chung IJ, Kim HR, Jun CD. The Immunosuppressive Potential of Cholesterol Sulfate Through T Cell Microvilli Disruption. Immune Netw 2023; 23:e29. [PMID: 37416932 PMCID: PMC10320417 DOI: 10.4110/in.2023.23.e29] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/28/2023] [Accepted: 04/21/2023] [Indexed: 07/08/2023] Open
Abstract
Cholesterol (CL) is required for various biomolecular production processes, including those of cell membrane components. Therefore, to meet these needs, CL is converted into various derivatives. Among these derivatives is cholesterol sulfate (CS), a naturally produced CL derivative by the sulfotransferase family 2B1 (SULT2B1), which is widely present in human plasma. CS is involved in cell membrane stabilization, blood clotting, keratinocyte differentiation, and TCR nanocluster deformation. This study shows that treatment of T cells with CS resulted in the decreased surface expression of some surface T-cell proteins and reduced IL-2 release. Furthermore, T cells treated with CS significantly reduced lipid raft contents and membrane CLs. Surprisingly, using the electron microscope, we also observed that CS led to the disruption of T-cell microvilli, releasing small microvilli particles containing TCRs and other microvillar proteins. However, in vivo, T cells with CS showed aberrant migration to high endothelial venules and limited infiltrating splenic T-cell zones compared with the untreated T cells. Additionally, we observed significant alleviation of atopic dermatitis in mice injected with CS in the animal model. Based on these results, we conclude that CS is an immunosuppressive natural lipid that impairs TCR signaling by disrupting microvillar function in T cells, suggesting its usefulness as a therapeutic agent for alleviating T-cell-mediated hypersensitivity and a potential target for treating autoimmune diseases.
Collapse
Affiliation(s)
- Jeong-Su Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Ik-Joo Chung
- Department of Hematology-Oncology, Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Hye-Ran Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Division of Rare and Refractory Cancer, Tumor Immunology, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| |
Collapse
|
11
|
Cook I, Leyh TS. Sulfotransferase 2B1b, Sterol Sulfonation, and Disease. Pharmacol Rev 2023; 75:521-531. [PMID: 36549865 PMCID: PMC10158503 DOI: 10.1124/pharmrev.122.000679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/18/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
The primary function of human sulfotransferase 2B1b (SULT2B1b) is to sulfonate cholesterol and closely related sterols. SULT2B1b sterols perform a number of essential cellular functions. Many are signaling molecules whose activities are redefined by sulfonation-allosteric properties are switched "on" or "off," agonists are transformed into antagonists, and vice versa. Sterol sulfonation is tightly coupled to cholesterol homeostasis, and sulfonation imbalances are causally linked to cholesterol-related diseases including certain cancers, Alzheimer disease, and recessive X-linked ichthyosis-an orphan skin disease. Numerous studies link SULT2B1b activity to disease-relevant molecular processes. Here, these multifaceted processes are integrated into metabolic maps that highlight their interdependence and how their actions are regulated and coordinated by SULT2B1b oxysterol sulfonation. The maps help explain why SULT2B1b inhibition arrests the growth of certain cancers and make the novel prediction that SULT2B1b inhibition will suppress production of amyloid β (Aβ) plaques and tau fibrils while simultaneously stimulating Aβ plaque phagocytosis. SULT2B1b harbors a sterol-selective allosteric site whose structure is discussed as a template for creating inhibitors to regulate SULT2B1b and its associated biology. SIGNIFICANCE STATEMENT: Human sulfotransferase 2B1b (SULT2B1b) produces sterol-sulfate signaling molecules that maintain the homeostasis of otherwise pro-disease processes in cancer, Alzheimer disease, and X-linked ichthyosis-an orphan skin disease. The functions of sterol sulfates in each disease are considered and codified into metabolic maps that explain the interdependencies of the sterol-regulated networks and their coordinate regulation by SULT2B1b. The structure of the SULT2B1b sterol-sensing allosteric site is discussed as a means of controlling sterol sulfate biology.
