1
|
McDonald C, Xanthopoulos C, Kostareli E. The role of Bruton's tyrosine kinase in the immune system and disease. Immunology 2021; 164:722-736. [PMID: 34534359 PMCID: PMC8561098 DOI: 10.1111/imm.13416] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Bruton's tyrosine kinase (BTK) is a TEC kinase with a multifaceted role in B-cell biology and function, highlighted by its position as a critical component of the B-cell receptor signalling pathway. Due to its role as a therapeutic target in several haematological malignancies including chronic lymphocytic leukaemia, BTK has been gaining tremendous momentum in recent years. Within the immune system, BTK plays a part in numerous pathways and cells beyond B cells (i.e. T cells, macrophages). Not surprisingly, BTK has been elucidated to be a driving factor not only in lymphoproliferative disorders but also in autoimmune diseases and response to infection. To extort this role, BTK inhibitors such as ibrutinib have been developed to target BTK in other diseases. However, due to rising levels of resistance, the urgency to develop new inhibitors with alternative modes of targeting BTK is high. To meet this demand, an expanding list of BTK inhibitors is currently being trialled. In this review, we synopsize recent discoveries regarding BTK and its role within different immune cells and pathways. Additionally, we discuss the broad significance and relevance of BTK for various diseases ranging from haematology and rheumatology to the COVID-19 pandemic. Overall, BTK signalling and its targetable nature have emerged as immensely important for a wide range of clinical applications. The development of novel, more specific and less toxic BTK inhibitors could be revolutionary for a significant number of diseases with yet unmet treatment needs.
Collapse
Affiliation(s)
- Charlotte McDonald
- The Wellcome‐Wolfson Institute for Experimental MedicineSchool of Medicine Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Charalampos Xanthopoulos
- The Wellcome‐Wolfson Institute for Experimental MedicineSchool of Medicine Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Efterpi Kostareli
- The Wellcome‐Wolfson Institute for Experimental MedicineSchool of Medicine Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| |
Collapse
|
2
|
Guendel I, Iordanskiy S, Sampey GC, Van Duyne R, Calvert V, Petricoin E, Saifuddin M, Kehn-Hall K, Kashanchi F. Role of Bruton's tyrosine kinase inhibitors in HIV-1-infected cells. J Neurovirol 2015; 21:257-75. [PMID: 25672887 DOI: 10.1007/s13365-015-0323-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 01/23/2015] [Indexed: 11/26/2022]
Abstract
Many cellular cofactors have been documented to be critical for various stages of viral replication. Using high-throughput proteomic assays, we have previously identified Bruton's tyrosine kinase (BTK) as a host protein that was uniquely upregulated in the plasma membrane of human immunodeficiency virus (HIV-1)-infected T cells. Here, we have further characterized the BTK expression in HIV-1 infection and show that this cellular factor is specifically expressed in infected myeloid cells. Significant upregulation of the phosphorylated form of BTK was observed in infected cells. Using size exclusion chromatography, we found BTK to be virtually absent in the uninfected U937 cells; however, new BTK protein complexes were identified and distributed in both high molecular weight (∼600 kDa) and a small molecular weight complex (∼60-120 kDa) in the infected U1 cells. BTK levels were highest in cells either chronically expressing virus or induced/infected myeloid cells and that BTK translocated to the membrane following induction of the infected cells. BTK knockdown in HIV-1-infected cells using small interfering RNA (siRNA) resulted in selective death of infected, but not uninfected, cells. Using BTK-specific antibody and small-molecule inhibitors including LFM-A13 and a FDA-approved compound, ibrutinib (PCI-32765), we have found that HIV-1-infected cells are sensitive to apoptotic cell death and result in a decrease in virus production. Overall, our data suggests that HIV-1-infected cells are sensitive to treatments targeting BTK expressed in infected cells.
