1
|
Liu L, Davidorf B, Dong P, Peng A, Song Q, He Z. Decoding the mosaic of inflammatory bowel disease: Illuminating insights with single-cell RNA technology. Comput Struct Biotechnol J 2024; 23:2911-2923. [PMID: 39421242 PMCID: PMC11485491 DOI: 10.1016/j.csbj.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 10/19/2024] Open
Abstract
Inflammatory bowel diseases (IBD), comprising ulcerative colitis (UC) and Crohn's disease (CD), are complex chronic inflammatory intestinal conditions with a multifaceted pathology, influenced by immune dysregulation and genetic susceptibility. The challenges in understanding IBD mechanisms and implementing precision medicine include deciphering the contributions of individual immune and non-immune cell populations, pinpointing specific dysregulated genes and pathways, developing predictive models for treatment response, and advancing molecular technologies. Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool to address these challenges, offering comprehensive transcriptome profiles of various cell types at the individual cell level in IBD patients, overcoming limitations of bulk RNA sequencing. Additionally, single-cell proteomics analysis, T-cell receptor repertoire analysis, and epigenetic profiling provide a comprehensive view of IBD pathogenesis and personalized therapy. This review summarizes significant advancements in single-cell sequencing technologies for enhancing our understanding of IBD, covering pathogenesis, diagnosis, treatment, and prognosis. Furthermore, we discuss the challenges that persist in the context of IBD research, including the need for longitudinal studies, integration of multiple single-cell and spatial transcriptomics technologies, and the potential of microbial single-cell RNA-seq to shed light on the role of the gut microbiome in IBD.
Collapse
Affiliation(s)
- Liang Liu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Benjamin Davidorf
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Peixian Dong
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alice Peng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Qianqian Song
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Zhiheng He
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Ogino T, Takeda K. Immunoregulation by antigen-presenting cells in human intestinal lamina propria. Front Immunol 2023; 14:1138971. [PMID: 36845090 PMCID: PMC9947491 DOI: 10.3389/fimmu.2023.1138971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Antigen-presenting cells, including macrophages and dendritic cells, are a type of innate immune cells that can induce the differentiation of T cells and activate the adaptive immune response. In recent years, diverse subsets of macrophages and dendritic cells have been identified in the intestinal lamina propria of mice and humans. These subsets contribute to the maintenance of intestinal tissue homeostasis by regulating the adaptive immune system and epithelial barrier function through interaction with intestinal bacteria. Further investigation of the roles of antigen-presenting cells localized in the intestinal tract may lead to the elucidation of inflammatory bowel disease pathology and the development of novel treatment approaches.
Collapse
Affiliation(s)
- Takayuki Ogino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Therapeutics for Inflammatory Bowel Diseases, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
- Immunology Frontier Research Center, Osaka University, Suita, Japan
| |
Collapse
|
3
|
Adamkova P, Hradicka P, Kupcova Skalnikova H, Cizkova V, Vodicka P, Farkasova Iannaccone S, Kassayova M, Gancarcikova S, Demeckova V. Dextran Sulphate Sodium Acute Colitis Rat Model: A Suitable Tool for Advancing Our Understanding of Immune and Microbial Mechanisms in the Pathogenesis of Inflammatory Bowel Disease. Vet Sci 2022; 9:238. [PMID: 35622766 PMCID: PMC9147231 DOI: 10.3390/vetsci9050238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a group of disorders causing inflammation in the digestive tract. Recent data suggest that dysbiosis may play a pivotal role in the IBD pathogenesis. As microbiome-based therapeutics that modulate the gut ecology have been proposed as a novel strategy for preventing IBD, the aim of presenting study was to evaluate the dextran sulphate sodium (DSS) rat model mainly in terms of microbial shifts to confirm its suitability for dysbiosis study in IBD. Acute colitis was induced using 5% DSS solution for seven days and rats were euthanized five days after DSS removal. The faecal/caecal microbiota was analyzed by next generation sequencing. Disease activity index (DAI) score was evaluated daily. Blood and colon tissue immunophenotyping was assessed by flow cytometry and histological, haematological, and biochemical parameters were also evaluated. The colitis induction was reflected in a significantly higher DAI score and changes in all parameters measured. This study demonstrated significant shifts in the colitis-related microbial species after colitis induction. The characteristic inflammation-associated microbiota could be detected even after a five day-recovery period. Moreover, the DSS-model might contribute to an understanding of the effect of different treatments on extraintestinal organ impairments. The observation that certain bacterial species in the gut microbiota are associated with colitis raises the question of whether these organisms are contributors to, or a consequence of the disease. Despite some limitations, we confirmed the suitability of DSS-induced colitis model to monitor microbial changes during acute colitis, in order to test attractive new microbiome-based therapies.
