1
|
Liu J, Li J, Yin J. Changes of allergic inflammation and immunological parameters after Alt a 1 and A. alternata immunotherapy in mice. World Allergy Organ J 2023; 16:100807. [PMID: 37638361 PMCID: PMC10457585 DOI: 10.1016/j.waojou.2023.100807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Background The efficacy of allergen-specific subcutaneousimmunotherapy (SCIT) with Alt a 1 of the fungus A. alternata is still unknown. Yet, few studies compare the therapeutic effects and immunological mechanisms of Alt a 1 and A. alternata extracts. We aim to explore and compare the changes in allergic inflammation and immunological mechanisms of Alt a 1 and A. alternata in mice. Methods Female BALB/c mice administrated recombinant Alt a 1 (rAlt a 1), native Alt a 1 (nAlt a 1), and A. alternata. Lung histology, airway hyper-reactivity (AHR), bronchoalveolar lavage fluid (BALF) cytokine levels, serum immunoglobulin responses, the expression of Bcl-6, the percentages of T follicular helper cells (Tfh), cytokine-related Tfh subtypes, regulatory B cells (Breg), and IL-10+ Breg cells were detected. Results High-purity nAlt 1 protein was obtained. SCIT with Alt a 1 and Alternaria decreased airway and lung inflammation, including improvement of lung pathology, lower levels of AHR, reduction of total cell numbers, and IL-4 and IL-13 levels in BALF. Furthermore, Alt a 1-SCIT effectively suppressed the IgE responses, elevated IgG titers, and was superior in decreasing the expression of Bcl-6. Additionally, Alternaria-SCIT significantly decreased the expression of Tfh cells, L-4+ Tfh, and IL-5+ Tfh cells in the spleen, whereas Alt a 1 showed superior therapeutic effects in the lymph node. IL-13+ Tfh cells in these two treatment groups not being significant. IL-17A+ Tfh cells were alleviated most effectively after A. alternata-SCIT in both the spleen and lymph node. Intriguingly, IL-10+ Breg cells decreased remarkably in response to SCIT with rAlt a 1. Conclusions Treatments with Alt a 1 and A. alternata extracts had beneficial effects on allergic inflammation. Alt a 1-SCIT resulted in prominent improvement in the immunoglobulin responses, Bcl-6, and IL-10+ Breg cells. Alternaria-SCIT was more likely to suppress the expression of Tfh and cytokine-related Tfh subtypes.
Collapse
Affiliation(s)
- Juan Liu
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Disease (NCRC-DID), Beijing, China
| | - Junda Li
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Disease (NCRC-DID), Beijing, China
| | - Jia Yin
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Disease (NCRC-DID), Beijing, China
| |
Collapse
|
2
|
Inaba A, Tuong ZK, Zhao TX, Stewart AP, Mathews R, Truman L, Sriranjan R, Kennet J, Saeb-Parsy K, Wicker L, Waldron-Lynch F, Cheriyan J, Todd JA, Mallat Z, Clatworthy MR. Low-dose IL-2 enhances the generation of IL-10-producing immunoregulatory B cells. Nat Commun 2023; 14:2071. [PMID: 37045832 PMCID: PMC10097719 DOI: 10.1038/s41467-023-37424-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Dysfunction of interleukin-10 producing regulatory B cells has been associated with the pathogenesis of autoimmune diseases, but whether regulatory B cells can be therapeutically induced in humans is currently unknown. Here we demonstrate that a subset of activated B cells expresses CD25, and the addition of low-dose recombinant IL-2 to in vitro stimulated peripheral blood and splenic human B cells augments IL-10 secretion. Administration of low dose IL-2, aldesleukin, to patients increases IL-10-producing B cells. Single-cell RNA sequencing of circulating immune cells isolated from low dose IL2-treated patients reveals an increase in plasmablast and plasma cell populations that are enriched for a regulatory B cell gene signature. The transcriptional repressor BACH2 is significantly down-regulated in plasma cells from IL-2-treated patients, BACH2 binds to the IL-10 gene promoter, and Bach2 depletion or genetic deficiency increases B cell IL-10, implicating BACH2 suppression as an important mechanism by which IL-2 may promote an immunoregulatory phenotype in B cells.
Collapse
Affiliation(s)
- Akimichi Inaba
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Zewen Kelvin Tuong
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Tian X Zhao
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Andrew P Stewart
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Rebeccah Mathews
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Lucy Truman
- Ear, Nose Throat Department, West Suffolk Hospital, Bury St Edmunds, UK
| | - Rouchelle Sriranjan
- Division of Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jane Kennet
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Linda Wicker
- Medical Sciences Division, University of Oxford, Oxford, UK
| | - Frank Waldron-Lynch
- Novartis Institutes for BioMedical Research, Autoimmunity Transplantation Inflammation, Basel, Switzerland
| | - Joseph Cheriyan
- Division of Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge, UK
| | - John A Todd
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ziad Mallat
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
- Universite de Paris and INSERM, Paris, France
| | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK.
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
3
|
Milburn JV, Hoog A, Villanueva-Hernández S, Mair KH, Gerner W. Identification of IL-10 competent B cells in swine. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104488. [PMID: 35777534 DOI: 10.1016/j.dci.2022.104488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Progress in the phenotypic characterisation of porcine B cells is ongoing, with recent advances in the identification of B1 cell subsets and plasma cells. However, regulatory B cells, commonly identified by interleukin (IL)-10 production, have not been studied in pigs so far. Here we investigate IL-10 expression in B cell subsets in response to CpG-oligodeoxynucleotides, phorbol 12-myristate 13-acetate and ionomycin stimulation in vitro. Our results reflect similar findings in human and mice. We identify a small subset of IL-10 competent B cells, present within both porcine B1 and B2 cell subsets across blood, spleen, mediastinal lymph nodes and lung tissue, with varied differentiation statuses. The capacity for IL-10 production coincided with CD95 expression, suggesting an activated phenotype of IL-10 competent B cells. These findings support the emerging paradigm that B cell IL-10 production is a function of various B cell subsets influenced by activation history and microenvironmental factors.
