1
|
Lautrup S, Myrup Holst C, Yde A, Asmussen S, Thinggaard V, Larsen K, Laursen LS, Richner M, Vægter CB, Prieto GA, Berchtold N, Cotman CW, Stevnsner T. The role of aging and brain-derived neurotrophic factor signaling in expression of base excision repair genes in the human brain. Aging Cell 2023; 22:e13905. [PMID: 37334527 PMCID: PMC10497833 DOI: 10.1111/acel.13905] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023] Open
Abstract
DNA damage is a central contributor to the aging process. In the brain, a major threat to the DNA is the considerable amount of reactive oxygen species produced, which can inflict oxidative DNA damage. This type of damage is removed by the base excision repair (BER) pathway, an essential DNA repair mechanism, which contributes to genome stability in the brain. Despite the crucial role of the BER pathway, insights into how this pathway is affected by aging in the human brain and the underlying regulatory mechanisms are very limited. By microarray analysis of four cortical brain regions from humans aged 20-99 years (n = 57), we show that the expression of core BER genes is largely downregulated during aging across brain regions. Moreover, we find that expression of many BER genes correlates positively with the expression of the neurotrophin brain-derived neurotrophic factor (BDNF) in the human brain. In line with this, we identify binding sites for the BDNF-activated transcription factor, cyclic-AMP response element-binding protein (CREB), in the promoter of most BER genes and confirm the ability of BDNF to regulate several BER genes by BDNF treatment of mouse primary hippocampal neurons. Together, these findings uncover the transcriptional landscape of BER genes during aging of the brain and suggest BDNF as an important regulator of BER in the human brain.
Collapse
Affiliation(s)
- Sofie Lautrup
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
- Department of Clinical Molecular BiologyUniversity of Oslo and Akershus University HospitalLørenskogNorway
| | | | - Anne Yde
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Stine Asmussen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Vibeke Thinggaard
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Knud Larsen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | | | - Mette Richner
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience – DANDRITE, Nordic EMBL Partnership for Molecular MedicineAarhus UniversityAarhusDenmark
| | - Christian B. Vægter
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience – DANDRITE, Nordic EMBL Partnership for Molecular MedicineAarhus UniversityAarhusDenmark
| | - G. Aleph Prieto
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
- Instituto de NeurobiologíaUNAM‐JuriquillaJuriquillaMexico
| | - Nicole Berchtold
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Carl W. Cotman
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Tinna Stevnsner
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| |
Collapse
|
2
|
Kavli B, Iveland TS, Buchinger E, Hagen L, Liabakk NB, Aas PA, Obermann TS, Aachmann FL, Slupphaug G. RPA2 winged-helix domain facilitates UNG-mediated removal of uracil from ssDNA; implications for repair of mutagenic uracil at the replication fork. Nucleic Acids Res 2021; 49:3948-3966. [PMID: 33784377 PMCID: PMC8053108 DOI: 10.1093/nar/gkab195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 01/14/2023] Open
Abstract
Uracil occurs at replication forks via misincorporation of deoxyuridine monophosphate (dUMP) or via deamination of existing cytosines, which occurs 2-3 orders of magnitude faster in ssDNA than in dsDNA and is 100% miscoding. Tethering of UNG2 to proliferating cell nuclear antigen (PCNA) allows rapid post-replicative removal of misincorporated uracil, but potential 'pre-replicative' removal of deaminated cytosines in ssDNA has been questioned since this could mediate mutagenic translesion synthesis and induction of double-strand breaks. Here, we demonstrate that uracil-DNA glycosylase (UNG), but not SMUG1 efficiently excises uracil from replication protein A (RPA)-coated ssDNA and that this depends on functional interaction between the flexible winged-helix (WH) domain of RPA2 and the N-terminal RPA-binding helix in UNG. This functional interaction is promoted by mono-ubiquitination and diminished by cell-cycle regulated phosphorylations on UNG. Six other human proteins bind the RPA2-WH domain, all of which are involved in DNA repair and replication fork remodelling. Based on this and the recent discovery of the AP site crosslinking protein HMCES, we propose an integrated model in which templated repair of uracil and potentially other mutagenic base lesions in ssDNA at the replication fork, is orchestrated by RPA. The UNG:RPA2-WH interaction may also play a role in adaptive immunity by promoting efficient excision of AID-induced uracils in transcribed immunoglobulin loci.