Collapse
Affiliation(s)
- Ian Cook
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Thomas S Leyh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
12
|
Morino K, Kunimura K, Sugiura Y, Izumi Y, Matsubara K, Akiyoshi S, Maeda R, Hirotani K, Sakata D, Mizuno S, Takahashi S, Bamba T, Uruno T, Fukui Y. Cholesterol sulfate limits neutrophil recruitment and gut inflammation during mucosal injury. Front Immunol 2023; 14:1131146. [PMID: 37006281 PMCID: PMC10063914 DOI: 10.3389/fimmu.2023.1131146] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
During mucosal injury, intestinal immune cells play a crucial role in eliminating invading bacteria. However, as the excessive accumulation of immune cells promotes inflammation and delays tissue repair, it is essential to identify the mechanism that limits the infiltration of immune cells to the mucosal-luminal interface. Cholesterol sulfate (CS) is the lipid product of the sulfotransferase SULT2B1 and suppresses immune reactions by inhibiting DOCK2-mediated Rac activation. In this study, we aimed to elucidate the physiological role of CS in the intestinal tract. We found that, in the small intestine and colon, CS is predominantly produced in the epithelial cells close to the lumen. While dextran sodium sulfate (DSS)-induced colitis was exacerbated in Sult2b1-deficient mice with increased prevalence of neutrophils, the elimination of either neutrophils or intestinal bacteria in Sult2b1-deficient mice attenuated disease development. Similar results were obtained when the Dock2 was genetically deleted in Sult2b1-deficient mice. In addition, we also show that indomethacin-induced ulcer formation in the small intestine was exacerbated in Sult2b1-deficient mice and was ameliorated by CS administration. Thus, our results uncover that CS acts on inflammatory neutrophils, and prevents excessive gut inflammation by inhibiting the Rac activator DOCK2. The administration of CS may be a novel therapeutic strategy for inflammatory bowel disease and non-steroidal anti-inflammatory drug-induced ulcers.
Collapse
Affiliation(s)
- Kenji Morino
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kazufumi Kunimura
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- *Correspondence: Kazufumi Kunimura, ; Yoshinori Fukui,
| | - Yuki Sugiura
- Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keisuke Matsubara
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Sayaka Akiyoshi
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Rae Maeda
- Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenichiro Hirotani
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Daiji Sakata
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takehito Uruno
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- *Correspondence: Kazufumi Kunimura, ; Yoshinori Fukui,
| |
Collapse
|
13
|
Chrzanowska A, Kurpios-Piec D, Żyżyńska-Granica B, Kiernozek-Kalińska E, Lay WX, Ciechanowicz AK, Struga M. Anticancer activity and metabolic alteration in colon and prostate cancer cells by novel moxifloxacin conjugates with fatty acids. Eur J Pharmacol 2023; 940:175481. [PMID: 36566005 DOI: 10.1016/j.ejphar.2022.175481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
The positive and pro-economic trend in the management of cancer treatment is the search for the antineoplastic potential of known, widely used and safe drugs with a different clinical purpose. A good candidate seems to be moxifloxacin with broad-spectrum antibacterial activity, which as the member of the fourth generation fluoroquinolone is known to affect not only bacterial but also eukaryotic DNA topoisomerases, however at high concentration. Due to the fact that the modification of parent drug with lipid component can improve anticancer potential by increasing of bioavailability, selectivity, and cytotoxic efficiency, we evaluated the mechanisms of cytotoxic activity of novel moxifloxacin conjugates with fatty acids and verified metabolic profile in SW480, SW620 and PC3 cell lines. Our study revealed that cytotoxic potential of moxifloxacin conjugates was stronger than free moxifloxacin, moreover, they remained non-toxic to normal HaCaT cells. PC3 were more sensitive to MXF conjugates than colon cancer cells. The most promising cytotoxic activity exhibited conjugate 4m and 16m with oleic and stearic acid reducing viability of PC3 and SW620 cells. Tested conjugates activated caspases 3/7 and induced late-apoptosis, mainly in PC3 and SW620 cells. However, the most pronounced inhibition of NF-κB activation and IL-6 secretion was observed in SW480. Metabolomic analysis indicated influence of the moxifloxacin conjugates on intensity of lipid derivatives with the most successful metabolite profile in PC3. Our findings suggested the cytotoxic potential of moxifloxacin conjugates, especially with oleic and stearic acid can be beneficial in oncological therapy, including their possible anti-inflammatory and known antibacterial effect.
Collapse
Affiliation(s)
- Alicja Chrzanowska
- Chair and Department of Biochemistry, Medical University of Warsaw, ul. Banacha 1, 02-097, Warsaw, Poland.
| | - Dagmara Kurpios-Piec
- Chair and Department of Biochemistry, Medical University of Warsaw, ul. Banacha 1, 02-097, Warsaw, Poland.
| | - Barbara Żyżyńska-Granica
- Chair and Department of Biochemistry, Medical University of Warsaw, ul. Banacha 1, 02-097, Warsaw, Poland.
| | | | - Wen Xin Lay
- Laboratory of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, 02-097, Warsaw, Poland.
| | - Andrzej K Ciechanowicz
- Laboratory of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, 02-097, Warsaw, Poland.
| | - Marta Struga
- Chair and Department of Biochemistry, Medical University of Warsaw, ul. Banacha 1, 02-097, Warsaw, Poland.