Collapse
Affiliation(s)
- Petra Adamkova
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| | - Petra Hradicka
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| | - Helena Kupcova Skalnikova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 277 21 Libechov, Czech Republic; (H.K.S.); (V.C.); (P.V.)
| | - Veronika Cizkova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 277 21 Libechov, Czech Republic; (H.K.S.); (V.C.); (P.V.)
| | - Petr Vodicka
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 277 21 Libechov, Czech Republic; (H.K.S.); (V.C.); (P.V.)
| | - Silvia Farkasova Iannaccone
- Department of Forensic Medicine, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia;
| | - Monika Kassayova
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| | - Sona Gancarcikova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia;
| | - Vlasta Demeckova
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| |
Collapse
|
4
|
Chiaranunt P, Tai SL, Ngai L, Mortha A. Beyond Immunity: Underappreciated Functions of Intestinal Macrophages. Front Immunol 2021; 12:749708. [PMID: 34650568 PMCID: PMC8506163 DOI: 10.3389/fimmu.2021.749708] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract hosts the largest compartment of macrophages in the body, where they serve as mediators of host defense and immunity. Seeded in the complex tissue-environment of the gut, an array of both hematopoietic and non-hematopoietic cells forms their immediate neighborhood. Emerging data demonstrate that the functional diversity of intestinal macrophages reaches beyond classical immunity and includes underappreciated non-immune functions. In this review, we discuss recent advances in research on intestinal macrophage heterogeneity, with a particular focus on how non-immune functions of macrophages impact tissue homeostasis and function. We delve into the strategic localization of distinct gut macrophage populations, describe the potential factors that regulate their identity and functional heterogeneity within these locations, and provide open questions that we hope will inspire research dedicated to elucidating a holistic view on macrophage-tissue cell interactions in the body's largest mucosal organ.
Collapse
Affiliation(s)
- Pailin Chiaranunt
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Siu Ling Tai
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Louis Ngai
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Han X, Ding S, Jiang H, Liu G. Roles of Macrophages in the Development and Treatment of Gut Inflammation. Front Cell Dev Biol 2021; 9:625423. [PMID: 33738283 PMCID: PMC7960654 DOI: 10.3389/fcell.2021.625423] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Macrophages, which are functional plasticity cells, have the ability to phagocytize and digest foreign substances and acquire pro-(M1-like) or anti-inflammatory (M2-like) phenotypes according to their microenvironment. The large number of macrophages in the intestinal tract, play a significant role in maintaining the homeostasis of microorganisms on the surface of the intestinal mucosa and in the continuous renewal of intestinal epithelial cells. They are not only responsible for innate immunity, but also participate in the development of intestinal inflammation. A clear understanding of the function of macrophages, as well as their role in pathogens and inflammatory response, will delineate the next steps in the treatment of intestinal inflammatory diseases. In this review, we discuss the origin and development of macrophages and their role in the intestinal inflammatory response or infection. In addition, the effects of macrophages in the occurrence and development of inflammatory bowel disease (IBD), and their role in inducing fibrosis, activating T cells, reducing colitis, and treating intestinal inflammation were also reviewed in this paper.