Collapse
Affiliation(s)
- Jemma V Milburn
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Anna Hoog
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Sonia Villanueva-Hernández
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Kerstin H Mair
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria; Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Wilhelm Gerner
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria; Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria.
| |
Collapse
|
4
|
Glass MC, Glass DR, Oliveria JP, Mbiribindi B, Esquivel CO, Krams SM, Bendall SC, Martinez OM. Human IL-10-producing B cells have diverse states that are induced from multiple B cell subsets. Cell Rep 2022; 39:110728. [PMID: 35443184 PMCID: PMC9107325 DOI: 10.1016/j.celrep.2022.110728] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/13/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
Regulatory B cells (Bregs) suppress immune responses through the secretion of interleukin-10 (IL-10). This immunomodulatory capacity holds therapeutic potential, yet a definitional immunophenotype for enumeration and prospective isolation of B cells capable of IL-10 production remains elusive. Here, we simultaneously quantify cytokine production and immunophenotype in human peripheral B cells across a range of stimulatory conditions and time points using mass cytometry. Our analysis shows that multiple functional B cell subsets produce IL-10 and that no phenotype uniquely identifies IL-10+ B cells. Further, a significant portion of IL-10+ B cells co-express the pro-inflammatory cytokines IL-6 and tumor necrosis factor alpha (TNFα). Despite this heterogeneity, operationally tolerant liver transplant recipients have a unique enrichment of IL-10+, but not TNFα+ or IL-6+, B cells compared with transplant recipients receiving immunosuppression. Thus, human IL-10-producing B cells constitute an induced, transient state arising from a diversity of B cell subsets that may contribute to maintenance of immune homeostasis.
Collapse
Affiliation(s)
- Marla C Glass
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA; Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - David R Glass
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Immunology Graduate Program, Stanford University, Stanford, CA, USA
| | - John-Paul Oliveria
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Berenice Mbiribindi
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA; Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Carlos O Esquivel
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sheri M Krams
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA; Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sean C Bendall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Olivia M Martinez
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA; Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
5
|
Garcia SG, Sandoval-Hellín N, Franquesa M. Regulatory B Cell Therapy in Kidney Transplantation. Front Pharmacol 2021; 12:791450. [PMID: 34950041 PMCID: PMC8689004 DOI: 10.3389/fphar.2021.791450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023] Open
Abstract
In the context of kidney injury, the role of Bregs is gaining interest. In a number of autoimmune diseases, the number and/or the function of Bregs has been shown to be impaired or downregulated, therefore restoring their balance might be a potential therapeutic tool. Moreover, in the context of kidney transplantation their upregulation has been linked to tolerance. However, a specific marker or set of markers that define Bregs as a unique cell subset has not been found and otherwise multiple phenotypes of Bregs have been studied. A quest on the proper markers and induction mechanisms is now the goal of many researchers. Here we summarize the most recent evidence on the role of Bregs in kidney disease by describing the relevance of in vitro and in vivo Bregs induction as well as the potential use of Bregs as cell therapy agents in kidney transplantation.
Collapse
Affiliation(s)
- Sergio G Garcia
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) and Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain.,Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Noelia Sandoval-Hellín
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) and Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| | - Marcella Franquesa
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) and Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| |
Collapse
|
6
|
Boldison J, Wong FS. Regulatory B Cells: Role in Type 1 Diabetes. Front Immunol 2021; 12:746187. [PMID: 34616408 PMCID: PMC8488343 DOI: 10.3389/fimmu.2021.746187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/02/2021] [Indexed: 12/16/2022] Open
Abstract
Regulatory B cells (Bregs) have an anti-inflammatory role and can suppress autoimmunity, by employing both cytokine secretion and cell-contact mediated mechanisms. Numerous Breg subsets have been described and have overlapping phenotypes in terms of their immune expression markers or cytokine production. A hallmark feature of Bregs is the secretion of IL-10, although IL-35 and TGFβ−producing B cells have also been identified. To date, few reports have identified an impaired frequency or function of Bregs in individuals with type 1 diabetes; thus our understanding of the role played by these Breg subsets in the pathogenesis of this condition is limited. In this review we will focus on how regulatory B cells are altered in the development of type 1 diabetes, highlighting both frequency and function and discuss both human and animal studies.
Collapse
Affiliation(s)
- Joanne Boldison
- Institute of Biomedical & Clinical Science, University of Exeter, Exeter, United Kingdom
| | - F Susan Wong
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
7
|
Garcia-Lacarte M, Grijalba SC, Melchor J, Arnaiz-Leché A, Roa S. The PD-1/PD-L1 Checkpoint in Normal Germinal Centers and Diffuse Large B-Cell Lymphomas. Cancers (Basel) 2021; 13:4683. [PMID: 34572910 PMCID: PMC8471895 DOI: 10.3390/cancers13184683] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Besides a recognized role of PD-1/PD-L1 checkpoint in anti-tumour immune evasion, there is accumulating evidence that PD-1/PD-L1 interactions between B and T cells also play an important role in normal germinal center (GC) reactions. Even when smaller in number, T follicular helper cells (TFH) and regulatory T (TFR) or B (Breg) cells are involved in positive selection of GC B cells and may result critical in the lymphoma microenvironment. Here, we discuss a role of PD-1/PD-L1 during tumour evolution in diffuse large B cell lymphoma (DLBCL), a paradigm of GC-derived lymphomagenesis. We depict a progression model, in two phases, where malignant B cells take advantage of positive selection signals derived from correct antigen-presentation and PD-1/PD-L1 inter-cellular crosstalks to survive and initiate tumour expansion. Later, a constant pressure for the accumulation of genetic/epigenetic alterations facilitates that DLBCL cells exhibit higher PD-L1 levels and capacity to secrete IL-10, resembling Breg-like features. As a result, a complex immunosuppressive microenvironment is established where DLBCL cells sustain proliferation and survival by impairing regulatory control of TFR cells and limiting IL-21-mediated anti-tumour functions of TFH cells and maximize the use of PD-1/PD-L1 signaling to escape from CD8+ cytotoxic activity. Integration of these molecular and cellular addictions into a framework may contribute to the better understanding of the lymphoma microenvironment and contribute to the rationale for novel PD-1/PD-L1-based combinational immunotherapies in DLBCL.
Collapse
Affiliation(s)
- Marcos Garcia-Lacarte
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (M.G.-L.); (S.C.G.); (J.M.); (A.A.-L.)
- Hemato-Oncology Program, Cima University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Sara C. Grijalba
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (M.G.-L.); (S.C.G.); (J.M.); (A.A.-L.)
| | - Javier Melchor
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (M.G.-L.); (S.C.G.); (J.M.); (A.A.-L.)
- Hemato-Oncology Program, Cima University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Adrián Arnaiz-Leché
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (M.G.-L.); (S.C.G.); (J.M.); (A.A.-L.)
| | - Sergio Roa
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (M.G.-L.); (S.C.G.); (J.M.); (A.A.-L.)