Collapse
Affiliation(s)
- Irene Guendel
- Department of Systems Biology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, 20110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Fujita T, Kitaura F, Fujii H. A critical role of the Thy28-MYH9 axis in B cell-specific expression of the Pax5 gene in chicken B cells. PLoS One 2015; 10:e0116579. [PMID: 25607658 PMCID: PMC4301804 DOI: 10.1371/journal.pone.0116579] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/11/2014] [Indexed: 11/18/2022] Open
Abstract
Accumulating evidence suggests that Pax5 plays essential roles in B cell lineage commitment. However, molecular mechanisms of B cell-specific expression of Pax5 are not fully understood. Here, we applied insertional chromatin immunoprecipitation (iChIP) combined with stable isotope labeling using amino acids in cell culture (SILAC) (iChIP-SILAC) to direct identification of proteins interacting with the promoter region of the endogenous single-copy chicken Pax5 gene. By comparing B cells with macrophage-like cells trans-differentiated by ectopic expression of C/EBPβ, iChIP-SILAC detected B cell-specific interaction of a nuclear protein, Thy28/Thyn1, with the Pax5 1A promoter. Trans-differentiation of B cells into macrophage-like cells caused down-regulation of Thy28 expression. Loss-of-function of Thy28 induced decrease in Pax5 expression and recruitment of myosin-9 (MYH9), one of Thy28-interacting proteins, to the Pax5 1A promoter. Loss-of-function of MYH9 also induced decrease in Pax5 expression. Thus, our analysis revealed that Thy28 is functionally required for B cell-specific expression of Pax5 via recruitment of MYH9 to the Pax5 locus in chicken B cells.
Collapse
Affiliation(s)
- Toshitsugu Fujita
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Fusako Kitaura
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hodaka Fujii
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
4
|
Corneth OBJ, Klein Wolterink RGJ, Hendriks RW. BTK Signaling in B Cell Differentiation and Autoimmunity. Curr Top Microbiol Immunol 2015; 393:67-105. [PMID: 26341110 DOI: 10.1007/82_2015_478] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the original identification of Bruton's tyrosine kinase (BTK) as the gene defective in the primary immunodeficiency X-linked agammaglobulinemia (XLA) in 1993, our knowledge on the physiological function of BTK has expanded impressively. In this review, we focus on the role of BTK during B cell differentiation in vivo, both in the regulation of expansion and in the developmental progression of pre-B cells in the bone marrow and as a crucial signal transducer of signals downstream of the IgM or IgG B cell antigen receptor (BCR) in mature B cells governing proliferation, survival, and differentiation. In particular, we highlight BTK function in B cells in the context of host defense and autoimmunity. Small-molecule inhibitors of BTK have very recently shown impressive anti-tumor activity in clinical studies in patients with various B cell malignancies. Since promising effects of BTK inhibition were also seen in experimental animal models for lupus and rheumatoid arthritis, BTK may be a good target for controlling autoreactive B cells in patients with systemic autoimmune disease.
Collapse
Affiliation(s)
- Odilia B J Corneth
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Room Ee2251a, PO Box 2040, NL 3000, CA, Rotterdam, The Netherlands
| | - Roel G J Klein Wolterink
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Room Ee2251a, PO Box 2040, NL 3000, CA, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Room Ee2251a, PO Box 2040, NL 3000, CA, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Wallingford MC, Filkins R, Adams D, Walentuk M, Salicioni AM, Visconti PE, Mager J. Identification of a novel isoform of the leukemia-associated MLLT1 (ENL/LTG19) protein. Gene Expr Patterns 2014; 17:11-5. [PMID: 25481096 DOI: 10.1016/j.gep.2014.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/17/2014] [Accepted: 11/22/2014] [Indexed: 11/17/2022]
Abstract
Genome wide transcriptional profiles offer abundant information regarding mRNA levels in specific tissues, organs or developmental stages. Although these data sets do not offer spatial or cell type-specific information, they can be extremely useful for gene discovery when analyzed by the appropriate techniques. Previously, we proposed and validated the use of combinatorial dataset analysis techniques to identify novel genes required during pre-implantation development. Now we build upon this work to identify genes that have dynamic expression during gametogenesis. Here we present detailed analysis of the expression pattern of leukemia-associated, myeloid/lymphoid or mixed-lineage leukemia; translocated to 1 (Mllt1) gene. We document a novel splice isoform of Mllt1 and confirm that both Mllt1 mRNA isoforms are translated. We provide data supporting that MLLT1 protein isoforms display distinct stage-specific expression during spermiogenesis and adult tissues. Finally, we evaluated genes neighboring the Mllt1 locus, and show dynamic stage specific expression patterns of other genes Catsperd, Prr22, Rfx2 and Slc25a41. We document testes expressed alternative isoforms of Prr22 and Rfx2. These results indicate that transcriptome data mining, combined with specific expression analysis provides a wealth of novel gene expression information.
