1
|
Gerlini G, Susini P, Sestini S, Brandani P, Giannotti V, Borgognoni L. Langerhans Cells in Sentinel Lymph Nodes from Melanoma Patients. Cancers (Basel) 2024; 16:1890. [PMID: 38791968 PMCID: PMC11119378 DOI: 10.3390/cancers16101890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Langerhans cells (LCs) are professional Dendritic Cells (DCs) involved in immunoregulatory functions. At the skin level, LCs are immature. In response to tissue injuries, they migrate to regional Lymph Nodes (LNs), reaching a full maturation state. Then, they become effective antigen-presenting cells (APCs) that induce anti-cancer responses. Notably, melanoma patients present several DC alterations in the Sentinel Lymph Node (SLN), where primary antitumoral immunity is generated. LCs are the most represented DCs subset in melanoma SLNs and are expected to play a key role in the anti-melanoma response. With this paper, we aim to review the current knowledge and future perspectives regarding LCs and melanoma. METHODS A systematic review was carried out according to the PRISMA statement using the PubMed (MEDLINE) library from January 2004 to January 2024, searching for original studies discussing LC in melanoma. RESULTS The final synthesis included 15 articles. Several papers revealed significant LCs-melanoma interactions. CONCLUSIONS Melanoma immune escape mechanisms include SLN LC alterations, favoring LN metastasis arrival/homing and melanoma proliferation. The SLN LCs of melanoma patients are defective but not irreversibly, and their function may be restored by appropriate stimuli. Thus, LCs represent a promising target for future immunotherapeutic strategies and cancer vaccines.
Collapse
Affiliation(s)
- Gianni Gerlini
- Plastic and Reconstructive Surgery Unit, Regional Melanoma Referral Center and Melanoma & Skin Cancer Unit, Santa Maria Annunziata Hospital, 50012 Florence, Italy; (S.S.); (P.B.); (V.G.); (L.B.)
| | - Pietro Susini
- Plastic Surgery Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy;
| | - Serena Sestini
- Plastic and Reconstructive Surgery Unit, Regional Melanoma Referral Center and Melanoma & Skin Cancer Unit, Santa Maria Annunziata Hospital, 50012 Florence, Italy; (S.S.); (P.B.); (V.G.); (L.B.)
| | - Paola Brandani
- Plastic and Reconstructive Surgery Unit, Regional Melanoma Referral Center and Melanoma & Skin Cancer Unit, Santa Maria Annunziata Hospital, 50012 Florence, Italy; (S.S.); (P.B.); (V.G.); (L.B.)
| | - Vanni Giannotti
- Plastic and Reconstructive Surgery Unit, Regional Melanoma Referral Center and Melanoma & Skin Cancer Unit, Santa Maria Annunziata Hospital, 50012 Florence, Italy; (S.S.); (P.B.); (V.G.); (L.B.)
| | - Lorenzo Borgognoni
- Plastic and Reconstructive Surgery Unit, Regional Melanoma Referral Center and Melanoma & Skin Cancer Unit, Santa Maria Annunziata Hospital, 50012 Florence, Italy; (S.S.); (P.B.); (V.G.); (L.B.)
| |
Collapse
|
2
|
van der Haar Àvila I, Windhouwer B, van Vliet SJ. Current state-of-the-art on ganglioside-mediated immune modulation in the tumor microenvironment. Cancer Metastasis Rev 2023; 42:941-958. [PMID: 37266839 PMCID: PMC10584724 DOI: 10.1007/s10555-023-10108-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/13/2023] [Indexed: 06/03/2023]
Abstract
Gangliosides are sialylated glycolipids, mainly present at the cell surface membrane, involved in a variety of cellular signaling events. During malignant transformation, the composition of these glycosphingolipids is altered, leading to structural and functional changes, which are often negatively correlated to patient survival. Cancer cells have the ability to shed gangliosides into the tumor microenvironment, where they have a strong impact on anti-tumor immunity and promote tumor progression. Since most ganglioside species show prominent immunosuppressive activities, they might be considered checkpoint molecules released to counteract ongoing immunosurveillance. In this review, we highlight the current state-of-the-art on the ganglioside-mediated immunomodulation, specified for the different immune cells and individual gangliosides. In addition, we address the dual role that certain gangliosides play in the tumor microenvironment. Even though some ganglioside species have been more extensively studied than others, they are proven to contribute to the defense mechanisms of the tumor and should be regarded as promising therapeutic targets for inclusion in future immunotherapy regimens.
Collapse
Affiliation(s)
- Irene van der Haar Àvila
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, the Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Britt Windhouwer
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, the Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, the Netherlands.
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands.
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Cao S, Hu X, Ren S, Wang Y, Shao Y, Wu K, Yang Z, Yang W, He G, Li X. The biological role and immunotherapy of gangliosides and GD3 synthase in cancers. Front Cell Dev Biol 2023; 11:1076862. [PMID: 36824365 PMCID: PMC9941352 DOI: 10.3389/fcell.2023.1076862] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Gangliosides are a large subfamily of glycosphingolipids that broadly exist in the nervous system and interact with signaling molecules in the lipid rafts. GD3 and GD2 are two types of disialogangliosides (GDs) that include two sialic acid residues. The expression of GD3 and GD2 in various cancers is mostly upregulated and is involved in tumor proliferation, invasion, metastasis, and immune responses. GD3 synthase (GD3S, ST8SiaI), a subclass of sialyltransferases, regulates the biosynthesis of GD3 and GD2. GD3S is also upregulated in most tumors and plays an important role in the development and progression of tumors. Many clinical trials targeting GD2 are ongoing and various immunotherapy studies targeting gangliosides and GD3S are gradually attracting much interest and attention. This review summarizes the function, molecular mechanisms, and ongoing clinical applications of GD3, GD2, and GD3S in abundant types of tumors, which aims to provide novel targets for future cancer therapy.
Collapse
Affiliation(s)
- Shangqi Cao
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xu Hu
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Shangqing Ren
- 2Robotic Minimally Invasive Surgery Center, Sichuan Academy of Medical Sciences and Sichuan Provincial Peoples Hospital, Chengdu, China
| | - Yaohui Wang
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yanxiang Shao
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Kan Wu
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Zhen Yang
- 3Department of Urology, Chengdu Second People’s Hospital, Chengdu, China
| | - Weixiao Yang
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Gu He
- 4State Key Laboratory of Biotherapy and Department of Pharmacy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China,*Correspondence: Gu He, ; Xiang Li,
| | - Xiang Li
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China,*Correspondence: Gu He, ; Xiang Li,
| |
Collapse
|
4
|
Stoyanova E, Mihaylova N, Ralchev N, Ganova P, Bradyanova S, Manoylov I, Raynova Y, Idakieva K, Tchorbanov A. Antitumor Properties of Epitope-Specific Engineered Vaccine in Murine Model of Melanoma. Mar Drugs 2022; 20:md20060392. [PMID: 35736195 PMCID: PMC9227764 DOI: 10.3390/md20060392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Finding new effective compounds of natural origin for composing anti-tumor vaccines is one of the main goals of antitumor research. Promising anti-cancer agents are the gastropodan hemocyanins-multimeric copper-containing glycoproteins used so far for therapy of different tumors. The properties of hemocyanins isolated from the marine snail Rapana thomasiana (RtH) and the terrestrial snail Helix aspersa (HaH) upon their use as carrier-proteins in conjugated vaccines, containing ganglioside mimotope GD3P4 peptide, were studied in the developed murine melanoma model. Murine melanoma cell line B16F10 was used for solid tumor establishment in C57BL/6 mice using various schemes of therapy. Protein engineering, flow cytometry, and cytotoxicity assays were also performed. The administration of the protein-engineered vaccines RtH-GD3P4 or HaH-GD3P4 under the three different regimens of therapy in the B16F10 murine melanoma model suppressed tumor growth, decreased tumor incidence, and prolonged the survival of treated animals. The immunization of experimental mice induced an infiltration of immunocompetent cells into the tumors and generated cytotoxic tumor-specific T cells in the spleen. The treatment also generates significantly higher levels of tumor-infiltrated M1 macrophages, compared to untreated tumor-bearing control mice. This study demonstrated a promising approach for cancer therapy having potential applications for cancer vaccine research.