Collapse
Affiliation(s)
- Xuebing Han
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, China
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, China
| | - Hongmei Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, China
| |
Collapse
|
6
|
Caër C, Wick MJ. Human Intestinal Mononuclear Phagocytes in Health and Inflammatory Bowel Disease. Front Immunol 2020; 11:410. [PMID: 32256490 PMCID: PMC7093381 DOI: 10.3389/fimmu.2020.00410] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/21/2020] [Indexed: 12/18/2022] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a complex immune-mediated disease of the gastrointestinal tract that increases morbidity and negatively influences the quality of life. Intestinal mononuclear phagocytes (MNPs) have a crucial role in maintaining epithelial barrier integrity while controlling pathogen invasion by activating an appropriate immune response. However, in genetically predisposed individuals, uncontrolled immune activation to intestinal flora is thought to underlie the chronic mucosal inflammation that can ultimately result in IBD. Thus, MNPs are involved in fine-tuning mucosal immune system responsiveness and have a critical role in maintaining homeostasis or, potentially, the emergence of IBD. MNPs include monocytes, macrophages and dendritic cells, which are functionally diverse but highly complementary. Despite their crucial role in maintaining intestinal homeostasis, specific functions of human MNP subsets are poorly understood, especially during diseases such as IBD. Here we review the current understanding of MNP ontogeny, as well as the recently identified human intestinal MNP subsets, and discuss their role in health and IBD.
Collapse
Affiliation(s)
- Charles Caër
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mary Jo Wick
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Sekido Y, Nishimura J, Nakano K, Osu T, Chow CET, Matsuno H, Ogino T, Fujino S, Miyoshi N, Takahashi H, Uemura M, Matsuda C, Kayama H, Mori M, Doki Y, Takeda K, Uchino M, Ikeuchi H, Mizushima T. Some Gammaproteobacteria are enriched within CD14 + macrophages from intestinal lamina propria of Crohn's disease patients versus mucus. Sci Rep 2020; 10:2988. [PMID: 32076066 PMCID: PMC7031516 DOI: 10.1038/s41598-020-59937-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/04/2020] [Indexed: 11/09/2022] Open
Abstract
Crohn's disease causes chronic inflammation in the gastrointestinal tract and its pathogenesis remains unclear. In the intestine of Crohn's disease patients, CD14+CD11+CD163low macrophages contribute to inflammation through the induction of Th17 cells and production of inflammatory cytokines; the CD14+CD11c+163high fraction is anti-inflammatory through the production of IL-10 in normal cases. In this report, the 16S rRNA gene amplicon sequencing method was used to identify bacteria that are specifically present in intestinal CD14+CD11c+ macrophages of Crohn's disease patients. Bacteria present in intestinal CD14+CD11c+ macrophages and mucus of Crohn's disease patients were separated into different clusters in principal coordinates analysis. There was a statistically significant increase in the relative composition of CD14+CD11c+ macrophages from mucus in two phyla (Proteobacteria [p = 0.01] and Actinobacteria [p = 0.02]) and two families (Moraxellaceae [p < 0.001] and Pseudomonadaceae [p = 0.01]). In addition, OTU-1: Acinetobacter and OTU-8: Pseudomonadaceae tended to concentrate in the CD14+CD11c+CD163low subset, whereas OTU-10: Proteus, OTU-15: Collinsella tended to concentrate more in the CD14+CD11c+CD163high subset than the other subset and mucus.
Collapse
Affiliation(s)
- Yuki Sekido
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Junichi Nishimura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan. .,Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka, Japan.
| | | | - Takeaki Osu
- Research Institute, EA Pharma Co., Ltd., Tokyo, Japan
| | | | - Hiroshi Matsuno
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shiki Fujino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Norikatsu Miyoshi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Chu Matsuda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Laboratory of Mucosal Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Laboratory of Mucosal Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Motoi Uchino
- Department of Inflammatory Bowel Disease, Division of surgery, Hyogo College of Medicine, Hyogo, Japan
| | - Hiroki Ikeuchi
- Department of Inflammatory Bowel Disease, Division of surgery, Hyogo College of Medicine, Hyogo, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Therapeutics for Inflammatory Bowel Diseases, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
8
|