Collapse
Affiliation(s)
- Mary C Wallingford
- Department of Bioengineering, University of Washington, Seattle, WA 01003, United States
| | - Rachel Filkins
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA 01003, United States
| | - Danielle Adams
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA 01003, United States
| | - Melanie Walentuk
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA 01003, United States
| | - Ana Maria Salicioni
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA 01003, United States
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA 01003, United States
| | - Jesse Mager
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
6
|
Abstract
Bruton's tyrosine kinase (BTK) is a key component of B cell receptor (BCR) signalling and functions as an important regulator of cell proliferation and cell survival in various B cell malignancies. Small-molecule inhibitors of BTK have shown antitumour activity in animal models and, recently, in clinical studies. High response rates were reported in patients with chronic lymphocytic leukaemia and mantle cell lymphoma. Remarkably, BTK inhibitors have molecular effects that cannot be explained by the classic role of BTK in BCR signalling. In this Review, we highlight the importance of BTK in various signalling pathways in the context of its therapeutic inhibition.
Collapse
Affiliation(s)
- Rudi W Hendriks
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000 CA Rotterdam, the Netherlands
| | - Saravanan Yuvaraj
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000 CA Rotterdam, the Netherlands
| | - Laurens P Kil
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000 CA Rotterdam, the Netherlands
| |
Collapse
|
7
|
Doménech E, Gómez-López G, Gzlez-Peña D, López M, Herreros B, Menezes J, Gómez-Lozano N, Carro A, Graña O, Pisano DG, Domínguez O, García-Marco JA, Piris MA, Sánchez-Beato M. New mutations in chronic lymphocytic leukemia identified by target enrichment and deep sequencing. PLoS One 2012; 7:e38158. [PMID: 22675518 PMCID: PMC3365884 DOI: 10.1371/journal.pone.0038158] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 05/01/2012] [Indexed: 11/19/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a heterogeneous disease without a well-defined genetic alteration responsible for the onset of the disease. Several lines of evidence coincide in identifying stimulatory and growth signals delivered by B-cell receptor (BCR), and co-receptors together with NFkB pathway, as being the driving force in B-cell survival in CLL. However, the molecular mechanism responsible for this activation has not been identified. Based on the hypothesis that BCR activation may depend on somatic mutations of the BCR and related pathways we have performed a complete mutational screening of 301 selected genes associated with BCR signaling and related pathways using massive parallel sequencing technology in 10 CLL cases. Four mutated genes in coding regions (KRAS, SMARCA2, NFKBIE and PRKD3) have been confirmed by capillary sequencing. In conclusion, this study identifies new genes mutated in CLL, all of them in cases with progressive disease, and demonstrates that next-generation sequencing technologies applied to selected genes or pathways of interest are powerful tools for identifying novel mutational changes.
Collapse
Affiliation(s)
- Elena Doménech
- Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Gonzalo Gómez-López
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Daniel Gzlez-Peña
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- University of Vigo, Pontevedra, Spain
| | - Mar López
- Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Beatriz Herreros
- Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Juliane Menezes
- Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Angel Carro
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Osvaldo Graña
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - David G. Pisano
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Orlando Domínguez
- Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Miguel A. Piris
- Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- IFIMAV, Fundación Marqués de Valdecilla, Santander, Spain
| | - Margarita Sánchez-Beato
- Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
- * E-mail:
| |
Collapse
|
8
|
Roy AL. Biochemistry and biology of the inducible multifunctional transcription factor TFII-I: 10 years later. Gene 2011; 492:32-41. [PMID: 22037610 DOI: 10.1016/j.gene.2011.10.030] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/08/2011] [Accepted: 10/11/2011] [Indexed: 12/12/2022]
Abstract
Exactly twenty years ago TFII-I was discovered as a biochemical entity that was able to bind to and function via a core promoter element called the Initiator (Inr). Since then several different properties of this signal-induced multifunctional factor were discovered. Here I update these ever expanding functions of TFII-I--focusing primarily on the last ten years since the first review appeared in this journal.