Collapse
Affiliation(s)
- Emiliya Stoyanova
- Laboratory of Experimental Immunology, Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.S.); (N.M.); (N.R.); (P.G.); (S.B.); (I.M.)
| | - Nikolina Mihaylova
- Laboratory of Experimental Immunology, Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.S.); (N.M.); (N.R.); (P.G.); (S.B.); (I.M.)
| | - Nikola Ralchev
- Laboratory of Experimental Immunology, Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.S.); (N.M.); (N.R.); (P.G.); (S.B.); (I.M.)
| | - Petya Ganova
- Laboratory of Experimental Immunology, Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.S.); (N.M.); (N.R.); (P.G.); (S.B.); (I.M.)
| | - Silviya Bradyanova
- Laboratory of Experimental Immunology, Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.S.); (N.M.); (N.R.); (P.G.); (S.B.); (I.M.)
| | - Iliyan Manoylov
- Laboratory of Experimental Immunology, Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.S.); (N.M.); (N.R.); (P.G.); (S.B.); (I.M.)
| | - Yuliana Raynova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (Y.R.); (K.I.)
| | - Krassimira Idakieva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (Y.R.); (K.I.)
| | - Andrey Tchorbanov
- Laboratory of Experimental Immunology, Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.S.); (N.M.); (N.R.); (P.G.); (S.B.); (I.M.)
- Correspondence: ; Tel.: + 359-2-979-6357; Fax: +359-2-870-0109
| |
Collapse
|
5
|
Severity of COVID-19 Patients Predicted by Serum Sphingolipids Signature. Int J Mol Sci 2021; 22:ijms221910198. [PMID: 34638539 PMCID: PMC8508132 DOI: 10.3390/ijms221910198] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/19/2022] Open
Abstract
The reason behind the high inter-individual variability in response to SARS-CoV-2 infection and patient’s outcome is poorly understood. The present study targets the sphingolipid profile of twenty-four healthy controls and fifty-nine COVID-19 patients with different disease severity. Sera were analyzed by untargeted and targeted mass spectrometry and ELISA. Results indicated a progressive increase in dihydrosphingosine, dihydroceramides, ceramides, sphingosine, and a decrease in sphingosine-1-phosphate. These changes are associated with a serine palmitoyltransferase long chain base subunit 1 (SPTLC1) increase in relation to COVID-19 severity. Severe patients showed a decrease in sphingomyelins and a high level of acid sphingomyelinase (aSMase) that influences monosialodihexosyl ganglioside (GM3) C16:0 levels. Critical patients are characterized by high levels of dihydrosphingosine and dihydroceramide but not of glycosphingolipids. In severe and critical patients, unbalanced lipid metabolism induces lipid raft remodeling, leads to cell apoptosis and immunoescape, suggesting active sphingolipid participation in viral infection. Furthermore, results indicated that the sphingolipid and glycosphingolipid metabolic rewiring promoted by aSMase and GM3 is age-dependent but also characteristic of severe and critical patients influencing prognosis and increasing viral load. AUCs calculated from ROC curves indicated ceramides C16:0, C18:0, C24:1, sphingosine and SPTLC1 as putative biomarkers of disease evolution.
Collapse
|
6
|
Kamińska P, Buszka K, Zabel M, Nowicki M, Alix-Panabières C, Budna-Tukan J. Liquid Biopsy in Melanoma: Significance in Diagnostics, Prediction and Treatment Monitoring. Int J Mol Sci 2021; 22:9714. [PMID: 34575876 PMCID: PMC8468624 DOI: 10.3390/ijms22189714] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Liquid biopsy is a common term referring to circulating tumor cells and other biomarkers, such as circulating tumor DNA (ctDNA) or extracellular vesicles. Liquid biopsy presents a range of clinical advantages, such as the low invasiveness of the blood sample collection and continuous control of the tumor progression. In addition, this approach enables the mechanisms of drug resistance to be determined in various methods of cancer treatment, including immunotherapy. However, in the case of melanoma, the application of liquid biopsy in patient stratification and therapy needs further investigation. This review attempts to collect all of the relevant and recent information about circulating melanoma cells (CMCs) related to the context of malignant melanoma and immunotherapy. Furthermore, the biology of liquid biopsy analytes, including CMCs, ctDNA, mRNA and exosomes, as well as techniques for their detection and isolation, are also described. The available data support the notion that thoughtful selection of biomarkers and technologies for their detection can contribute to the development of precision medicine by increasing the efficacy of cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Paula Kamińska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.K.); (K.B.); (M.N.)
| | - Karolina Buszka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.K.); (K.B.); (M.N.)
| | - Maciej Zabel
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, 65-046 Zielona Góra, Poland;
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.K.); (K.B.); (M.N.)
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, 34093 Montpellier, France;
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, 34000 Montpellier, France
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.K.); (K.B.); (M.N.)
| |
Collapse
|
7
|
Zhu S, Yang N, Wu J, Wang X, Wang W, Liu YJ, Chen J. Tumor microenvironment-related dendritic cell deficiency: a target to enhance tumor immunotherapy. Pharmacol Res 2020; 159:104980. [PMID: 32504832 DOI: 10.1016/j.phrs.2020.104980] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/07/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Dendritic cells (DCs), as specialized antigen-presenting cells, are essential for the initiation of specific T cell responses in innate antitumor immunity and, in certain cases, support humoral responses to inhibit tumor development. Mounting evidence suggests that the DC system displays a broad spectrum of dysfunctional status in the tumor microenvironment (TME), which ultimately affects antitumor immune responses. DC-based therapy can restore the function of DCs in the TME, thus showing a promising potential in tumor therapy. In this review, we provide an overview of the DC deficiency caused by various factors in the TME and discuss proposed strategies to reverse DC deficiency and the applications of novel combinatorial DC-based therapy for immune normalization of the tumor.
Collapse
Affiliation(s)
- Shan Zhu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Ning Yang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jing Wu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xue Wang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Wan Wang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | | | - Jingtao Chen
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
8
|
Hargadon KM. Tumor microenvironmental influences on dendritic cell and T cell function: A focus on clinically relevant immunologic and metabolic checkpoints. Clin Transl Med 2020; 10:374-411. [PMID: 32508018 PMCID: PMC7240858 DOI: 10.1002/ctm2.37] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer immunotherapy is fast becoming one of the most promising means of treating malignant disease. Cancer vaccines, adoptive cell transfer therapies, and immune checkpoint blockade have all shown varying levels of success in the clinical management of several cancer types in recent years. However, despite the clinical benefits often achieved by these regimens, an ongoing problem for many patients is the inherent or acquired resistance of their cancer to immunotherapy. It is now appreciated that dendritic cells and T lymphocytes both play key roles in antitumor immune responses and that the tumor microenvironment presents a number of barriers to the function of these cells that can ultimately limit the success of immunotherapy. In particular, the engagement of several immunologic and metabolic checkpoints within the hostile tumor microenvironment can severely compromise the antitumor functions of these important immune populations. This review highlights work from both preclinical and clinical studies that has shaped our understanding of the tumor microenvironment and its influence on dendritic cell and T cell function. It focuses on clinically relevant targeted and immunotherapeutic strategies that have emerged from these studies in an effort to prevent or overcome immune subversion within the tumor microenvironment. Emphasis is also placed on the potential of next-generation combinatorial regimens that target metabolic and immunologic impediments to dendritic cell and T lymphocyte function as strategies to improve antitumor immune reactivity and the clinical outcome of cancer immunotherapy going forward.