Xie C, Fan Y, Huang Y, Wu S, Xu H, Liu L, Hu Y, Huang Q, Shi H, Wang L, Xu H, Su J, Ren J. Class A1 scavenger receptors mediated macrophages in impaired intestinal barrier of inflammatory bowel disease. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:106. [PMID: 32175399 DOI: 10.21037/atm.2019.12.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background This study was to investigate the cytokines and phenotype of macrophages pre-treated with class A1 scavenger receptor (SR-A1) antibody in vitro and the influence on apoptotic pathway of colonic epithelial cells, and to explore the role of SR-A1 mediated macrophages in impaired intestinal barrier of inflammatory bowel diseases (IBDs). Methods Mouse macrophage RAW264.7 was pre-treated with SR-A1 antibody in the presence of lipopolysaccharide (LPS). Transwell system was employed for co-culture of RAW264.7 and Caco-2 in the presence of LPS and IFN-γ, with or without SR-A1 antibody pre-treatment. The percentage of F4/80+CD11c+ macrophages, apoptosis rate of Caco-2 cells, and expression of apoptosis and tight junction proteins in Caco-2 cells was determined. Results Pre-treatment with SR-A1 antibody up-regulated IL-10 expression in RAW264.7, whereas down-regulated the expression of TNF and iNOS. Immunofluorescence staining indicated the upregulation of NF-κB p-p56 after LPS stimulation was significantly inhibited in the presence of SR-A1 antibody. The increase in p-JNK expression was inhibited by SR-A1 antibody. Transwell assay showed the percentage of F4/80+CD11c+ macrophages and apoptotic Caco-2 cells increased after treatment with LPS and IFN-γ, which could be reversed in the presence of SR-A1 antibody. The induction of cleaved caspase-3 and claudin-1 in Caco-2 cells was also suppressed when SR-A1 antibody pre-treatment. Conclusions Pre-treatment with SR-A1 antibody can inhibit inflammatory response in LPS-induced macrophages in a NF-κB dependent manner. Pre-treatment with SR-A1 antibody also inhibits M1 phenotype expression of macrophages, and attenuates the pro-apoptotic effect on colonic epithelial cells and disruption of intestinal barrier integrity induced by macrophages.
Collapse
Affiliation(s)
- Chenxi Xie
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Xiamen University, Xiamen 361004, China
| | - Yanyun Fan
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Xiamen University, Xiamen 361004, China
| | - Yinshi Huang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China
| | - Shuangting Wu
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Xiamen University, Xiamen 361004, China
| | - Haimei Xu
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Xiamen University, Xiamen 361004, China
| | - Lupeng Liu
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Xiamen University, Xiamen 361004, China
| | - Yiqun Hu
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Xiamen University, Xiamen 361004, China
| | - Qingwen Huang
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Xiamen University, Xiamen 361004, China
| | - Huaxiu Shi
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Xiamen University, Xiamen 361004, China
| | - Lin Wang
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Xiamen University, Xiamen 361004, China
| | - Hongzhi Xu
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Xiamen University, Xiamen 361004, China
| | - Jingling Su
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Xiamen University, Xiamen 361004, China
| | - Jianlin Ren
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Xiamen University, Xiamen 361004, China
| |
Collapse
|
9
|
Chapuy L, Bsat M, Sarkizova S, Rubio M, Therrien A, Wassef E, Bouin M, Orlicka K, Weber A, Hacohen N, Villani AC, Sarfati M. Two distinct colonic CD14 + subsets characterized by single-cell RNA profiling in Crohn's disease. Mucosal Immunol 2019; 12:703-719. [PMID: 30670762 DOI: 10.1038/s41385-018-0126-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 02/04/2023]
Abstract
Inflammatory bowel diseases are associated with dysregulated immune responses in the intestinal tissue. Four molecularly identified macrophage subsets control immune homeostasis in healthy gut. However, the specific roles and transcriptomic profiles of the phenotypically heterogeneous CD14+ macrophage-like population in inflamed gut remain to be investigated in Crohn's disease (CD). Here we identified two phenotypically, morphologically and functionally distinct colonic HLADR+SIRPα+CD14+ subpopulations that were further characterized using single-cell RNA-sequencing (scRNAseq) in CD. Frequencies of CD64hiCD163-/dim cells selectively augmented in inflamed colon and correlated with endoscopic score of disease severity. IL-1β and IL-23-producing CD64hiCD163-/dim cells predominated over TNF-α-producing CD64hiCD163hi cells in lesions. Purified "inflammatory monocyte-like" CD163-, but not "macrophage-like" CD163hi cells, through IL-1β, promoted Th17/Th1 but not Th1 responses in tissue memory CD4+T cells. Unsupervised scRNAseq analysis that captures the entire HLADR+SIRPα+ population revealed six clusters, two of which were enriched in either CD163- or CD163hi cells, and best defined by TREM1/FCAR/FCN1/IL1RN or CD209/MERTK/MRCI/CD163L1 genes, respectively. Selected newly identified discriminating markers were used beyond CD163 to isolate cells that shared pro-Th17/Th1 function with CD163- cells. In conclusion, a molecularly distinct pro-inflammatory CD14+ subpopulation accumulates in inflamed colon, drives intestinal inflammatory T-cell responses, and thus, might contribute to CD disease severity.