Collapse
Affiliation(s)
- Ananda L Roy
- Department of Pathology, Sackler School of Biomedical Sciences, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA.
| |
Collapse
|
9
|
Takatsu K. Interleukin-5 and IL-5 receptor in health and diseases. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2011; 87:463-85. [PMID: 21986312 PMCID: PMC3313690 DOI: 10.2183/pjab.87.463] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 06/03/2011] [Indexed: 05/31/2023]
Abstract
While interleukin-5 (IL-5) is initially identified by its ability to support the growth and terminal differentiation of mouse B cells in vitro into antibody-secreting cells, recombinant IL-5 exerts pleiotropic activities on various target cells including B cells, eosinophils, and basophils. IL-5 is produced by both hematopoietic and non-hematopoietic cells including T cells, granulocytes, and natural helper cells. IL-5 exerts its effects for proliferation and differentiation via receptors that comprise an IL-5-specific α and common β-subunit. IL-5Rα expression in activated B cells is regulated by a complex of transcription factors including E12, E47, Sp1, c/EBPβ, and Oct2. IL-5 signals are transduced through JAK-STAT, Btk, and Ras/Raf-ERK signaling pathways and lead to maintenance of survival and functions of B cells and eosinophils. Overexpression of IL-5 in vivo significantly increases eosinophils and B cells in number, while mice lacking a functional gene for IL-5 or IL-5 receptor display a number of developmental and functional impairments in B cells and eosinophil lineages. In humans, the biologic effects of IL-5 are best characterized for eosinophils. The recent expansion in our understanding of eosinophil development and activation and pathogenesis of eosinophil-dependent inflammatory diseases has led to advance in therapeutic options. Intravenous administration of humanized anti-IL-5 monoclonal antibody reduces baseline bronchial mucosal eosinophils in mild asthma; providing important implications for strategies that inhibit the actions of IL-5 to treat asthma and other allergic diseases.
Collapse
Affiliation(s)
- Kiyoshi Takatsu
- Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan.
| |
Collapse
|
10
|
Mohamed AJ, Yu L, Bäckesjö CM, Vargas L, Faryal R, Aints A, Christensson B, Berglöf A, Vihinen M, Nore BF, Smith CIE. Bruton's tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev 2009; 228:58-73. [PMID: 19290921 DOI: 10.1111/j.1600-065x.2008.00741.x] [Citation(s) in RCA: 360] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bruton's agammaglobulinemia tyrosine kinase (Btk) is a cytoplasmic tyrosine kinase important in B-lymphocyte development, differentiation, and signaling. Btk is a member of the Tec family of kinases. Mutations in the Btk gene lead to X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (Xid) in mice. Activation of Btk triggers a cascade of signaling events that culminates in the generation of calcium mobilization and fluxes, cytoskeletal rearrangements, and transcriptional regulation involving nuclear factor-kappaB (NF-kappaB) and nuclear factor of activated T cells (NFAT). In B cells, NF-kappaB was shown to bind to the Btk promoter and induce transcription, whereas the B-cell receptor-dependent NF-kappaB signaling pathway requires functional Btk. Moreover, Btk activation is tightly regulated by a plethora of other signaling proteins including protein kinase C (PKC), Sab/SH3BP5, and caveolin-1. For example, the prolyl isomerase Pin1 negatively regulates Btk by decreasing tyrosine phosphorylation and steady state levels of Btk. It is intriguing that PKC and Pin1, both of which are negative regulators, bind to the pleckstrin homology domain of Btk. To this end, we describe here novel mutations in the pleckstrin homology domain investigated for their transforming capacity. In particular, we show that the mutant D43R behaves similar to E41K, already known to possess such activity.