Collapse
Affiliation(s)
- Bodil Kavli
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Tobias S Iveland
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Cancer Clinic, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Edith Buchinger
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N-7034 Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway.,PROMEC Proteomics and Modomics Experimental Core at NTNU and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| | - Nina B Liabakk
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Per A Aas
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Tobias S Obermann
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Finn L Aachmann
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N-7034 Trondheim, Norway
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway.,PROMEC Proteomics and Modomics Experimental Core at NTNU and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| |
Collapse
|
3
|
Eldin P, Péron S, Galashevskaya A, Denis-Lagache N, Cogné M, Slupphaug G, Briant L. Impact of HIV-1 Vpr manipulation of the DNA repair enzyme UNG2 on B lymphocyte class switch recombination. J Transl Med 2020; 18:310. [PMID: 32778120 PMCID: PMC7418440 DOI: 10.1186/s12967-020-02478-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/02/2020] [Indexed: 02/06/2023] Open
Abstract
Background HIV-1 Vpr encodes a 14 kDa protein that has been implicated in viral pathogenesis through modulation of several host cell functions. In addition to pro-apoptotic and cytostatic properties, Vpr can redirect cellular E3 ubiquitin ligases (such as DCAF1-Cul4A E3 ligase complex) to target many host proteins and interfere with their functions. Among them, Vpr binds the uracil DNA glycosylase UNG2, which controls genome uracilation, and induces its specific degradation leading to loss of uracil removal activity in infected cells. Considering the essential role of UNG2 in antibody diversification in B-cells, we evaluated the impact of Vpr on UNG2 fate in B lymphocytes and examined the functional consequences of UNG2 modulations on class switch recombination (CSR). Methods The impact of Vpr-induced UNG2 deregulation on CSR proficiency was evaluated by using virus-like particles able to deliver Vpr protein to target cells including the murine model CSR B cell line CH12F3 and mouse primary B-cells. Co-culture experiments were used to re-examine the ability of Vpr to be released by HIV-1 infected cells and to effectively accumulate in bystander B-cells. Vpr-mediated UNG2 modulations were monitored by following UNG2 protein abundance and uracil removal enzymatic activity. Results In this study we report the ability of Vpr to reduce immunoglobulin class switch recombination (CSR) in immortalized and primary mouse B-cells through the degradation of UNG2. We also emphasize that Vpr is released by producing cells and penetrates bystander B lymphocytes. Conclusions This work therefore opens up new perspectives to study alterations of the B-cell response by using Vpr as a specific CSR blocking tool. Moreover, our results raise the question of whether extracellular HIV-1 Vpr detected in some patients may manipulate the antibody diversification process that engineers an adapted response against pathogenic intruders and thereby contribute to the intrinsic B-cell humoral defect reported in infected patients.
Collapse
Affiliation(s)
- Patrick Eldin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier Cedex 5, France.