Collapse
Affiliation(s)
- Kristian M. Hargadon
- Hargadon LaboratoryDepartment of BiologyHampden‐Sydney CollegeHampden‐SydneyVirginiaUSA
| |
Collapse
|
9
|
Jin KT, Lan HR, Chen XY, Wang SB, Ying XJ, Lin Y, Mou XZ. Recent advances in carbohydrate-based cancer vaccines. Biotechnol Lett 2019; 41:641-650. [DOI: 10.1007/s10529-019-02675-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022]
|
10
|
Otake AH, de Freitas Saito R, Duarte APM, Ramos AF, Chammas R. G D3 ganglioside-enriched extracellular vesicles stimulate melanocyte migration. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:422-432. [PMID: 29908366 DOI: 10.1016/j.bbalip.2018.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/17/2018] [Accepted: 06/12/2018] [Indexed: 01/30/2023]
Abstract
Melanomas often accumulate gangliosides, sialic acid-containing glycosphingolipids found in the outer leaflet of plasma membranes, as disialoganglioside GD3 and its derivatives. Here, we have transfected the GD3 synthase gene (ST8Sia I) in a normal melanocyte cell line in order to evaluate changes in the biological behavior of non-transformed cells. GD3-synthase expressing cells converted GM3 into GD3 and accumulated both GD3 and its acetylated form, 9-O-acetyl-GD3. Melanocytes were rendered more migratory on laminin-1 surfaces. Cell migration studies using the different transfectants, either treated or not with the glucosylceramide synthase inhibitor d-1-threo-1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (PPPP), allowed us to show that while GM3 is a negative regulator of melanocyte migration, GD3 increases it. We showed that gangliosides were shed to the matrix by migrating cells and that GD3 synthase transfected cells shed extracellular vesicles (EVs) enriched in GD3. EVs enriched in GD3 stimulated cell migration of GD3 negative cells, as observed in time lapse microscopy studies. Otherwise, EVs shed by GM3+veGD3-ve cells impaired migration and diminished cell velocity in cells overexpressing GD3. The balance of antimigratory GM3 and promigratory GD3 gangliosides in melanocytes could be altered not only by the overexpression of enzymes such as ST8Sia I, but also by the horizontal transfer of ganglioside enriched extracellular vesicles. This study highlights that extracellular vesicles transfer biological information also through their membrane components, which include a variety of glycosphingolipids remodeled in disease states such as cancer.
Collapse
Affiliation(s)
- Andreia Hanada Otake
- Center for Translational Research in Oncology (LIM-24), Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, 01246-000 São Paulo, SP, Brazil
| | - Renata de Freitas Saito
- Center for Translational Research in Oncology (LIM-24), Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, 01246-000 São Paulo, SP, Brazil
| | - Ana Paula Marques Duarte
- Center for Translational Research in Oncology (LIM-24), Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, 01246-000 São Paulo, SP, Brazil
| | - Alexandre Ferreira Ramos
- Center for Translational Research in Oncology (LIM-24), Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, 01246-000 São Paulo, SP, Brazil; Escola de Artes, Ciências e Humanidades da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Roger Chammas
- Center for Translational Research in Oncology (LIM-24), Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, 01246-000 São Paulo, SP, Brazil.
| |
Collapse
|
11
|
Hargadon KM. Strategies to Improve the Efficacy of Dendritic Cell-Based Immunotherapy for Melanoma. Front Immunol 2017; 8:1594. [PMID: 29209327 PMCID: PMC5702020 DOI: 10.3389/fimmu.2017.01594] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022] Open
Abstract
Melanoma is a highly aggressive form of skin cancer that frequently metastasizes to vital organs, where it is often difficult to treat with traditional therapies such as surgery and radiation. In such cases of metastatic disease, immunotherapy has emerged in recent years as an exciting treatment option for melanoma patients. Despite unprecedented successes with immune therapy in the clinic, many patients still experience disease relapse, and others fail to respond at all, thus highlighting the need to better understand factors that influence the efficacy of antitumor immune responses. At the heart of antitumor immunity are dendritic cells (DCs), an innate population of cells that function as critical regulators of immune tolerance and activation. As such, DCs have the potential to serve as important targets and delivery agents of cancer immunotherapies. Even immunotherapies that do not directly target or employ DCs, such as checkpoint blockade therapy and adoptive cell transfer therapy, are likely to rely on DCs that shape the quality of therapy-associated antitumor immunity. Therefore, understanding factors that regulate the function of tumor-associated DCs is critical for optimizing both current and future immunotherapeutic strategies for treating melanoma. To this end, this review focuses on advances in our understanding of DC function in the context of melanoma, with particular emphasis on (1) the role of immunogenic cell death in eliciting tumor-associated DC activation, (2) immunosuppression of DC function by melanoma-associated factors in the tumor microenvironment, (3) metabolic constraints on the activation of tumor-associated DCs, and (4) the role of the microbiome in shaping the immunogenicity of DCs and the overall quality of anti-melanoma immune responses they mediate. Additionally, this review highlights novel DC-based immunotherapies for melanoma that are emerging from recent progress in each of these areas of investigation, and it discusses current issues and questions that will need to be addressed in future studies aimed at optimizing the function of melanoma-associated DCs and the antitumor immune responses they direct against this cancer.
Collapse
Affiliation(s)
- Kristian M. Hargadon
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, United States
| |
Collapse
|
12
|
Hernández AM, Rodríguez-Zhurbenko N. Detection of Naturally Occurring Human Antibodies Against Gangliosides by ELISA. Methods Mol Biol 2017; 1643:179-186. [PMID: 28667538 DOI: 10.1007/978-1-4939-7180-0_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gangliosides are sialic acid-containing glycolipids that have been considered attractive targets for cancer immunotherapy, based on the qualitative and quantitative changes they suffer during malignant transformation and due to their importance for tumor biology. Natural antibodies against gangliosides have been detected not only in cancer patients but also in healthy donors. The presence of these antibodies can be used as diagnostic or prognostic factor. However, these responses are difficult to detect because anti-ganglioside antibodies are usually of IgM isotype and low affinity. Enzyme Linked Immunosorbent Assay (ELISA) is an immunoassay based on the specific binding of antibodies to antigens bound to a solid phase. These antigens can be glycolipids like gangliosides. An enzyme linked to the last reactant allows the detection of specific binding through the development of color after the addition of a suitable substrate. ELISA combines the specificity of antibodies with the sensitivity of enzyme reactions. The ELISA method described herein can be used to detect antibody responses against gangliosides not only related to cancer but also to autoimmune diseases and infections, both in healthy donors, and patients, untreated or receiving specific immunotherapy.