Collapse
Affiliation(s)
- Abdalla J Mohamed
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Huddinge University Hospital, Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Takatsu K, Kouro T, Nagai Y. Interleukin 5 in the link between the innate and acquired immune response. Adv Immunol 2009; 101:191-236. [PMID: 19231596 DOI: 10.1016/s0065-2776(08)01006-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Interleukin-5 (IL-5) is an interdigitating homodimeric glycoprotein that is initially identified by its ability to support the in vitro growth and differentiation of mouse B cells and eosinophils. IL-5 transgenic mouse shows two predominant features, remarkable increase in B-1 cells resulting in enhanced serum antibody levels, predominantly IgM, IgA, and IgE classes and in expansion of eosinophil numbers in the blood and eosinophil infiltration into various tissues. Conversely, mice lacking a functional gene for IL-5 or IL-5 receptor alpha chain (IL-5Ralpha) display a number of developmental and functional impairments in B cells and eosinophils. IL-5 receptor (IL-5R) comprises alpha and betac chains. IL-5 specifically binds to IL-5Ralpha and induces the recruitment of betac to IL-5R. Although precise mechanisms on cell-lineage-specific IL-5Ralpha expression remain elusive, several transcription factors including Sp1, E12/E47, Oct-2, and c/EBPbeta have been shown to regulate its expression in B cells and eosinophils. JAK2 and JAK1 tyrosine kinase are constitutively associated with IL-5Ralpha and betac, respectively, and are activated by IL-5 stimulation. IL-5 activates at least three different signaling pathways including JAK2/STAT5 pathway, Btk pathway, and Ras/ERK pathway. IL-5 is one of key cytokines for mouse B cell differentiation in general, particularly for fate-determination of terminal B cell differentiation to antibody-secreting plasma cells. IL-5 critically regulates homeostatic proliferation and survival of and natural antibody production by B-1 cells, and enhances the AID and Blimp-1 expression in activated B-2 cells leading to induce mu to gamma1 class switch recombination and terminal differentiation to IgM- and IgG1-secreting plasma cells, respectively. In humans, major target cells of IL-5 are eosinophils. IL-5 appears to play important roles in pathogenesis of asthma, hypereosinophilic syndromes, and eosinophil-dependent inflammatory diseases. Clinical studies will provide a strong impetus for investigating the means of modulating IL-5 effects. We will discuss the role of IL-5 in the link between innate and acquired immune response, particularly emphasis of the molecular basis of IL-5-dependent B cell activation, allergen-induced chronic inflammation and hypereosinophilic syndromes on a novel target for therapy.
Collapse
Affiliation(s)
- Kiyoshi Takatsu
- Department of Immunobiology and Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama 930-0194, Japan
| | | | | |
Collapse
|
12
|
Nixon JC, Ferrell S, Miner C, Oldham AL, Hochgeschwender U, Webb CF. Transgenic mice expressing dominant-negative bright exhibit defects in B1 B cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:6913-22. [PMID: 18981111 DOI: 10.4049/jimmunol.181.10.6913] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The transcription factor Bright up-regulates Ig H chain production from select V region promoters and requires Bright dimerization, Bruton's tyrosine kinase (Btk), and the Btk substrate, TFII-I, for this activity. Defects in Btk cause X-linked immunodeficiency disease in mice and humans. Btk-deficient mice exhibit decreased serum IgM production, B cell developmental blocks, absence of peritoneal B1 cells, and subnormal immune responses against Ags, including phosphorylcholine, which confer protection against Streptococcus pneumoniae. Transgenic mice expressing dominant-negative Bright share similarities with Btk-deficient mice, including decreased serum IgM, poor anti-phosphorylcholine responses, and slightly reduced numbers of mature B cells. Although dominant-negative Bright mice developed B1 B cells, these were functionally deficient in Ig secretion. These data suggest a mechanistic explanation for the abnormal responses to phosphorylcholine observed in Btk-deficient mice, and indicate that Bright functions in a subset of Btk-dependent pathways in vivo, particularly those responses dominated by B1 B cells.