| | - Sophie Péron
- Contrôle de la Réponse Immune B et des Lymphoproliférations (CBRIL), UMR CNRS 7276 INSERM 1262, Centre de Biologie et de Recherche en Santé (CBRS), Faculté de Limoges, 2 rue du Dr. Marcland, 87000, Limoges, France
| | - Anastasia Galashevskaya
- Proteomics and Modomics Experimental Core (PROMEC), Department of Cancer Research and Molecular Medicine, Laboratory Centre, Norwegian University of Science and Technology (NTNU), 5th Floor. Erling Skjalgssons gt. 1, 7491, Trondheim, Norway
| | - Nicolas Denis-Lagache
- Contrôle de la Réponse Immune B et des Lymphoproliférations (CBRIL), UMR CNRS 7276 INSERM 1262, Centre de Biologie et de Recherche en Santé (CBRS), Faculté de Limoges, 2 rue du Dr. Marcland, 87000, Limoges, France
| | - Michel Cogné
- Contrôle de la Réponse Immune B et des Lymphoproliférations (CBRIL), UMR CNRS 7276 INSERM 1262, Centre de Biologie et de Recherche en Santé (CBRS), Faculté de Limoges, 2 rue du Dr. Marcland, 87000, Limoges, France
| | - Geir Slupphaug
- Proteomics and Modomics Experimental Core (PROMEC), Department of Cancer Research and Molecular Medicine, Laboratory Centre, Norwegian University of Science and Technology (NTNU), 5th Floor. Erling Skjalgssons gt. 1, 7491, Trondheim, Norway
| | - Laurence Briant
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| |
Collapse
|
4
|
Streamlined human antibody generation and optimization by exploiting designed immunoglobulin loci in a B cell line. Cell Mol Immunol 2020; 18:1545-1561. [PMID: 32457406 PMCID: PMC8166883 DOI: 10.1038/s41423-020-0440-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 01/30/2023] Open
Abstract
Monoclonal antibodies (mAbs) are widely utilized as therapeutic drugs for various diseases, such as cancer, autoimmune diseases, and infectious diseases. Using the avian-derived B cell line DT40, we previously developed an antibody display technology, namely, the ADLib system, which rapidly generates antigen-specific mAbs. Here, we report the development of a human version of the ADLib system and showcase the streamlined generation and optimization of functional human mAbs. Tailored libraries were first constructed by replacing endogenous immunoglobulin genes with designed human counterparts. From these libraries, clones producing full-length human IgGs against distinct antigens can be isolated, as exemplified by the selection of antagonistic mAbs. Taking advantage of avian biology, effective affinity maturation was achieved in a straightforward manner by seamless diversification of the parental clones into secondary libraries followed by single-cell sorting, quickly affording mAbs with improved affinities and functionalities. Collectively, we demonstrate that the human ADLib system could serve as an integrative platform with unique diversity for rapid de novo generation and optimization of therapeutic or diagnostic antibody leads. Furthermore, our results suggest that libraries can be constructed by introducing exogenous genes into DT40 cells, indicating that the ADLib system has the potential to be applied for the rapid and effective directed evolution and optimization of proteins in various fields beyond biomedicine.
Collapse
|
5
|
Ni F, Tang H, Wang C, Wang Z, Yu F, Chen B, Sun L. Berzosertib (VE-822) inhibits gastric cancer cell proliferation via base excision repair system. Cancer Manag Res 2019; 11:8391-8405. [PMID: 31571995 PMCID: PMC6750847 DOI: 10.2147/cmar.s217375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Background Current investigations suggest that the Base Excision Repair (BER) system may change DNA repair capacity and affect clinical gastric cancer progression such as overall survival. However, the prognostic value of BER system members in gastric cancer remains unclear. Methods We explored the prognostic correlation between 7 individual BER genes, including uracil-DNA glycosylase (UNG), Single-strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1), Methyl-CpG binding domain 4 (MBD4), thymine DNA glycosylase (TDG), 8-oxoguanine DNA glycosylase (OGG1), MutY DNA glycosylase (MUTYH) and Nei like DNA glycosylase 1 (NEIL1), expression and overall survival (OS) in different clinical data, such as Lauren classification, pathological stages, human epidermal growth factor receptor-2 (HER2) expression status, treatment strategy, gender and differentiation degree in gastric cancer patients, using Kaplan-Meier plotter (KM plotter) online database. Based on the bioinformatics analysis, we utilized Berzosertib (VE-822) to inhibit DNA damage repair in cancer cells compared to solvent control group via real-time cellular analysis (RTCA), flow cytometry, colony formation and migration assay. Finally, we utilized reverse transcription-polymerase chain reaction (RT-PCR) to confirm the expression of BER members between normal and two gastric cancer cells or solvent and VE-822 treated groups. Results Our work revealed that high UNG mRNA expression was correlated with high overall survival probability; however, high SMUG1, MBD4, TDG, OGG1, MUTYH and NEIL1 mRNA expression showed relatively low overall survival probability in all GC patients. Additionally, UNG was associated with high overall survival probability in intestinal and diffuse types, but SMUG1 and NEIL1 showed opposite results. Further, VE-822 pharmacological experiment suggested that inhibition of DNA damage repair suppressed gastric cancer cells’ proliferation and migration ability via inducing apoptosis. Further, real-time polymerase chain reaction results proposed the inhibition of gastric cancer cells by VE-822 may be through UNG, MUTYH and OGG-1 of BER system. Conclusion We comprehensively analyze the prognostic value of the BER system (UNG, SMUG1, MBD4, TDG, OGG1, MUTYH and NEIL1) based on bioinformatics analysis and experimental confirmation. BER members are associated with distinctive prognostic significance and maybe new valuable prognostic indicators in gastric cancer.