Collapse
|
13
|
Richichi B, Pastori C, Gherardi S, Venuti A, Cerreto A, Sanvito F, Toma L, Lopalco L, Nativi C. GM-3 Lactone Mimetic Interacts with CD4 and HIV-1 Env Proteins, Hampering HIV-1 Infection without Inducing a Histopathological Alteration. ACS Infect Dis 2016; 2:564-71. [PMID: 27626296 DOI: 10.1021/acsinfecdis.6b00056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glycosphingolipids (GSLs) are involved in HIV-1 entry. GM-3 ganglioside, a widespread GSL, affects HIV entry and infection in different ways, depending on the concentration, through its anchoring activity in lipid rafts. This explains why the induction of an altered GSLs metabolism was a tempting approach to reducing HIV-1 cell infection. This study assayed the biological properties of a synthetic GM-3 lactone mimetic, 1, aimed at blocking HIV-1 infection without inducing the adverse events expected by an altered metabolism of GLSs in vivo. The mimetic, conjugated to immunogenic protein ovalbumin and multivalently presented, was able to bind the CD4 molecule with high affinity and block its engagement with gp120, thus inhibiting virus entry. Elicited antimimetic antibodies were also able to block HIV-1 infection in vitro, with activity complementary to that observed for 1. These preliminary results show that the use of GSLs mimetics can be a novel promising mode to block HIV-1 infection and that 1 and other GSL mimetics deserve further attention.
Collapse
Affiliation(s)
- Barbara Richichi
- Department of Chemistry, University of Florence, 50019 Sesto F.no (FI), Italy
| | - Claudia Pastori
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20127 Milan, Italy
| | - Stefano Gherardi
- Department of Chemistry, University of Florence, 50019 Sesto F.no (FI), Italy
| | - Assunta Venuti
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20127 Milan, Italy
| | - Antonella Cerreto
- Department of Chemistry, University of Florence, 50019 Sesto F.no (FI), Italy
| | - Francesca Sanvito
- Pathology Department, Mouse Histopathology Unit, San Raffaele Scientific Institute, 20100 Milan, Italy
| | - Lucio Toma
- Department
of Chemistry, University of Pavia, Pavia, Italy
| | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20127 Milan, Italy
| | - Cristina Nativi
- Department of Chemistry, University of Florence, 50019 Sesto F.no (FI), Italy
| |
Collapse
|
14
|
Chen K, Wang JM, Yuan R, Yi X, Li L, Gong W, Yang T, Li L, Su S. Tissue-resident dendritic cells and diseases involving dendritic cell malfunction. Int Immunopharmacol 2016; 34:1-15. [PMID: 26906720 PMCID: PMC4818737 DOI: 10.1016/j.intimp.2016.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/05/2016] [Indexed: 01/10/2023]
Abstract
Dendritic cells (DCs) control immune responses and are central to the development of immune memory and tolerance. DCs initiate and orchestrate immune responses in a manner that depends on signals they receive from microbes and cellular environment. Although DCs consist mainly of bone marrow-derived and resident populations, a third tissue-derived population resides the spleen and lymph nodes (LNs), different subsets of tissue-derived DCs have been identified in the blood, spleen, lymph nodes, skin, lung, liver, gut and kidney to maintain the tolerance and control immune responses. Tissue-resident DCs express different receptors for microbe-associated molecular patterns (MAMPs) and damage-associated molecular patterns (DAMPs), which were activated to promote the production of pro- or anti-inflammatory cytokines. Malfunction of DCs contributes to diseases such as autoimmunity, allergy, and cancer. It is therefore important to update the knowledge about resident DC subsets and diseases associated with DC malfunction.
Collapse
Affiliation(s)
- Keqiang Chen
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0910, USA.
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | - Ruoxi Yuan
- Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0910, USA
| | - Xiang Yi
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Liangzhu Li
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Wanghua Gong
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Tianshu Yang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Liwu Li
- Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0910, USA
| | - Shaobo Su
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
15
|
Daniotti JL, Lardone RD, Vilcaes AA. Dysregulated Expression of Glycolipids in Tumor Cells: From Negative Modulator of Anti-tumor Immunity to Promising Targets for Developing Therapeutic Agents. Front Oncol 2016; 5:300. [PMID: 26779443 PMCID: PMC4703717 DOI: 10.3389/fonc.2015.00300] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/14/2015] [Indexed: 12/14/2022] Open
Abstract
Glycolipids are complex molecules consisting of a ceramide lipid moiety linked to a glycan chain of variable length and structure. Among these are found the gangliosides, which are sialylated glycolipids ubiquitously distributed on the outer layer of vertebrate plasma membranes. Changes in the expression of certain species of gangliosides have been described to occur during cell proliferation, differentiation, and ontogenesis. However, the aberrant and elevated expression of gangliosides has been also observed in different types of cancer cells, thereby promoting tumor survival. Moreover, gangliosides are actively released from the membrane of tumor cells, having a strong impact on impairing anti-tumor immunity. Beyond the undesirable effects of gangliosides in cancer cells, a substantial number of cancer immunotherapies have been developed in recent years that have used gangliosides as the main target. This has resulted in successful immune cell- or antibody-responses against glycolipids, with promising results having been obtained in clinical trials. In this review, we provide a general overview on the metabolism of glycolipids, both in normal and tumor cells, as well as examining glycolipid-mediated immune modulation and the main successes achieved in immunotherapies using gangliosides as molecular targets.
Collapse
Affiliation(s)
- Jose Luis Daniotti
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba , Córdoba , Argentina
| | - Ricardo D Lardone
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute at Providence Saint John's Health Center , Santa Monica, CA , USA
| | - Aldo A Vilcaes
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba , Córdoba , Argentina
| |
Collapse
|
16
|
Rodriguez-Zhurbenko N, Rabade-Chediak M, Martinez D, Griñan T, Hernandez AM. Anti-NeuGcGM3 reactivity: a possible role of natural antibodies and B-1 cells in tumor immunosurveillance. Ann N Y Acad Sci 2015. [DOI: 10.1111/nyas.12827] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nely Rodriguez-Zhurbenko
- Natural Antibodies Group, Tumor Immunology Division; Center of Molecular Immunology; Havana Cuba
| | - Maura Rabade-Chediak
- Chimeric Proteins Group, Immunobiology Division; Center of Molecular Immunology; Havana Cuba
| | - Darel Martinez
- Natural Antibodies Group, Tumor Immunology Division; Center of Molecular Immunology; Havana Cuba
| | - Tania Griñan
- Natural Antibodies Group, Tumor Immunology Division; Center of Molecular Immunology; Havana Cuba
| | - Ana Maria Hernandez
- Natural Antibodies Group, Tumor Immunology Division; Center of Molecular Immunology; Havana Cuba
| |
Collapse
|
17
|
Hernández AM, Vázquez AM. Racotumomab–alum vaccine for the treatment of non-small-cell lung cancer. Expert Rev Vaccines 2014; 14:9-20. [DOI: 10.1586/14760584.2015.984691] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Büll C, den Brok MH, Adema GJ. Sweet escape: sialic acids in tumor immune evasion. Biochim Biophys Acta Rev Cancer 2014; 1846:238-46. [PMID: 25026312 DOI: 10.1016/j.bbcan.2014.07.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 12/24/2022]
Abstract
Sialic acids represent a family of sugar molecules derived from neuraminic acid that frequently terminate glycan chains and contribute to many biological processes. Already five decades ago, aberrantly high expression of sialic acids has been proposed to protect cancer cells from recognition and eradication by the immune system. Today, increased understanding at the molecular level demonstrates the broad immunomodulatory capacity of tumor-derived sialic acids that is, at least in part, mediated through interactions with immunoinhibitory Siglec receptors. Here we will review current studies from a sialic acid sugar perspective showing that tumor-derived sialic acids disable major killing mechanisms of effector immune cells, trigger production of immune suppressive cytokines and dampen activation of antigen-presenting cells and subsequent induction of anti-tumor immune responses. Furthermore, strategies to modulate sialic acid expression in cancer cells to improve cancer immunotherapy will be discussed.