- Hemato-Oncology Program, Cima University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Network Center for Biomedical Research in Cancer—Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
8
|
Shevyrev D, Tereshchenko V, Kozlov V. Immune Equilibrium Depends on the Interaction Between Recognition and Presentation Landscapes. Front Immunol 2021; 12:706136. [PMID: 34394106 PMCID: PMC8362327 DOI: 10.3389/fimmu.2021.706136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
In this review, we described the structure and organization of antigen-recognizing repertoires of B and T cells from the standpoint of modern immunology. We summarized the latest advances in bioinformatics analysis of sequencing data from T and B cell repertoires and also presented contemporary ideas about the mechanisms of clonal diversity formation at different stages of organism development. At the same time, we focused on the importance of the allelic variants of the HLA genes and spectra of presented antigens for the formation of T-cell receptors (TCR) landscapes. The main idea of this review is that immune equilibrium and proper functioning of immunity are highly dependent on the interaction between the recognition and the presentation landscapes of antigens. Certain changes in these landscapes can occur during life, which can affect the protective function of adaptive immunity. We described some mechanisms associated with these changes, for example, the conversion of effector cells into regulatory cells and vice versa due to the trans-differentiation or bystander effect, changes in the clonal organization of the general TCR repertoire due to homeostatic proliferation or aging, and the background for the altered presentation of some antigens due to SNP mutations of MHC, or the alteration of the presenting antigens due to post-translational modifications. The authors suggest that such alterations can lead to an increase in the risk of the development of oncological and autoimmune diseases and influence the sensitivity of the organism to different infectious agents.
Collapse
Affiliation(s)
- Daniil Shevyrev
- Laboratory of Clinical Immunopathology, Research Institute for Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Valeriy Tereshchenko
- Laboratory of Molecular Immunology, Research Institute for Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Vladimir Kozlov
- Laboratory of Clinical Immunopathology, Research Institute for Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
9
|
Sakaguchi T, Okumura R, Ono C, Okuzaki D, Kawai T, Okochi Y, Tanimura N, Murakami M, Kayama H, Umemoto E, Kioka H, Ohtani T, Sakata Y, Miyake K, Okamura Y, Baba Y, Takeda K. TRPM5 Negatively Regulates Calcium-Dependent Responses in Lipopolysaccharide-Stimulated B Lymphocytes. Cell Rep 2021; 31:107755. [PMID: 32521253 DOI: 10.1016/j.celrep.2020.107755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/16/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
B cells produce high amounts of cytokines and immunoglobulins in response to lipopolysaccharide (LPS) stimulation. Calcium signaling cascades are critically involved in cytokine production of T cells, and the cytosolic calcium concentration is regulated by calcium-activated monovalent cation channels (CAMs). Calcium signaling is also implicated in B cell activation; however, its involvement in the cytokine production of LPS-stimulated B cells remains less well characterized. Here, we show that the transient receptor potential melastatin 5 channel (TRPM5), which is one of the CAMs, negatively modulates calcium signaling, thereby regulating LPS-induced proliferative and inflammatory responses by B cells. LPS-stimulated B cells of Trpm5-deficient mice exhibit an increased cytosolic calcium concentration, leading to enhanced proliferation and the production of the inflammatory cytokines interleukin-6 and CXCL10. Furthermore, Trpm5-deficient mice show an exacerbation of endotoxic shock with high mortality. Our findings demonstrate the importance of TRPM5-dependent regulatory mechanisms in LPS-induced calcium signaling of splenic B cells.
Collapse
Affiliation(s)
- Taiki Sakaguchi
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan; Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Ryu Okumura
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Chisato Ono
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Takafumi Kawai
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yoshifumi Okochi
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Natsuko Tanimura
- Department of Pharmacology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Mari Murakami
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan; Institute for Advanced Co-Creation Studies, Osaka University, Suita, Japan
| | - Eiji Umemoto
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Hidetaka Kioka
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tomohito Ohtani
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasushi Okamura
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.
| |
Collapse
|
10
|
Yasuda T, Saito Y, Ono C, Kawata K, Baba A, Baba Y. Generation and characterization of CD19-iCre mice as a tool for efficient and specific conditional gene targeting in B cells. Sci Rep 2021; 11:5524. [PMID: 33750849 PMCID: PMC7943778 DOI: 10.1038/s41598-021-84786-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
The Cre/loxP system is a powerful tool for generating conditional gene knockout (KO) mice and elucidate gene function in vivo. CD19-Cre and Mb1-iCre transgenic mice are commonly used for generating B cell-specific KO mice and investigate the development, as well as the physiological and pathophysiological roles of B cells. However, the CD19-Cre line low efficiency and the Mb1-iCre line occasional ectopic recombination represent challenges for their use. Thus, we developed a CD19-codon-improved Cre (CD19-iCre) knock-in mouse with the T2A-iCre sequence inserted into the Cd19 locus, just before the stop codon. The CD19-iCre mice were compared with existing models, crossed with the Rosa26-EYFP reporter mice, and their recombination activity in B cells carrying different Cre alleles was assessed. CD19-iCre mice showed more effective Cre recombination in the early B cell developmental stages compared with the CD19-Cre mice. The efficiencies of the CD19-iCre and Mb1-iCre lines were similar; however, the B lineage-specific recombination was more stringent in the CD19-iCre line. Furthermore, the utility value of the CD19-iCre model was superior than that of the CD19-Cre mice regarding deletion efficiency in IL10-floxed mice. Thus, the CD19-iCre line is a valuable tool for highly efficient gene targeting specific to the B cell compartment.
Collapse
Affiliation(s)
- Tomoharu Yasuda
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 739-8511, Japan.
| | - Yuichi Saito
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Chisato Ono
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazuhiko Kawata
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akemi Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
11
|
Abstract
IL-10 is the best known and most studied anti-inflammatory cytokine and, in the last 20 years, it has acquired even greater fame as it has been associated with the regulatory phenotype of B cells. Indeed, although great efforts have been made to find a unique marker, to date IL-10 remains the main way to follow both murine and human regulatory B cells, hence the need of precise and reproducible methods to identify and purify IL-10-producing B cells for both functional and molecular downstream assays. In this chapter, we present our protocols to isolate these cells from the murine spleen and peritoneum and from human peripheral blood. Since the production of IL-10 by B cells is not only a weapon to counteract the adverse effect of pro-inflammatory cytokines but also a response to cellular activation, we focused on those B cells that are prone to IL-10 production and detectable following a short-term stimulation with phorbol-12-myristate-13-acetate, ionomycin, and lipopolysaccharide (murine system) or CpG (human system).