Collapse
Affiliation(s)
- Fubiao Ni
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Hengjie Tang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Cheng Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Zixiang Wang
- First College of Clinical Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Fangyi Yu
- First College of Clinical Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Linxiao Sun
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
6
|
Ghazzaui N, Issaoui H, Saintamand A, Denizot Y, Boyer F. Uracil-DNA glycosylase is not implicated in the choice of the DNA repair pathway during B-cell class switch recombination. Cell Mol Immunol 2018; 16:93-95. [PMID: 29735979 DOI: 10.1038/s41423-018-0034-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 01/29/2023] Open
Affiliation(s)
- Nour Ghazzaui
- UMR CNRS 7276, INSERM U1262, University of Limoges, CBRS, rue Pr. Descottes, 87025, Limoges, France
| | - Hussein Issaoui
- UMR CNRS 7276, INSERM U1262, University of Limoges, CBRS, rue Pr. Descottes, 87025, Limoges, France
| | | | - Yves Denizot
- UMR CNRS 7276, INSERM U1262, University of Limoges, CBRS, rue Pr. Descottes, 87025, Limoges, France.
| | - François Boyer
- UMR CNRS 7276, INSERM U1262, University of Limoges, CBRS, rue Pr. Descottes, 87025, Limoges, France
| |
Collapse
|
7
|
Jonsson S, Sveinbjornsson G, de Lapuente Portilla AL, Swaminathan B, Plomp R, Dekkers G, Ajore R, Ali M, Bentlage AEH, Elmér E, Eyjolfsson GI, Gudjonsson SA, Gullberg U, Gylfason A, Halldorsson BV, Hansson M, Holm H, Johansson Å, Johnsson E, Jonasdottir A, Ludviksson BR, Oddsson A, Olafsson I, Olafsson S, Sigurdardottir O, Sigurdsson A, Stefansdottir L, Masson G, Sulem P, Wuhrer M, Wihlborg AK, Thorleifsson G, Gudbjartsson DF, Thorsteinsdottir U, Vidarsson G, Jonsdottir I, Nilsson B, Stefansson K. Identification of sequence variants influencing immunoglobulin levels. Nat Genet 2017. [DOI: 10.1038/ng.3897] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
AID expression in B-cell lymphomas causes accumulation of genomic uracil and a distinct AID mutational signature. DNA Repair (Amst) 2014; 25:60-71. [PMID: 25486549 DOI: 10.1016/j.dnarep.2014.11.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/06/2014] [Accepted: 11/17/2014] [Indexed: 11/23/2022]
Abstract
The most common mutations in cancer are C to T transitions, but their origin has remained elusive. Recently, mutational signatures of APOBEC-family cytosine deaminases were identified in many common cancers, suggesting off-target deamination of cytosine to uracil as a common mutagenic mechanism. Here we present evidence from mass spectrometric quantitation of deoxyuridine in DNA that shows significantly higher genomic uracil content in B-cell lymphoma cell lines compared to non-lymphoma cancer cell lines and normal circulating lymphocytes. The genomic uracil levels were highly correlated with AID mRNA and protein expression, but not with expression of other APOBECs. Accordingly, AID knockdown significantly reduced genomic uracil content. B-cells stimulated to express endogenous AID and undergo class switch recombination displayed a several-fold increase in total genomic uracil, indicating that B cells may undergo widespread cytosine deamination after stimulation. In line with this, we found that clustered mutations (kataegis) in lymphoma and chronic lymphocytic leukemia predominantly carry AID-hotspot mutational signatures. Moreover, we observed an inverse correlation of genomic uracil with uracil excision activity and expression of the uracil-DNA glycosylases UNG and SMUG1. In conclusion, AID-induced mutagenic U:G mismatches in DNA may be a fundamental and common cause of mutations in B-cell malignancies.
Collapse
|