Collapse
Affiliation(s)
- Christian Büll
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Martijn H den Brok
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Gosse J Adema
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
19
|
van den Berk LCJ, Jansen BJH, Snowden S, Siebers-Vermeulen KGC, Gilissen C, Kögler G, Figdor CG, Wheelock CE, Torensma R. Cord blood mesenchymal stem cells suppress DC-T Cell proliferation via prostaglandin B2. Stem Cells Dev 2014; 23:1582-93. [PMID: 24649980 DOI: 10.1089/scd.2013.0433] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Immune suppression is a very stable property of multipotent stromal cells also known as mesenchymal stem cells (MSCs). All cell lines tested showed robust immune suppression not affected by a long culture history. Several mechanisms were described to account for this capability. Since several of the described mechanisms were not causing the immune suppression, the expression pattern of cord-blood-derived MSCs by microarray experiments was determined. Dendritic cells cocultured with cord blood MSCs were compared with cord blood MSCs. Putative immune suppressive candidates were tested to explain this inhibition. We find that cord blood MSCs themselves are hardly immunogenic as tested with allogeneic T-cells. Dendritic cells cocultured with second-party T-cells evoked abundant proliferation that was inhibited by third-party cord blood MSCs. Optimal inhibition was seen with one cord blood MSC for every dendritic cell. Blocking human leukocyte antigen G only saw partial recovery of proliferation. Several cytokines, gangliosides, enzymes like arginase, NO synthase, and indole amine 2,3-dioxygenase as well as the induction of Treg were not involved in the inhibition. The inhibiting moiety was identified as prostaglandin B2 by lipid metabolite analysis of the culture supernatant and confirmed with purified prostaglandin B2.
Collapse
Affiliation(s)
- Lieke C J van den Berk
- 1 Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Seliger B, Massa C. The dark side of dendritic cells: development and exploitation of tolerogenic activity that favor tumor outgrowth and immune escape. Front Immunol 2013; 4:419. [PMID: 24348482 PMCID: PMC3845009 DOI: 10.3389/fimmu.2013.00419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/17/2013] [Indexed: 01/27/2023] Open
Abstract
Dendritic cells (DC) play a central role in the regulation of the immune responses by providing the information needed to decide between tolerance, ignorance, or active responses. For this reason different therapies aim at manipulating DC to obtain the desired response, such as enhanced cell-mediated toxicity against tumor and infected cells or the induction of tolerance in autoimmunity and transplantation. In the last decade studies performed in these settings have started to identify (some) molecules/factors involved in the acquisition of a tolerogenic DC phenotype as well as the underlying mechanisms of their regulatory function on different immune cell populations.
Collapse
Affiliation(s)
- Barbara Seliger
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg , Halle (Saale) , Germany
| | - Chiara Massa
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg , Halle (Saale) , Germany
| |
Collapse
|
21
|
Kawahara M, Takaku H. Intradermal immunization with combined baculovirus and tumor cell lysate induces effective antitumor immunity in mice. Int J Oncol 2013; 43:2023-30. [PMID: 24101126 DOI: 10.3892/ijo.2013.2125] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/13/2013] [Indexed: 11/06/2022] Open
Abstract
Although tumor lysate contains all the potential helper and killer epitopes capable of stimulating T cells, it is difficult to use as a cancer vaccine because it suppresses dendritic cell (DC) function. We report that wild-type baculovirus possesses an adjuvant effect to improve the immunogenicity of tumor lysate. When mice were administered CT26 tumor cell lysate combined with baculovirus intradermally, antitumor immunity was induced and rejection of CT26 tumor growth was observed in 40% of the immunized mice. In contrast, such antitumor immunity was not elicited in mice inoculated with tumor cell lysate or baculovirus alone. In tumor-bearing mice, which had previously received the combined baculovirus and tumor lysate vaccine, the established tumors were completely eradicated by administering a booster dose of the combined vaccine. This antitumor effect was attributed to tumor-specific T cell immunity mediated primarily by CD8⁺ T cells. Baculovirus also strongly activated DCs loaded with tumor lysate. Increased interleukin (IL)-6 and IL-12p70 production were also observed in DCs co-cultured with tumor cell lysate and baculovirus. Our study demonstrates that combined baculovirus and tumor lysate vaccine can effectively stimulate DCs to induce acquired antitumor immunity.
Collapse
Affiliation(s)
- Mamoru Kawahara
- Research and Development Department, Japan BCG Laboratory, Kiyose, Tokyo 204-0022, Japan
| | | |
Collapse
|
22
|
Ma Y, Shurin GV, Peiyuan Z, Shurin MR. Dendritic cells in the cancer microenvironment. J Cancer 2012; 4:36-44. [PMID: 23386903 PMCID: PMC3564245 DOI: 10.7150/jca.5046] [Citation(s) in RCA: 258] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/01/2012] [Indexed: 01/01/2023] Open
Abstract
The complexity of the tumor immunoenvironment is underscored by the emergence and discovery of different subsets of immune effectors and regulatory cells. Tumor-induced polarization of immune cell differentiation and function makes this unique environment even more intricate and variable. Dendritic cells (DCs) represent a special group of cells that display different phenotype and activity at the tumor site and exhibit differential pro-tumorigenic and anti-tumorigenic functions. DCs play a key role in inducing and maintaining the antitumor immunity, but in the tumor environment their antigen-presenting function may be lost or inefficient. DCs might be also polarized into immunosuppressive/tolerogenic regulatory DCs, which limit activity of effector T cells and support tumor growth and progression. Although various factors and signaling pathways have been described to be responsible for abnormal functioning of DCs in cancer, there are still no feasible therapeutic modalities available for preventing or reversing DC malfunction in tumor-bearing hosts. Thus, better understanding of DC immunobiology in cancer is pivotal for designing novel or improved therapeutic approaches that will allow proper functioning of DCs in patients with cancer.
Collapse
Affiliation(s)
- Yang Ma
- 1. Departments of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
23
|
Vázquez AMH, Rodrèguez-Zhurbenko N, López AMV. Anti-ganglioside anti-idiotypic vaccination: more than molecular mimicry. Front Oncol 2012. [PMID: 23181219 PMCID: PMC3501824 DOI: 10.3389/fonc.2012.00170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Surgery, chemotherapy, and radiation therapy are standard modalities for cancer treatment, but the effectiveness of these treatments has reached a plateau. Thus, other strategies are being explored to combine with the current treatment paradigms in order to reach better clinical results. One of these approaches is the active immunotherapy based on the induction of anti-tumor responses by anti-idiotypic vaccination. This approach arose from Jerne’s idiotypic network theory, which postulates that B lymphocytes forms a functional network, with a role in the establishment of the immune repertoires, in the regulation of natural antibody production and even in the establishment of natural tolerance. Due to the large potential diversity of the immunoglobulin variable regions, the idiotypes repertoire can mimic the universe of self and foreign epitopes, even those of non-protein nature, like gangliosides. Gangliosides are sialic acid-containing glycolipids that have been considered attractive targets for cancer immunotherapy, based on the qualitative and quantitative changes they suffer during malignant transformation and due to their importance for tumor biology. Although any idiotype could be able to mimic any antigen, only those related to antigens involved in functions relevant for organism homeostasis, and that in consequence has been fixed by evolution, would be able not only to mimic, but also to activate the idiotypic cascades related with the nominal antigen. The present review updates the results, failures and hopes, obtained with ganglioside mimicking anti-idiotypic antibodies and presents evidences of the existence of a natural response against gangliosides, suggesting that these glycolipids could be idiotypically relevant antigens.