Collapse
|
12
|
Chekol Abebe E, Asmamaw Dejenie T, Mengie Ayele T, Dagnew Baye N, Agegnehu Teshome A, Tilahun Muche Z. The Role of Regulatory B Cells in Health and Diseases: A Systemic Review. J Inflamm Res 2021; 14:75-84. [PMID: 33469337 PMCID: PMC7811483 DOI: 10.2147/jir.s286426] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/31/2020] [Indexed: 12/26/2022] Open
Abstract
Equivalent to regulatory T cells, a novel B cell populace, called regulatory B cells (Bregs), has been found to exert a negative immune regulatory role. These subsets of cells account for 0.5% of human B cells from the periphery that expand after activation upon certain stimuli depending on the nature of the microenvironment and provide a variety of Breg cell phenotypes. The increasing number of suppressive mechanisms attributed to Bregs suggests that these immune cells play many roles in immune regulation. Bregs have been confirmed to play a role in host defense mechanisms of healthy individuals as well as they play pathologic and protective roles in diseases or other conditions. Accumulating evidence reported that Bregs have a role in autoimmune and infectious diseases to lower inflammation, and in cancer to attenuate antitumor immune responses, thereby to promote cancer growth and metastasis. More recently, Bregs are also found to be involved in conditions like transplantation for transplant tolerance, during pregnancy to create an immune-privileged uterine environment and during early neonate life. Herein, the review summarizes recent findings aimed to provide understanding on the Breg cells, in the hope to gain insight on the general overview, development, mechanism of activation, and action of Bregs as well as their potential roles in health and diseases.
Collapse
Affiliation(s)
- Endeshaw Chekol Abebe
- Department of Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Tadesse Asmamaw Dejenie
- Department of Biochemistry, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Teklie Mengie Ayele
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Nega Dagnew Baye
- Department of Human Anatomy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Assefa Agegnehu Teshome
- Department of Human Anatomy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Zelalem Tilahun Muche
- Department of Physiology, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
13
|
Yap DYH, McMahon LP, Hao CM, Hu N, Okada H, Suzuki Y, Kim SG, Lim SK, Vareesangthip K, Hung CC, Nangaku M. Recommendations by the Asian Pacific society of nephrology (APSN) on the appropriate use of HIF-PH inhibitors. Nephrology (Carlton) 2020; 26:105-118. [PMID: 33222343 PMCID: PMC7898910 DOI: 10.1111/nep.13835] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
Abstract
Renal anaemia is a common and important complication in patients with chronic kidney disease (CKD). The current standard‐of‐care treatment for renal anaemia in CKD patients involves ensuring adequate iron stores and administration of erythropoietin stimulating agents (ESA). Hypoxia inducible factor (HIF) is a key transcription factor primarily involved in the cellular regulation and efficiency of oxygen delivery. Manipulation of the HIF pathway by the use of HIF‐prolyl hydroxylase inhibitors (HIF‐PHI) has emerged as a novel approach for renal anaemia management. Despite it being approved for clinical use in various Asia‐Pacific countries, its novelty mandates the need for nephrologists and clinicians generally in the region to well understand potential benefits and harms when prescribing this class of drug. The Asian Pacific society of nephrology HIF‐PHI Recommendation Committee, formed by a panel of 11 nephrologists from the Asia‐Pacific region who have clinical experience or have been investigators in HIF‐PHI studies, reviewed and deliberated on the clinical and preclinical data concerning HIF‐PHI. This recommendation summarizes the consensus views of the committee regarding the use of HIF‐PHI, taking into account both available data and expert opinion in areas where evidence remains scarce. The Asian Pacific society of nephrology HIF‐PHI Recommendation Committee summarizes the consensus views of the committee regarding the use of HIF‐PHI, taking into account both available data and expert opinion in areas where evidence remains scarce.
Collapse
Affiliation(s)
- Desmond Y H Yap
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lawrence P McMahon
- Department of Renal and Obstetric Medicine, Eastern Health Clinical School, Monash University, Melbourne, Australia
| | - Chuan-Ming Hao
- Divison of Nephrology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Nan Hu
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Beijing, P. R. China
| | - Hirokazu Okada
- Department of Nephrology, Saitama Medical University, Irumagun, Saitama, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Sung Gyun Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Seoul, South Korea
| | - Soo Kun Lim
- Division of Nephrology, Department of Medicine, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Kriengsak Vareesangthip
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chi-Chih Hung
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | |
Collapse
|
14
|
Baba Y, Saito Y, Kotetsu Y. Heterogeneous subsets of B-lineage regulatory cells (Breg cells). Int Immunol 2020; 32:155-162. [PMID: 31630184 DOI: 10.1093/intimm/dxz068] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/16/2019] [Indexed: 12/18/2022] Open
Abstract
B cells represent a key cellular component of humoral immunity. Besides antigen presentation and antibody production, B cells also play a role in immune regulation and induction of tolerance through several mechanisms. Our understanding of B-lineage cells with regulatory ability has been revolutionized by the delineation of heterogeneous subsets of these cells. Specific environmental signals may further determine the polarization and function of B-lineage regulatory cells. With the availability of new genetic, molecular and pharmacological tools, considerable advances have been made toward our understanding of the surface phenotype, developmental processes and functions of these cells. These exciting discoveries, some of which are still controversial, also raise many new questions, which makes the inhibitory function of B cells a rapidly growing field in immunopathology. Here we review highlights of the regulatory activity of B cells and the recent advances in the function and phenotype of these B-cell subsets in healthy and diseased states.
Collapse
Affiliation(s)
- Yoshihiro Baba
- Division of Immunology and Genome Biology, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Yuichi Saito
- Division of Immunology and Genome Biology, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Yasuaki Kotetsu
- Division of Immunology and Genome Biology, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
15
|
Gu Y, Han X. Toll-Like Receptor Signaling and Immune Regulatory Lymphocytes in Periodontal Disease. Int J Mol Sci 2020; 21:ijms21093329. [PMID: 32397173 PMCID: PMC7247565 DOI: 10.3390/ijms21093329] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/27/2022] Open
Abstract
Periodontitis is known to be initiated by periodontal microbiota derived from biofilm formation. The microbial dysbiotic changes in the biofilm trigger the host immune and inflammatory responses that can be both beneficial for the protection of the host from infection, and detrimental to the host, causing tissue destruction. During this process, recognition of Pathogen-Associated Molecular Patterns (PAMPs) by the host Pattern Recognition Receptors (PRRs) such as Toll-like receptors (TLRs) play an essential role in the host–microbe interaction and the subsequent innate as well as adaptive responses. If persistent, the adverse interaction triggered by the host immune response to the microorganisms associated with periodontal biofilms is a direct cause of periodontal inflammation and bone loss. A large number of T and B lymphocytes are infiltrated in the diseased gingival tissues, which can secrete inflammatory mediators and activate the osteolytic pathways, promoting periodontal inflammation and bone resorption. On the other hand, there is evidence showing that immune regulatory T and B cells are present in the diseased tissue and can be induced for the enhancement of their anti-inflammatory effects. Changes and distribution of the T/B lymphocytes phenotype seem to be a key determinant of the periodontal disease outcome, as the functional activities of these cells not only shape up the overall immune response pattern, but may directly regulate the osteoimmunological balance. Therefore, interventional strategies targeting TLR signaling and immune regulatory T/B cells may be a promising approach to rebalance the immune response and alleviate bone loss in periodontal disease. In this review, we will examine the etiological role of TLR signaling and immune cell osteoclastogenic activity in the pathogenesis of periodontitis. More importantly, the protective effects of immune regulatory lymphocytes, particularly the activation and functional role of IL-10 expressing regulatory B cells, will be discussed.