Collapse
Affiliation(s)
- Jamee C Nixon
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
13
|
Takatsu K, Nakajima H. IL-5 and eosinophilia. Curr Opin Immunol 2008; 20:288-94. [PMID: 18511250 DOI: 10.1016/j.coi.2008.04.001] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 03/24/2008] [Accepted: 04/02/2008] [Indexed: 02/08/2023]
Abstract
While Interleukin-5 (IL-5) is initially identified by its ability to support the growth and differentiation of activated B cells, overexpression of IL-5 significantly increases eosinophil numbers and antibody levels predominantly from an expanded population of B-1 cells in vivo. Conversely, mice lacking a functional gene for IL-5 or IL-5 receptor alpha chain (IL-5Ralpha) display a number of developmental and functional impairments in B cell and eosinophil lineages. In addition to the JAK-STAT and Btk pathway, the Ras-extracellular signal-regulated kinase (ERK) signals are important for IL-5-dependent cell survival. IL-5 critically regulates expression of genes involved in cell survival, IgH switch recombination, maturation in B cells and genes required for growth, survival, and effector function of eosinophils. IL-5Ralpha expression in B cells, but not in eosinophils is regulated by Oct-2. Eosinophilia is associated with a wide variety of conditions, including asthma and atopic diseases, helminth infections, drug hypersensitivity, and neoplastic disorders. In humans, the biologic effects of IL-5 are best characterized for eosinophils. The Sprouty-related Ena/VASP homology 1-domain containing protein (Spred)-1 negatively controls eosinophil numbers and functions by modulating IL-5 signaling in allergic asthma. We will emphasize that IL-5 plays a pivotal role in the innate and acquired immune response and eosinophilia.
Collapse
Affiliation(s)
- Kiyoshi Takatsu
- Department of Immunobiology and Pharmacological Genetics, University of Toyama, Toyama 930-0194, Japan.
| | | |
Collapse
|
14
|
Abstract
The Tec family of tyrosine kinases consists of five members (Itk, Rlk, Tec, Btk, and Bmx) that are expressed predominantly in hematopoietic cells. The exceptions, Tec and Bmx, are also found in endothelial cells. Tec kinases constitute the second largest family of cytoplasmic protein tyrosine kinases. While B cells express Btk and Tec, and T cells express Itk, Rlk, and Tec, all four of these kinases (Btk, Itk, Rlk, and Tec) can be detected in mast cells. This chapter will focus on the biochemical and cell biological data that have been accumulated regarding Itk, Rlk, Btk, and Tec. In particular, distinctions between the different Tec kinase family members will be highlighted, with a goal of providing insight into the unique functions of each kinase. The known functions of Tec kinases in T cell and mast cell signaling will then be described, with a particular focus on T cell receptor and mast cell Fc epsilon RI signaling pathways.
Collapse
Affiliation(s)
- Martin Felices
- Department of Pathology, University of Massachusetts Medical School, Massachusetts, USA
| | | | | | | |
Collapse
|
15
|
Rajaiya J, Nixon JC, Ayers N, Desgranges ZP, Roy AL, Webb CF. Induction of immunoglobulin heavy-chain transcription through the transcription factor Bright requires TFII-I. Mol Cell Biol 2006; 26:4758-68. [PMID: 16738337 PMCID: PMC1489113 DOI: 10.1128/mcb.02009-05] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 11/30/2005] [Accepted: 04/01/2006] [Indexed: 02/04/2023] Open
Abstract
Bright/ARID3a/Dril1, a member of the ARID family of transcription factors, is expressed in a highly regulated fashion in B lymphocytes, where it enhances immunoglobulin transcription three- to sixfold. Recent publications from our lab indicated that functional, but not kinase-inactive, Bruton's tyrosine kinase (Btk) is critical for Bright activity in an in vitro model system, yet Bright itself is not appreciably tyrosine phosphorylated. These data suggested that a third protein, and Btk substrate, must contribute to Bright-enhanced immunoglobulin transcription. The ubiquitously expressed transcription factor TFII-I was identified as a substrate for Btk several years ago. In this work, we show that TFII-I directly interacts with human Bright through amino acids in Bright's protein interaction domain and that specific tyrosine residues of TFII-I are essential for Bright-induced activity of an immunoglobulin reporter gene. Moreover, inhibition of TFII-I function in a B-cell line resulted in decreased heavy-chain transcript levels. These data suggest that Bright functions as a three-component protein complex in the immunoglobulin locus and tie together previous data indicating important roles for Btk and TFII-I in B lymphocytes.