Collapse
Affiliation(s)
- Ana M H Vázquez
- Tumor Immunology Direction, Center of Molecular Immunology Habana, Cuba
| | | | | |
Collapse
|
24
|
Cornelissen R, Lievense LA, Heuvers ME, Maat AP, Hendriks RW, Hoogsteden HC, Hegmans JP, Aerts JG. Dendritic cell-based immunotherapy in mesothelioma. Immunotherapy 2012; 4:1011-22. [DOI: 10.2217/imt.12.108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesothelioma is a rare thoracic malignancy with a dismal prognosis. Current treatment options are scarce and clinical outcomes are rather disappointing. Due to the immunogenic nature of mesothelioma, several studies have investigated immunotherapeutic strategies to improve the prognosis of patients with mesothelioma. In the last decade, progress in knowledge of the modulation of the immune system to attack the tumor has been remarkable, but the optimal strategy for immunotherapy has yet to be unraveled. Because of their potent antigen-presenting capacity, dendritic cells are acknowledged as a promising agent in immunotherapeutic approaches in a number of malignancies. This review gives an update and provides a future perspective in which immunotherapy may improve the outcome of mesothelioma therapy.
Collapse
Affiliation(s)
- Robin Cornelissen
- Department of Pulmonary Medicine, Erasmus MC, SV-125, PO-Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Lysanne A Lievense
- Department of Pulmonary Medicine, Erasmus MC, SV-125, PO-Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Marlies E Heuvers
- Department of Pulmonary Medicine, Erasmus MC, SV-125, PO-Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Alexander P Maat
- Department of Thoracic Surgery, Erasmus Medical Center – Daniel den Hoed Cancer Center, University Medical Center, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, SV-125, PO-Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Henk C Hoogsteden
- Department of Pulmonary Medicine, Erasmus MC, SV-125, PO-Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Joost P Hegmans
- Department of Pulmonary Medicine, Erasmus MC, SV-125, PO-Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Joachim G Aerts
- Department of Pulmonary Medicine, Erasmus MC, SV-125, PO-Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
25
|
Savai R, Pullamsetti SS, Kolbe J, Bieniek E, Voswinckel R, Fink L, Scheed A, Ritter C, Dahal BK, Vater A, Klussmann S, Ghofrani HA, Weissmann N, Klepetko W, Banat GA, Seeger W, Grimminger F, Schermuly RT. Immune and inflammatory cell involvement in the pathology of idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 2012; 186:897-908. [PMID: 22955318 DOI: 10.1164/rccm.201202-0335oc] [Citation(s) in RCA: 295] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
RATIONALE Pulmonary arterial hypertension (PAH) is characterized by vasoconstriction and vascular remodeling. Recent studies have revealed that immune and inflammatory responses play a crucial role in pathogenesis of idiopathic PAH. OBJECTIVES To systematically evaluate the number and cross-sectional distribution of inflammatory cells in different sizes of pulmonary arteries from explanted lungs of patients with idiopathic PAH versus healthy donor lungs and to demonstrate functional relevance by blocking stromal-derived factor-1 by the Spiegelmer NOX-A12 in monocrotaline-induced pulmonary hypertension in rats. METHODS Immunohistochemistry was performed on lung tissue sections from patients with idiopathic PAH and healthy donors. All positively stained cells in whole-lung tissue sections, surrounding the vessels, and in the different compartments of the vessels were counted. To study the effects of blocking SDF-1, rats with monocrotaline-induced pulmonary hypertension were treated with NOX-A12 from Day 21 to Day 35 after monocrotaline administration. MEASUREMENTS AND MAIN RESULTS We found a significant increase of the perivascular number of macrophages (CD68(+)), macrophages/monocytes (CD14(+)), mast cells (toluidine blue(+)), dendritic cells (CD209(+)), T cells (CD3(+)), cytotoxic T cells (CD8(+)), and helper T cells (CD4(+)) in vessels of idiopathic PAH lungs compared with control subjects. FoxP3(+) mononuclear cells were significantly decreased. In the monocrotaline model, the NOX-A12-induced reduction of mast cells, CD68(+) macrophages, and CD3(+) T cells was associated with improvement of hemodynamics and pulmonary vascular remodeling. CONCLUSIONS Our findings reveal altered perivascular inflammatory cell infiltration in pulmonary vascular lesions of patients with idiopathic pulmonary arterial hypertension. Targeting attraction of inflammatory cells by blocking stromal-derived factor-1 may be a novel approach for treatment of PAH.
Collapse
Affiliation(s)
- Rajkumar Savai
- Pulmonary Pharmacotherapy, Universities of Giessen and Marburg Lung Center, Aulweg 130, Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dendritic cells recruitment in melanoma metastasis treated by electrochemotherapy. Clin Exp Metastasis 2012; 30:37-45. [DOI: 10.1007/s10585-012-9505-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 06/13/2012] [Indexed: 10/28/2022]
|
27
|
El-Nikhely N, Larzabal L, Seeger W, Calvo A, Savai R. Tumor–stromal interactions in lung cancer: novel candidate targets for therapeutic intervention. Expert Opin Investig Drugs 2012; 21:1107-22. [DOI: 10.1517/13543784.2012.693478] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
|
29
|
Dong L, Liu Y, Colberg-Poley AM, Kaucic K, Ladisch S. Induction of GM1a/GD1b synthase triggers complex ganglioside expression and alters neuroblastoma cell behavior; a new tumor cell model of ganglioside function. Glycoconj J 2011; 28:137-47. [PMID: 21519903 DOI: 10.1007/s10719-011-9330-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/11/2011] [Accepted: 04/12/2011] [Indexed: 12/31/2022]
Abstract
Neuroblastoma is the most common extracranial solid tumor in children and tumor ganglioside composition has been linked to its biological and clinical behavior. We recently found that high expression of complex gangliosides that are products of the enzyme GM1a/GD1b synthase predicts a more favorable outcome in human neuroblastoma, and others have shown that complex gangliosides such as GD1a inhibit metastasis of murine tumors. To determine how a switch from structurally simple to structurally complex ganglioside expression affects neuroblastoma cell behavior, we engineered IMR32 human neuroblastoma cells, which contain almost exclusively (89%) the simple gangliosides (SG) GM2, GD2, GM3, and GD3, to overexpress the complex gangliosides (CG) GM1, GD1a, GD1b and GT1b, by stable retroviral-mediated transduction of the cDNA encoding GM1a/GD1b synthase. This strikingly altered cellular ganglioside composition without affecting total ganglioside content: There was a 23-fold increase in the ratio of complex to simple gangliosides in GM1a/GD1b synthase-transduced cells (IMR32-CG) vs. wild type (IMR32) or vector-transfected (IMR32-V) cells with essentially no expression of the clinical neuroblastoma marker, GD2, confirming effectiveness of this molecular switch from simple to complex ganglioside synthesis. Probing for consequences of the switch, we found that among functional properties of IMR32-CG cells, cell migration was inhibited and Rho/Rac1 activities were altered, while proliferation kinetics and cell differentiation were unaffected. These findings further implicate cellular ganglioside composition in determining cell migration characteristics of tumor cells. This IMR32 model system should be useful in delineating the impact of ganglioside composition on tumor cell function.