Collapse
Affiliation(s)
- Yingzhi Gu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA;
| | - Xiaozhe Han
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA;
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
16
|
Low frequency of IL-10 + B cells in patients with atherosclerosis is related with inflammatory condition. Heliyon 2020; 6:e03441. [PMID: 32154409 PMCID: PMC7057201 DOI: 10.1016/j.heliyon.2020.e03441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/11/2019] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Background and aims B cells involvement in animal models of atherosclerosis has been unequivocally established. However, the role of these cells in patients with atherosclerosis is almost unknown. Besides the production of antibodies, B cells can also exhibit regulatory functions mainly through IL-10. Here, we characterized human B cell subsets, their production of IL-10 in patients with atherosclerosis and their potential association with inflammation. Methods Patients with confirmed atherosclerotic events and controls with low cardiovascular risk were included. B cells subsets were determined in mononuclear cells (PBMC) using flow cytometry. PBMC were cultured ex vivo (5 h) and in vitro (48 h) to determine IL-10+ B cells and in some cases TNF-α+ and IFN-γ+ CD4+ T cells. The inflammatory state of the participants was determined through high sensitivity C reactive protein levels. Results Increase in percentage and number of plasmablasts was observed in patients with atherosclerosis compared with controls. A decreased frequency of IL-10+ B cells was observed in patients, both in ex vivo and in vitro cultures. This decrease was detected in transitional, memory, and plasmablast subsets. Interestingly, the reduction of IL-10+ B cells negatively and significantly correlated with the inflammatory condition of the studied subjects and associated with an increased frequency of TNF-α+ and IFN-γ+ CD4+ T cells. The blockade of IL-10R did not show further effect in T cells activation. Conclusions There is an association between the inflammatory state and a reduction of IL-10+ B cells that could contribute to the development of atherosclerosis.
Collapse
|
17
|
Emerging role of innate B1 cells in the pathophysiology of autoimmune and neuroimmune diseases: Association with inflammation, oxidative and nitrosative stress and autoimmune responses. Pharmacol Res 2019; 148:104408. [DOI: 10.1016/j.phrs.2019.104408] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/16/2022]
|
18
|
Byrd AS, Carmona-Rivera C, O'Neil LJ, Carlucci PM, Cisar C, Rosenberg AZ, Kerns ML, Caffrey JA, Milner SM, Sacks JM, Aliu O, Broderick KP, Reichner JS, Miller LS, Kang S, Robinson WH, Okoye GA, Kaplan MJ. Neutrophil extracellular traps, B cells, and type I interferons contribute to immune dysregulation in hidradenitis suppurativa. Sci Transl Med 2019; 11:eaav5908. [PMID: 31484788 PMCID: PMC11369904 DOI: 10.1126/scitranslmed.aav5908] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/20/2019] [Accepted: 07/26/2019] [Indexed: 09/05/2024]
Abstract
Hidradenitis suppurativa (HS), also known as acne inversa, is an incapacitating skin disorder of unknown etiology manifested as abscess-like nodules and boils resulting in fistulas and tissue scarring as it progresses. Given that neutrophils are the predominant leukocyte infiltrate in HS lesions, the role of neutrophil extracellular traps (NETs) in the induction of local and systemic immune dysregulation in this disease was examined. Immunofluorescence microscopy was performed in HS lesions and detected the prominent presence of NETs. NET complexes correlated with disease severity, as measured by Hurley staging. Neutrophils from the peripheral blood of patients with HS peripheral also displayed enhanced spontaneous NET formation when compared to healthy control neutrophils. Sera from patients recognized antigens present in NETs and harbored increased antibodies reactive to citrullinated peptides. B cell dysregulation, as evidenced by elevated plasma cells and IgG, was observed in the circulation and skin from patients with HS. Peptidylarginine deiminases (PADs) 1 to 4, enzymes involved in citrullination, were differentially expressed in HS skin, when compared to controls, in association with enhanced tissue citrullination. NETs in HS skin coexisted with plasmacytoid dendritic cells, in association with a type I interferon (IFN) gene signature. Enhanced NET formation and immune responses to neutrophil and NET-related antigens may promote immune dysregulation and contribute to inflammation. This, along with evidence of up-regulation of the type I IFN pathway in HS skin, suggests that the innate immune system may play important pathogenic roles in this disease.
Collapse
Affiliation(s)
- Angel S Byrd
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Liam J O'Neil
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Philip M Carlucci
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cecilia Cisar
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michelle L Kerns
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julie A Caffrey
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen M Milner
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Justin M Sacks
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Oluseyi Aliu
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristen P Broderick
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan S Reichner
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sewon Kang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William H Robinson
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ginette A Okoye
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
19
|
Moore DK, Loxton AG. Regulatory B lymphocytes: development and modulation of the host immune response during disease. Immunotherapy 2019; 11:691-704. [DOI: 10.2217/imt-2018-0185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The role of B lymphocytes (B cells) in immunogenic responses has become increasingly important over the past decade, focusing on a new B-cell subtype: regulatory B-cells (Bregs). These Bregs have been shown to possess potent immunosuppressive activities and have identified as key players in disease control and immune tolerance. In this review, the occurrence of Breg type in various conditions, along with evidence supporting discovered functions and proposed purposes will be explored. An example of such regulatory functions includes the induction or suppression of various T lymphocyte phenotypes in response to a particular stimulus. Should Bregs prove effective in mediating immune responses, and correlate with favorable disease outcome, they may serve as a novel therapeutic to combat disease and prevent infection. However, the induction, function and stability of these cells remain unclear and further investigation is needed to better understand their role and therapeutic efficacy.