| |
Collapse
|
14
|
Isvoran A, Peng Y, Ceauranu S, Schmidt L, Nicot AB, Miteva MA. Pharmacogenetics of human sulfotransferases and impact of amino acid exchange on Phase II drug metabolism. Drug Discov Today 2022; 27:103349. [PMID: 36096358 DOI: 10.1016/j.drudis.2022.103349] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/27/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022]
Abstract
Sulfotransferases (SULTs) are Phase II drug-metabolizing enzymes (DMEs) catalyzing the sulfation of a variety of endogenous compounds, natural products, and drugs. Various drugs, such as nonsteroidal anti-inflammatory drugs (NSAIDS) can inhibit SULTs, affecting drug-drug interactions. Several polymorphisms have been identified for SULTs that might be crucial for interindividual variability in drug response and toxicity or for increased disease risk. Here, we review current knowledge on non-synonymous single nucleotide polymorphisms (nsSNPs) of human SULTs, focusing on the coded SULT allozymes and molecular mechanisms explaining their variable activity, which is essential for personalized medicine. We discuss the structural and dynamic bases of key amino acid (AA) variants implicated in the impacts on drug metabolism in the case of SULT1A1, as revealed by molecular modeling approaches.
Collapse
Affiliation(s)
- Adriana Isvoran
- Department of Biology-Chemistry and Advanced Environmental Research Laboratories, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
| | - Yunhui Peng
- INSERM U1268 Medicinal Chemistry and Translational Research, CiTCoM UMR 8038 CNRS - Université Paris Cité, 75006 Paris, France
| | - Silvana Ceauranu
- Department of Biology-Chemistry and Advanced Environmental Research Laboratories, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
| | - Leon Schmidt
- Department of Biology-Chemistry and Advanced Environmental Research Laboratories, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
| | - Arnaud B Nicot
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France.
| | - Maria A Miteva
- INSERM U1268 Medicinal Chemistry and Translational Research, CiTCoM UMR 8038 CNRS - Université Paris Cité, 75006 Paris, France.
| |
Collapse
|
15
|
Pei S, Dou Y, Zhang W, Qi D, Li Y, Wang M, Li W, Shi H, Gao Z, Yao C, Fang D, Sun H, Xie S. O-Sulfation disposition of curcumin and quercetin in SULT1A3 overexpressing HEK293 cells: the role of arylsulfatase B in cellular O-sulfation regulated by transporters. Food Funct 2022; 13:10558-10573. [PMID: 36156668 DOI: 10.1039/d2fo01436j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extensive phase II metabolic reactions (i.e., glucuronidation and sulfation) have resulted in low bioavailability and decreased biological effects of curcumin and quercetin. Compared to glucuronidation, information on the sulfation disposition of curcumin and quercetin is limited. In this study, we identified that BCRP and MRP4 played a critical role in the cellular excretion of curcumin-O-sulfate (C-O-S) and quercetin-O-sulfate (Q-O-S) by integrating chemical inhibition with transporter knock-down experiments. Inhibited excretion of sulfate (C-O-S and Q-O-S) caused significant reductions in cellular O-sulfation of curcumin (a maximal 74.4% reduction) and quercetin (a maximal 76.9% reduction), revealing a strong interplay of sulfation with efflux transport. It was further identified that arylsulfatase B (ARSB) played a crucial role in the regulation of cellular O-sulfation by transporters. ARSB overexpression significantly enhanced the reduction effect of MK-571 on the cellular O-sulfation (fmet) of the model compound (38.8% reduction for curcumin and 44.2% reduction for quercetin). On the contrary, ARSB knockdown could reverse the effect of MK-571 on the O-sulfation disposition of the model compound (29.7% increase for curcumin and 47.3% increase for quercetin). Taken together, ARSB has been proven to be involved in cellular O-sulfation, accounting for transporter-dependent O-sulfation of curcumin and quercetin. A better understanding of the interplay beneath metabolism and transport will contribute to the exact prediction of in vivo drug disposition and drug-drug interactions.
Collapse
Affiliation(s)
- Shuhua Pei
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Yuanyuan Dou
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Wenke Zhang
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Defei Qi
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Yingying Li
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Mengqing Wang
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Wenqi Li
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Hongxiang Shi
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Zixuan Gao
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Chaoyan Yao
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Dong Fang
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China. .,Academy for advanced interdisciplinary studies, Henan University, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Hua Sun
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China. .,Academy for advanced interdisciplinary studies, Henan University, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Songqiang Xie
- Academy for advanced interdisciplinary studies, Henan University, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China. .,Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| |
Collapse
|
16
|
Tatsuguchi T, Uruno T, Sugiura Y, Oisaki K, Takaya D, Sakata D, Izumi Y, Togo T, Hattori Y, Kunimura K, Sakurai T, Honma T, Bamba T, Nakamura M, Kanai M, Suematsu M, Fukui Y. Pharmacological intervention of cholesterol sulfate-mediated T cell exclusion promotes antitumor immunity. Biochem Biophys Res Commun 2022; 609:183-188. [DOI: 10.1016/j.bbrc.2022.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/02/2022]
|