Collapse
Affiliation(s)
- Lixian Dong
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | | | |
Collapse
|
30
|
van Cruijsen H, Ruiz MG, van der Valk P, de Gruijl TD, Giaccone G. Tissue micro array analysis of ganglioside N-glycolyl GM3 expression and signal transducer and activator of transcription (STAT)-3 activation in relation to dendritic cell infiltration and microvessel density in non-small cell lung cancer. BMC Cancer 2009; 9:180. [PMID: 19519895 PMCID: PMC2705377 DOI: 10.1186/1471-2407-9-180] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 06/11/2009] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Tumor immune escape and angiogenesis contribute to tumor progression, and gangliosides and activation of signal transducer and activator of transcription (STAT)-3 are implicated in these processes. As both are considered as novel therapeutic targets, we assessed the possible association of ganglioside GM3 expression and STAT3 activation with suppression of dendritic cell (DC) activation and angiogenesis in non-small cell lung cancer (NSCLC). METHODS Immunohistochemistry was performed on a tissue array to determine N-glycolyl GM3 (GM3) and phosphorylated STAT3 (pSTAT3) expression in 176 primary NSCLC resections. Median values of GM3 and pSTAT3 expression were used as cut off. Microvessel density (MVD) was determined by CD34 staining and morphology. CD1a and CD83 were used to determine infiltrating immature and mature dendritic cells, respectively. RESULTS 94% and 71% of the NSCLC samples expressed GM3 and nuclear pSTAT3, respectively. Median overall survival was 40.0 months. Both low GM3 expression and high pSTAT3 expression were associated with a worse survival, which reached near significance for GM3 (P = 0.08). Microvessel density (MVD), determined by CD34 staining and morphology, was lower in NSCLC samples with high GM3 expression. CD1a+ cells (immature DCs) were more frequent in NSCLC tissues as compared to peritumoral lung tissue, while CD83+ cells (mature DCs) were more frequent in peritumoral lung tissue. CD83+ DCs were less frequent in NSCLC tissues with high GM3 expression. CONCLUSION GM3 and pSTAT3 are widely expressed in NSCLC. Based on CD83 expression, GM3, but not pSTAT3, appeared to be involved in tumor-induced DC suppression. pSTAT3 expression was not associated with MVD, while GM3 might play an anti-angiogenic role.
Collapse
Affiliation(s)
- Hester van Cruijsen
- Department of Medical Oncology, VU University Medical Center, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
31
|
Sa G, Das T, Moon C, Hilston CM, Rayman PA, Rini BI, Tannenbaum CS, Finke JH. GD3, an overexpressed tumor-derived ganglioside, mediates the apoptosis of activated but not resting T cells. Cancer Res 2009; 69:3095-104. [PMID: 19276353 DOI: 10.1158/0008-5472.can-08-3776] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We previously elucidated an important role for gangliosides in renal cell carcinoma-mediated T lymphocyte apoptosis, although the mechanism by which they mediated lymphocyte death remained unclear. Here, we show that when added in purified form, GD3 is internalized by activated T cells, initiating a series of proapoptotic events, including the induction of reactive oxygen species (ROS), an enhancement of p53 and Bax accumulation, an increase in mitochondrial permeability, cytochrome c release, and the activation of caspase-9. GD3-induced apoptosis of activated T cells was dose dependent and inhibitable by pretreating the lymphocytes with N-acetylcysteine, cyclosporin A, or bongkrekic acid, emphasizing the essential role of ROS and mitochondrial permeability to the process. Ganglioside-induced T-cell killing was associated with the caspase-dependent degradation of nuclear factor-kappaB-inducible, antiapoptotic proteins, including RelA; this suggests that their loss is initiated only after the cascade is activated and that their disappearance amplifies but not triggers GD3 susceptibility. Resting T cells did not internalize appreciable levels of GD3 and did not undergo any of the proapoptotic changes that characterize activated T lymphocytes exposed to the ganglioside. RelA overexpression endows Jurkat cells with resistance to GD3-mediated apoptosis, verifying the role of the intact transcription factor in mediating protection from the ganglioside.
Collapse
Affiliation(s)
- Gaurisankar Sa
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Bennaceur K, Popa I, Chapman JA, Migdal C, Péguet-Navarro J, Touraine JL, Portoukalian J. Different mechanisms are involved in apoptosis induced by melanoma gangliosides on human monocyte-derived dendritic cells. Glycobiology 2009; 19:576-82. [PMID: 19240275 PMCID: PMC2682607 DOI: 10.1093/glycob/cwp015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tumor escape is linked to multiple mechanisms, notably the liberation, by tumor cells, of soluble factors that inhibit the function of dendritic cells (DC). We have shown that melanoma gangliosides impair DC differentiation and induce their apoptosis. The present study was aimed to give insight into the mechanisms involved. DC apoptosis was independent of the catabolism of gangliosides since lactosylceramide did not induce cell death. Apoptosis induced by GM3 and GD3 gangliosides was not blocked by inhibitors of de novo ceramide biosynthesis, whereas the acid sphingomyelinase inhibitor desipramine only prevented apoptosis induced by GM3. Furthermore, our results suggest that DC apoptosis was triggered via caspase activation, and it was ROS dependent with GD3 ganglioside, suggesting that GM3 and GD3 induced apoptosis through different mechanisms.
Collapse
Affiliation(s)
- Karim Bennaceur
- Laboratory of Dermatological Research, University of Lyon-1 EA 41-69, Edouard Herriot Hospital, Lyon, France.
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The immune response to cancer has been long recognized, including both innate and adaptive responses, showing that the immune system can recognize protein products of genetic and epigenetic changes in transformed cells. The accumulation of antigen-specific T cells within the tumor, the draining lymph node, and the circulation, either in newly diagnosed patients or resultant from experimental immunotherapy, proves that tumors produce antigens and that priming occurs. Unfortunately, just as obviously, tumors grow, implying that anti-tumor immune responses are either not sufficiently vigorous to eliminate the cancer or that anti-tumor immunity is suppressed. Both possibilities are supported by current data. In experimental animal models of cancer and also in patients, systemic immunity is usually not dramatically suppressed, because tumor-bearing animals and patients develop T-cell-dependent immune responses to microbes and to either model antigens or experimental cancer vaccines. However, inhibition of specific anti-tumor immunity is common, and several possible explanations of tolerance to tumor antigens or tumor-induced immunesuppression have been proposed. Inhibition of effective anti-tumor immunity results from the tumor or the host response to tumor growth, inhibiting the activation, differentiation, or function of anti-tumor immune cells. As a consequence, anti-tumor T cells cannot respond productively to developmental, targeting, or activation cues. While able to enhance the number and phenotype of anti-tumor T cells, the modest success of immunotherapy has shown the necessity to attempt to reverse tolerance in anti-tumor T cells, and the vanguard of experimental therapy now focuses on vaccination in combination with blockade of immunosuppressive mechanisms. This review discusses several potential mechanisms by which anti-tumor T cells may be inhibited in function.