Collapse
Affiliation(s)
- Dannielle K Moore
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa, 8000
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa, 8000
- Faculty of Medicine & Health Sciences, Division of Molecular Biology & Human Genetics, Stellenbosch University, Cape Town, South Africa, 8000
| | - Andre G Loxton
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa, 8000
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa, 8000
- Faculty of Medicine & Health Sciences, Division of Molecular Biology & Human Genetics, Stellenbosch University, Cape Town, South Africa, 8000
| |
Collapse
|
20
|
Singh B, Summers KL, Kerfoot SM. Novel regulatory Th17 cells and regulatory B cells in modulating autoimmune diseases. Cell Immunol 2019; 339:29-32. [DOI: 10.1016/j.cellimm.2018.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/15/2018] [Indexed: 02/08/2023]
|
21
|
Abstract
PURPOSE OF REVIEW Following solid organ transplantation (SOT), populations of donor lymphocytes are frequently found in the recipient circulation. Their impact on host alloimmunity has long been debated but remains unclear, and it has been suggested that transferred donor lymphocytes may either promote tolerance to the graft or hasten its rejection. We discuss possible mechanisms by which the interaction of donor passenger lymphocytes with recipient immune cells may either augment the host alloimmune response or inhibit it. RECENT FINDINGS Recent work has highlighted that donor T lymphocytes are the most numerous of the donor leukocyte populations within a SOT and that these may be transferred to the recipient after transplantation. Surprisingly, graft-versus-host recognition of major histocompatibility complex class II on host B cells by transferred donor CD4 T cells can result in marked augmentation of host humoral alloimmunity and lead to early graft failure. Killing of donor CD4 T cells by host natural killer cells is critical in preventing this augmentation. SUMMARY The ability of passenger donor CD4 T cells to effect long-term augmentation of the host humoral alloimmune response raises the possibility that ex-vivo treatment or modification of the donor organ prior to implantation may improve long-term transplant outcomes.
Collapse
|
22
|
Ghirotto B, Terra FF, Câmara NOS, Basso PJ. Sirtuins in B lymphocytes metabolism and function. World J Exp Med 2019; 9:1-13. [PMID: 30705866 PMCID: PMC6354076 DOI: 10.5493/wjem.v9.i1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/29/2018] [Accepted: 01/05/2019] [Indexed: 02/06/2023] Open
Abstract
Sirtuins (SIRTs) are NAD+-dependent histone deacetylases and play a role in virtually all cell biological processes. As SIRTs functions vary according to their subtypes, they can either activate or inhibit signaling pathways upon different conditions or tissues. Recent studies have focused on metabolic effects performed by SIRTs in several cell types since specific metabolic pathways (e.g., aerobic glycolysis, oxidative phosphorylation, β-oxidation, glutaminolysis) are used to determine the cell fate. However, few efforts have been made to understand the role of SIRTs on B lymphocytes metabolism and function. These cells are associated with humoral immune responses by secreting larger amounts of antibodies after differentiating into antibody-secreting cells. Besides, both the SIRTs and B lymphocytes are potential targets to treat several immune-mediated disorders, including cancer. Here, we provide an outlook of recent studies regarding the role of SIRTs in general cellular metabolism and B lymphocytes functions, pointing out the future perspectives of this field.
Collapse
Affiliation(s)
- Bruno Ghirotto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Fernanda Fernandes Terra
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Division of Nephrology, School of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
- Laboratory of Renal Physiology (LIM 16), School of Medicine, University of São Paulo, São Paulo 01246-903, Brazil
| | - Paulo José Basso
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
23
|
Su J, Wang K, Zhou X, Wang Y, Xu J, Tao L, Zeng X, Chen N, Bai X, Li X. B-cell-specific-peroxisome proliferator-activated receptor γ deficiency augments contact hypersensitivity with impaired regulatory B cells. Immunology 2018; 156:282-296. [PMID: 30471095 DOI: 10.1111/imm.13027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022] Open
Abstract
Nuclear receptor peroxisome proliferator-activated receptor γ (PPAR-γ) activation can prevent immunoinflammatory disorders and diabetes. B cells play protective roles during inflammation as well. However, the roles of endogenous PPAR-γ in the regulatory properties of B cells to relieve inflammation remain unknown. Here, we developed B-cell-specific PPAR-γ knockout (B-PPAR-γ-/- ) mice and found that the conditional deletion of PPAR-γ in B cells resulted in exaggerated contact hypersensitivity (CHS). Meanwhile, interferon-γ (IFN-γ) of CD4+ CD8+ T cells was up-regulated in B-PPAR-γ-/- mice in CHS. This showed that the regulatory function of B cells in B-PPAR-γ-/- mice declined in vivo. Whereas splenic CD5+ CD1dhi regulatory B-cell numbers and peripheral regulatory T-cell numbers were not changed in naive B-PPAR-γ-/- mice. Loss of PPAR-γ in B cells also did not affect either CD86 or FasL expression in splenic CD5+ CD1dhi regulatory B cells after activation. Notably, interleukin-10 (IL-10) production in CD5+ CD1dhi regulatory B cells reduced in B-PPAR-γ-deficient mice. In addition, functional IL-10-producing CD5+ CD1dhi regulatory B cells decreased in B-PPAR-γ-/- mice in the CHS model. These findings were in accordance with augmented CHS. The current work indicated the involvement of endogenous PPAR-γ in the regulatory function of B cells by disturbing the expansion of IL-10-positive regulatory B cells.
Collapse
Affiliation(s)
- Jianbing Su
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Keng Wang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xuan Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yiyuan Wang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jialan Xu
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lei Tao
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiangzhou Zeng
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Nana Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaochun Bai
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaojuan Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
24
|
Li J, Luo Y, Wang X, Feng G. Regulatory B cells and advances in transplantation. J Leukoc Biol 2018; 105:657-668. [PMID: 30548970 DOI: 10.1002/jlb.5ru0518-199r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 10/03/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022] Open
Abstract
The effects of B cell subsets with regulatory activity on the immune response to an allograft have evoked increasing interest. Here, we summarize the function and signaling of regulatory B cells (Bregs) and their potential effects on transplantation. These cells are able to suppress the immune system directly via ligand-receptor interactions and indirectly by secretion of immunosuppressive cytokines, particularly IL-10. In experimental animal models, the extensively studied IL-10-producing B cells have shown unique therapeutic advantages in the transplant field. In addition, adoptive transfer of B cell subsets with regulatory activity may reveal a new approach to prolonging allograft survival. Recent clinical observations on currently available therapies targeting B cells have revealed that Bregs play an important role in immune tolerance and that these cells are expected to become a new target of immunotherapy for transplant-related diseases.