Collapse
Affiliation(s)
- Jaya Rajaiya
- Oklahoma Medical Research Foundation, Immunobiology and Cancer Research Program, 825 N. E. 13th Street, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
16
|
Rajaiya J, Hatfield M, Nixon JC, Rawlings DJ, Webb CF. Bruton's tyrosine kinase regulates immunoglobulin promoter activation in association with the transcription factor Bright. Mol Cell Biol 2005; 25:2073-84. [PMID: 15743806 PMCID: PMC1061591 DOI: 10.1128/mcb.25.6.2073-2084.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 07/06/2004] [Accepted: 12/13/2004] [Indexed: 01/19/2023] Open
Abstract
Bright (B-cell regulator of immunoglobulin heavy chain transcription) binding to immunoglobulin heavy chain loci after B-cell activation is associated with increased heavy chain transcription. Our earlier reports demonstrated that Bright coimmunoprecipitates with Bruton's tyrosine kinase (Btk) and that these proteins associate in a DNA-binding complex in primary B cells. B cells from immunodeficient mice with a mutation in Btk failed to produce stable Bright DNA-binding complexes. In order to determine if Btk is important for Bright function, a transcription activation assay was established and analyzed using real-time PCR technology. Cells lacking both Bright and Btk were transfected with Bright and/or Btk along with an immunoglobulin heavy chain reporter construct. Immunoglobulin gene transcription was enhanced when Bright and Btk were coexpressed. In contrast, neither Bright nor Btk alone led to activation of heavy chain transcription. Furthermore, Bright function required both Btk kinase activity and sequences within the pleckstrin homology domain of Btk. Bright was not appreciably phosphorylated by Btk; however, a third tyrosine-phosphorylated protein coprecipitated with Bright. Thus, the ability of Bright to enhance immunoglobulin transcription critically requires functional Btk.
Collapse
Affiliation(s)
- Jaya Rajaiya
- Oklahoma Medical Research Foundation, Immunobiology and Cancer Research Program, 825 N.E. 13th St., Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
17
|
Lindvall JM, Blomberg KEM, Väliaho J, Vargas L, Heinonen JE, Berglöf A, Mohamed AJ, Nore BF, Vihinen M, Smith CIE. Bruton's tyrosine kinase: cell biology, sequence conservation, mutation spectrum, siRNA modifications, and expression profiling. Immunol Rev 2005; 203:200-15. [PMID: 15661031 DOI: 10.1111/j.0105-2896.2005.00225.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bruton's tyrosine kinase (Btk) is encoded by the gene that when mutated causes the primary immunodeficiency disease X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (Xid) in mice. Btk is a member of the Tec family of protein tyrosine kinases (PTKs) and plays a vital, but diverse, modulatory role in many cellular processes. Mutations affecting Btk block B-lymphocyte development. Btk is conserved among species, and in this review, we present the sequence of the full-length rat Btk and find it to be analogous to the mouse Btk sequence. We have also analyzed the wealth of information compiled in the mutation database for XLA (BTKbase), representing 554 unique molecular events in 823 families and demonstrate that only selected amino acids are sensitive to replacement (P < 0.001). Although genotype-phenotype correlations have not been established in XLA, based on these findings, we hypothesize that this relationship indeed exists. Using short interfering-RNA technology, we have previously generated active constructs downregulating Btk expression. However, application of recently established guidelines to enhance or decrease the activity was not successful, demonstrating the importance of the primary sequence. We also review the outcome of expression profiling, comparing B lymphocytes from XLA-, Xid-, and Btk-knockout (KO) donors to healthy controls. Finally, in spite of a few genes differing in expression between Xid- and Btk-KO mice, in vivo competition between cells expressing either mutation shows that there is no selective survival advantage of cells carrying one genetic defect over the other. We conclusively demonstrate that for the R28C-missense mutant (Xid), there is no biologically relevant residual activity or any dominant negative effect versus other proteins.
Collapse
|