Collapse
Affiliation(s)
- Alan B Frey
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
34
|
Bennaceur K, Chapman J, Brikci-Nigassa L, Sanhadji K, Touraine JL, Portoukalian J. Dendritic cells dysfunction in tumour environment. Cancer Lett 2008; 272:186-96. [DOI: 10.1016/j.canlet.2008.05.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 04/07/2008] [Accepted: 05/13/2008] [Indexed: 12/24/2022]
|
35
|
Stoitzner P, Green LK, Jung JY, Price KM, Atarea H, Kivell B, Ronchese F. Inefficient presentation of tumor-derived antigen by tumor-infiltrating dendritic cells. Cancer Immunol Immunother 2008; 57:1665-73. [PMID: 18311487 PMCID: PMC11029823 DOI: 10.1007/s00262-008-0487-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 02/12/2008] [Indexed: 11/30/2022]
Abstract
BACKGROUND Transplantable B16 melanoma is widely used as a tumor model to investigate tumor immunity. We wished to characterize the leukocyte populations infiltrating B16 melanoma tumors, and the functional properties of tumor-infiltrating dendritic cells (TIDC). MATERIALS AND METHODS We used the B16 melanoma cell line expressing ovalbumin protein (OVA) to investigate the phenotype and T cell stimulatory capacity of TIDC. RESULTS The majority of leukocytes in B16 melanoma were macrophages, which colocalized with TIDCs, B and T cells to the peripheral area of the tumor. Both myeloid and plasmacytoid DC populations were present within tumors. Most of these DCs appeared immature, but about a third expressed a mature phenotype. TIDCs did not present tumor-derived antigen, as they were unable to induce the proliferation of tumor-specific CD4+ and CD8+ T cells in vitro unless in the presence of specific peptides. Some presentation of tumor-derived antigen could be demonstrated in the tumor-draining lymph node using in vivo proliferation assays. However, while proliferation of CD8+ T cells was reproducibly demonstrated, no proliferation of CD4+ T cells was observed. CONCLUSION In summary, our data suggest that DCs in tumors have limited antigen-presenting function. Inefficient antigen presentation extends to the tumor-draining lymph node, and may affect the generation of antitumor immune responses.
Collapse
|
36
|
Ganglioside composition of differentiated Caco-2 cells resembles human colostrum and neonatal rat intestine. Br J Nutr 2008; 101:694-700. [PMID: 18713482 DOI: 10.1017/s0007114508048289] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gangliosides are glycosphingolipids found in cell membranes and human milk with important roles in cell proliferation, differentiation, growth, adhesion, migration, signalling and apoptosis. Similar changes in ganglioside composition occur during embryonic development, lactation and cancer cell differentiation. It is not known, however, whether ganglioside compositional changes that occur in differentiating colon cancer cells reflect changes that occur during intestinal development. The Caco-2 cell line is commonly used to study physiological and pathophysiological processes in the small intestine and colon. Therefore, to examine this question, undifferentiated and differentiated Caco-2 cells were grown and total lipid was extracted from cell supernatant fractions using the Folch method. The upper aqueous phase containing gangliosides was collected and purified. Total gangliosides were measured as ganglioside-bound N-acetyl neuraminic acid, while individual ganglioside content was quantified via a colorimetric assay for sialic acid and scanning densitometry. The total ganglioside content of differentiated Caco-2 cells was 2.5 times higher compared with undifferentiated cells. Differentiated Caco-2 cells had significantly more (N-acetylneuraminyl) 2-galactosylglucosyl ceramide (GD3) and polar gangliosides, and a lower N-acetylneuraminylgalactosylglucosylceramide (GM3):GD3 ratio than undifferentiated cells. The present study demonstrates that the total ganglioside content and individual ganglioside composition of differentiated Caco-2 cells are similar to those of human colostrum and neonatal rat intestine. Differentiated Caco-2 cells may therefore be an alternative model for studying physiological and pathological processes in the small intestine and colon, and may help to elucidate possible functions for specific gangliosides in development and differentiation. Further research using more sensitive techniques of ganglioside analysis is needed to confirm these findings.
Collapse
|
37
|
Jackson AM, Mulcahy LA, Zhu XW, O'Donnell D, Patel PM. Tumour-mediated disruption of dendritic cell function: Inhibiting the MEK1/2-p44/42 axis restores IL-12 production and Th1-generation. Int J Cancer 2008; 123:623-32. [DOI: 10.1002/ijc.23530] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
38
|
Ganglioside signatures of primary and nodal metastatic melanoma cell lines from the same patient. Melanoma Res 2008; 18:47-55. [PMID: 18227708 DOI: 10.1097/cmr.0b013e3282f43acf] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The primary cutaneous melanoma initially migrates to the regional lymph nodes (LNs). Human melanoma overexpresses gangliosides, the sialylglycosphingolipids. The ganglioside signatures may differ between primary and LN melanomas owing to the differences in the tumor microenvironments. The melanoma cells obtained from the primary and LN of the same patient might be useful to evaluate the above hypothesis. For this purpose, the cryopreserved cell lines from a primary cutaneous melanoma (IGR-39) and its nodal metastasis (IGR-37) from the same patient were used. We have also compared the ganglioside signatures of freshly obtained melanoma cells from primary, LN and organ metastases from different patients. Gangliosides were extracted, purified and identified by resorcinol and specific murine monoclonal antibodies. Comparison of the primary cell line with the nodal metastatic line obtained from the same patient distinctly showed the following features: (i) an increased production of gangliosides, (ii) O-acetylation of GM2 and GD3, (iii) an increased and altered O-acetylation of GD2 and (iv) possibly de-N-acetylation of GD3. These findings suggest that the nodal microenvironment might favor activation of O-acetyl-transferases capable of O-acetylating both alpha2, 3 and alpha2, 8 sialic acids of gangliosides. Supporting this, the primary melanoma cells obtained from different patients, showed no O-acetylation of GD3 or GD2. The cell line from groin LN showed the presence of O-acetyl (O-Ac)GD3. The cell lines from thyroid, spleen and jejunum expressed O-AcGD2. In all metastatic melanoma cell lines GD1a is more prevalent than GD3, suggesting that GD1a may be a major melanoma-ganglioside.
Collapse
|
39
|
The Yin and Yang of lactosylceramide metabolism: Implications in cell function. Biochim Biophys Acta Gen Subj 2008; 1780:370-82. [DOI: 10.1016/j.bbagen.2007.08.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 08/13/2007] [Indexed: 11/18/2022]
|
40
|
de Leon J, Fernandez A, Clavell M, Labrada M, Bebelagua Y, Mesa C, Fernandez LE. Differential influence of the tumour-specific non-human sialic acid containing GM3 ganglioside on CD4+CD25- effector and naturally occurring CD4+CD25+ regulatory T cells function. Int Immunol 2008; 20:591-600. [DOI: 10.1093/intimm/dxn018] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
41
|
Radin NS. Allylic structures in cancer drugs and body metabolites that control cell life and death. Expert Opin Drug Discov 2007; 2:809-21. [DOI: 10.1517/17460441.2.6.809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Potapenko M, Shurin GV, de León J. Gangliosides as immunomodulators. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 601:195-203. [PMID: 17713006 DOI: 10.1007/978-0-387-72005-0_20] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gangliosides are glycosphingolipids expressed at the outer leaflet of the plasmatic membrane of cells from vertebrate organisms. These molecules exert diverse biological functions including modulation of the immune system responses. Aberrant expression of gangliosides has been demonstrated on malignant cells. Besides expression on tumor cell membranes, gangliosides are also shed in the tumor microenvironment and eventually circulate in patients blood. Gangliosides derived from tumors posses the capability to affect the immune system responses by altering the function of lymphocytes and antigen-presenting cells and promoting tumor growth. These molecules can be considered as tumor weapons directed to attack and destroy immunosurveillance mechanisms devoted to control cancer progression.
Collapse
Affiliation(s)
- Miroslava Potapenko
- Department of Pathology, Division of Clinical Immunopathology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|