Collapse
Affiliation(s)
- Jinfeng Li
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongsheng Luo
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xu Wang
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Guiwen Feng
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Lighaam LC, Unger PPA, Vredevoogd DW, Verhoeven D, Vermeulen E, Turksma AW, Ten Brinke A, Rispens T, van Ham SM. In vitro-Induced Human IL-10 + B Cells Do Not Show a Subset-Defining Marker Signature and Plastically Co-express IL-10 With Pro-Inflammatory Cytokines. Front Immunol 2018; 9:1913. [PMID: 30258433 PMCID: PMC6143818 DOI: 10.3389/fimmu.2018.01913] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/02/2018] [Indexed: 12/18/2022] Open
Abstract
Regulatory B cells (Breg) have been described as a specific immunological subsets in several mouse models. Identification of a human counterpart has remained troublesome, because unique plasma membrane markers or a defining transcription factor have not been identified. Consequently, human Bregs are still primarily defined by production of IL-10. In this study, we sought to elucidate if in vitro-induced human IL-10 producing B cells are a dedicated immunological subset. Using deep immune profiling by multicolor flow cytometry and t-SNE analysis, we show that the majority of cells induced to produce IL-10 co-express pro-inflammatory cytokines IL-6 and/or TNFα. No combination of markers can be identified to define human IL-10+TNFα−IL-6− B cells and rather point to a general activated B cell phenotype. Strikingly, upon culture and restimulation, a large proportion of formerly IL-10 producing B cells lose IL-10 expression, showing that induced IL-10 production is not a stable trait. The combined features of an activated B cell phenotype, transient IL-10 expression and lack of subset-defining markers suggests that in vitro-induced IL-10 producing B cells are not a dedicated subset of regulatory B cells.
Collapse
Affiliation(s)
- Laura C Lighaam
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Peter-Paul A Unger
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - David W Vredevoogd
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Dorit Verhoeven
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ellen Vermeulen
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Annelies W Turksma
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
26
|
SOX2-mediated inhibition of miR-223 contributes to STIM1 activation in phenylephrine-induced hypertrophic cardiomyocytes. Mol Cell Biochem 2017; 443:47-56. [PMID: 29110214 DOI: 10.1007/s11010-017-3209-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/14/2017] [Indexed: 10/18/2022]
Abstract
Stromal interaction molecule 1 (STIM1) is the key molecule responsible for store-operated Ca2+ entry (SOCE). Numerous studies have demonstrated that STIM1 levels appeared to be enhanced during cardiac hypertrophy. However, the mechanism underlining this process remains to be clarified. In this study, phenylephrine (PE) was employed to establish a model of hypertrophic neonatal rat cardiomyocytes (HNRCs) in vitro, and low expression of primary and mature miR-223 was detected in PE-induced HNRCs. Our results have revealed that downregulation of miR-223 by PE contributed to the increase of STIM1, which in turn induced cardiac hypertrophy. As expected, overexpression of miR-223 could prevent the increase in cell surface and reduce the mRNA levels of ANF and BNP in cardiomyocytes. To address the mechanism triggering downregulation of miR-223 under PE, we demonstrated that PE-induced inhibition of GSK-3β activity led to the activation of β-catenin, which initiates the transcription of SOX2. Increased expression of SOX2 occupied the promoter region of primary miR-223 and suppressed its transcription. Therefore, miR-223 appears to be a promising candidate for inhibiting cardiomyocyte hypertrophy, and miR-223/STIM1 axis might be one of interesting targets for the clinical treatment of hypertrophy.
Collapse
|
27
|
Mavropoulos A, Varna A, Zafiriou E, Liaskos C, Alexiou I, Roussaki-Schulze A, Vlychou M, Katsiari C, Bogdanos DP, Sakkas LI. IL-10 producing Bregs are impaired in psoriatic arthritis and psoriasis and inversely correlate with IL-17- and IFNγ-producing T cells. Clin Immunol 2017; 184:33-41. [DOI: 10.1016/j.clim.2017.04.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/27/2017] [Indexed: 12/24/2022]
|
28
|
Takahashi N, Saeki T, Komatsuda A, Munemura C, Fukui T, Imai N, Homma N, Hatta T, Samejima KI, Fujimoto T, Omori H, Ito Y, Nishikawa Y, Kobayashi M, Morikawa Y, Fukushima S, Yokoi S, Mikami D, Kasuno K, Kimura H, Nemoto T, Nakamoto Y, Sada K, Sugai M, Naiki H, Yoshida H, Narita I, Saito Y, Iwano M. Tubulointerstitial Nephritis with IgM-Positive Plasma Cells. J Am Soc Nephrol 2017; 28:3688-3698. [PMID: 28794148 DOI: 10.1681/asn.2016101074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 06/23/2017] [Indexed: 12/17/2022] Open
Abstract
Infiltration by IgG-positive plasma cells is a common finding in tubulointerstitial nephritis. Indeed, it has been thought that CD138-positive mature plasma cells secrete mainly IgG, and the occurrence of tubulointerstitial nephritis with CD138-positive plasma cells secreting IgM has rarely been reported. Routine immunofluorescence of fresh frozen sections is considered the gold standard for detection of immune deposits. However, the immunoenzyme method with formalin-fixed, paraffin-embedded sections is superior for detecting IgM- or IgG-positive cells within the renal interstitium, thus histologic variants may often go undetected. We recently discovered a case of tubulointerstitial nephritis showing IgM-positive plasma cell accumulation within the interstitium. To further explore the morphologic and clinical features of such cases, we performed a nationwide search for patients with biopsy-proven tubulointerstitial nephritis and high serum IgM levels. We identified 13 patients with tubulointerstitial nephritis and IgM-positive plasma cell infiltration confirmed with the immunoenzyme method. The clinical findings for these patients included a high prevalence of distal renal tubular acidosis (100%), Fanconi syndrome (92%), and anti-mitochondrial antibodies (82%). The pathologic findings were interstitial nephritis with diffusely distributed CD3-positive T lymphocytes and colocalized IgM-positive plasma cells, as well as tubulitis with CD3-positive T lymphocytes in the proximal tubules and collecting ducts. Additionally, levels of H+-ATPase, H+, K+-ATPase, and the HCO3--Cl- anion exchanger were markedly decreased in the collecting ducts. We propose to designate this group of cases, which have a common histologic and clinical form, as IgM-positive plasma cell-tubulointerstitial nephritis.
Collapse
Affiliation(s)
| | - Takako Saeki
- Department of Internal Medicine, Nagaoka Red Cross Hospital, Niigata, Japan
| | - Atsushi Komatsuda
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Chishio Munemura
- Division of Medicine and Clinical Science, Tottori University Faculty of Medicine, Tottori, Japan
| | - Takeaki Fukui
- Division of Medicine and Clinical Science, Tottori University Faculty of Medicine, Tottori, Japan
| | - Naofumi Imai
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Noriyuki Homma
- Internal Medicine, Niigata Prefectural Shibata Hospital, Niigata, Japan
| | - Tsuguru Hatta
- Department of Nephrology, Omihachiman Community Medical Center, Shiga, Japan
| | | | - Takashi Fujimoto
- The Center for Rheumatic Diseases, Nara Medical University, Nara, Japan
| | - Hiroki Omori
- Division of Nephrology, Department of Internal Medicine, National Hospital Organization Osaka Minami Medical Center, Osaka, Japan; and
| | - Yumi Ito
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | | | | | | - Tomoyuki Nemoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | | | | | | | - Haruyoshi Yoshida
- Department of Internal Medicine, Sugita Genpaku Memorial Obama Municipal Hospital, Fukui, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | |
Collapse
|
29
|
Wang K, Tao L, Su J, Zhang Y, Zou B, Wang Y, Zou M, Chen N, Lei L, Li X. TLR4 supports the expansion of FasL +CD5 +CD1d hi regulatory B cells, which decreases in contact hypersensitivity. Mol Immunol 2017; 87:188-199. [PMID: 28505514 DOI: 10.1016/j.molimm.2017.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 04/18/2017] [Accepted: 04/23/2017] [Indexed: 02/06/2023]
Abstract
Certain B cells termed as "regulatory B cells" (Bregs) can suppress the ongoing immune responses and a splenic CD5+CD1dhi Breg subset identified earlier was shown to exert its regulatory functions through secretion of IL-10. Though FasL expression is an alternative mechanism of immune suppression used by B cells, little is known about the FasL expressing CD5+CD1dhi Bregs. In this study, we isolated splenocytes or splenic CD19+ B cells and compared the efficiency of toll-like receptor(TLR)4 ligand (lipopolysaccharide) with TLR9 ligand (CpG), anti-CD40 and TLR9 ligand (CpG) plus anti-CD40 on the FasL expression of splenic CD5+CD1dhi Bregs by flow cytometry. FasL expression in CD5+CD1dhi B cells was rapidly increased after TLR4 ligation. Intriguingly, anti-CD40 and CpG plus anti-CD40 combinations failed to stimulate FasL expression in CD5+CD1dhi B cells although the IL-10 production was up-regulated in this subset. In addition, LPS and other B10-cell inducers increased the expression of surface molecules like CD86 and CD25, which are correlated to the regulatory functions of B cells. Furthermore, NF-κB and NF-AT inhibitors decreased the TLR4-activated FasL expression in CD5+CD1dhi B cells. Then we sorted splenic CD5+CD1dhi Bregs using flow cytometry and found that TLR4-activated CD5+CD1dhi Bregs suppressed the proliferation of CFSE-labeled CD4+ T cells in vitro, which was partly blocked by anti-FasL antibody. In oxazolone-sensitized mice having contact hypersensitivity, FasL expression in splenic CD5+CD1dhi B cells was decreased compared to the control group after TLR4 ligation. Our findings suggest that the regulatory function of CD5+CD1dhi B cells could be partly mediated by Fas-FasL pathway and this FasL expressing CD5+CD1dhi Bregs might participate in the regulation of inflammatory diseases.
Collapse
Affiliation(s)
- Keng Wang
- Laboratory of Anti-inflammatory Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; Department of Clinical Pharmacy, The Affiliated Nanhai Hospital of Southern Medical University, Foshan 528200, PR China
| | - Lei Tao
- Laboratory of Anti-inflammatory Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Jianbing Su
- Laboratory of Anti-inflammatory Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Yueyang Zhang
- Laboratory of Anti-inflammatory Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Binhua Zou
- Laboratory of Anti-inflammatory Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Yiyuan Wang
- Laboratory of Anti-inflammatory Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Min Zou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Nana Chen
- Laboratory of Anti-inflammatory Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Linsheng Lei
- Laboratory of Anti-inflammatory Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Xiaojuan Li
- Laboratory of Anti-inflammatory Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
30
|
Zorzopulos J, Opal SM, Hernando-Insúa A, Rodriguez JM, Elías F, Fló J, López RA, Chasseing NA, Lux-Lantos VA, Coronel MF, Franco R, Montaner AD, Horn DL. Immunomodulatory oligonucleotide IMT504: Effects on mesenchymal stem cells as a first-in-class immunoprotective/immunoregenerative therapy. World J Stem Cells 2017; 9:45-67. [PMID: 28396715 PMCID: PMC5368622 DOI: 10.4252/wjsc.v9.i3.45] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/12/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023] Open
Abstract
The immune responses of humans and animals to insults (i.e., infections, traumas, tumoral transformation and radiation) are based on an intricate network of cells and chemical messengers. Abnormally high inflammation immediately after insult or abnormally prolonged pro-inflammatory stimuli bringing about chronic inflammation can lead to life-threatening or severely debilitating diseases. Mesenchymal stem cell (MSC) transplant has proved to be an effective therapy in preclinical studies which evaluated a vast diversity of inflammatory conditions. MSCs lead to resolution of inflammation, preparation for regeneration and actual regeneration, and then ultimate return to normal baseline or homeostasis. However, in clinical trials of transplanted MSCs, the expectations of great medical benefit have not yet been fulfilled. As a practical alternative to MSC transplant, a synthetic drug with the capacity to boost endogenous MSC expansion and/or activation may also be effective. Regarding this, IMT504, the prototype of a major class of immunomodulatory oligonucleotides, induces in vivo expansion of MSCs, resulting in a marked improvement in preclinical models of neuropathic pain, osteoporosis, diabetes and sepsis. IMT504 is easily manufactured and has an excellent preclinical safety record. In the small number of patients studied thus far, IMT504 has been well-tolerated, even at very high dosage. Further clinical investigation is necessary to demonstrate the utility of IMT504 for resolution of inflammation and regeneration in a broad array of human diseases that would likely benefit from an immunoprotective/immunoregenerative therapy.
Collapse
|
31
|
Mauri C, Menon M. Human regulatory B cells in health and disease: therapeutic potential. J Clin Invest 2017; 127:772-779. [PMID: 28248202 DOI: 10.1172/jci85113] [Citation(s) in RCA: 285] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Regulatory B cells (Bregs) modulate immune responses predominantly, although not exclusively, via the release of IL-10. The importance of human Bregs in the maintenance of immune homeostasis comes from a variety of immune-related pathologies, such as autoimmune diseases, cancers, and chronic infections that are often associated with abnormalities in Breg numbers or function. A continuous effort toward understanding Breg biology in healthy individuals will provide new opportunities to develop Breg immunotherapy that could prove beneficial in treating various immune-mediated pathologies. In this Review, we discuss findings regarding human Bregs, including their mechanisms of suppression and role in different disease settings. We also propose several therapeutic strategies targeting Bregs for better management of immune disorders.
Collapse
|
32
|
MESH Headings
- Antigen Presentation
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- B-Lymphocytes, Regulatory/immunology
- B-Lymphocytes, Regulatory/pathology
- Colitis/genetics
- Colitis/immunology
- Colitis/pathology
- Cytokines/genetics
- Cytokines/immunology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Gene Expression Regulation/immunology
- Humans
- Hypersensitivity, Delayed/genetics
- Hypersensitivity, Delayed/immunology
- Hypersensitivity, Delayed/pathology
- Immune Tolerance
- Immunity, Humoral
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Cytokine/genetics
- Receptors, Cytokine/immunology
- Signal Transduction
Collapse
|