Collapse
Affiliation(s)
- Laurence Chapuy
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - Marwa Bsat
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - Siranush Sarkizova
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Manuel Rubio
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - Amélie Therrien
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada.,Centre Hospitalier de l'Université de Montréal (CHUM), Université de Montréal, Montréal, QC, Canada
| | - Evelyne Wassef
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - Mickael Bouin
- Centre Hospitalier de l'Université de Montréal (CHUM), Université de Montréal, Montréal, QC, Canada
| | - Katarzina Orlicka
- Centre Hospitalier de l'Université de Montréal (CHUM), Université de Montréal, Montréal, QC, Canada
| | - Audrey Weber
- Centre Hospitalier de l'Université de Montréal (CHUM), Université de Montréal, Montréal, QC, Canada
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexandra-Chloé Villani
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Marika Sarfati
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
10
|
Comi M, Avancini D, Santoni de Sio F, Villa M, Uyeda MJ, Floris M, Tomasoni D, Bulfone A, Roncarolo MG, Gregori S. Coexpression of CD163 and CD141 identifies human circulating IL-10-producing dendritic cells (DC-10). Cell Mol Immunol 2019; 17:95-107. [PMID: 30842629 PMCID: PMC6952411 DOI: 10.1038/s41423-019-0218-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/08/2019] [Indexed: 01/13/2023] Open
Abstract
Tolerogenic dendritic cells (DCs) are key players in maintaining immunological homeostasis, dampening immune responses, and promoting tolerance. DC-10, a tolerogenic population of human IL-10-producing DCs characterized by the expression of HLA-G and ILT4, play a pivotal role in promoting tolerance via T regulatory type 1 (Tr1) cells. Thus far, the absence of markers that uniquely identify DC-10 has limited in vivo studies. By in vitro gene expression profiling of differentiated human DCs, we identified CD141 and CD163 as surface markers for DC-10. The coexpression of CD141 and CD163 in combination with CD14 and CD16 enables the ex vivo isolation of DC-10 from the peripheral blood. CD14+CD16+CD141+CD163+ cells isolated from the peripheral blood of healthy subjects (ex vivo DC-10) produced spontaneously and upon activation of IL-10 and limited levels of IL-12. Moreover, in vitro stimulation of allogeneic naive CD4+ T cells with ex vivo DC-10 induced the differentiation of alloantigen-specific CD49b+LAG-3+ Tr1 cells. Finally, ex vivo DC-10 and in vitro generated DC-10 exhibited a similar transcriptional profile, which are characterized by an anti-inflammatory and pro-tolerogenic signature. These results provide new insights into the phenotype and molecular signature of DC-10 and highlight the tolerogenic properties of circulating DC-10. These findings open the opportunity to track DC-10 in vivo and to define their role in physiological and pathological settings.
Collapse
Affiliation(s)
- Michela Comi
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy.,PhD Program in Translational and Molecular Medicine (DIMET), University of Milan-Bicocca, Milan, Italy
| | - Daniele Avancini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Francesca Santoni de Sio
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Matteo Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Molly Javier Uyeda
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, ISCBRM, Stanford School of Medicine, Stanford, CA, USA
| | | | - Daniela Tomasoni
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | | | - Maria Grazia Roncarolo
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, ISCBRM, Stanford School of Medicine, Stanford, CA, USA
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy.
| |
Collapse
|
11
|
Morhardt TL, Hayashi A, Ochi T, Quirós M, Kitamoto S, Nagao-Kitamoto H, Kuffa P, Atarashi K, Honda K, Kao JY, Nusrat A, Kamada N. IL-10 produced by macrophages regulates epithelial integrity in the small intestine. Sci Rep 2019; 9:1223. [PMID: 30718924 PMCID: PMC6362270 DOI: 10.1038/s41598-018-38125-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
Macrophages (Mϕs) are known to be major producers of the anti-inflammatory cytokine interleukin-10 (IL-10) in the intestine, thus playing an important role in maintaining gastrointestinal homeostasis. Mϕs that reside in the small intestine (SI) have been previously shown to be regulated by dietary antigens, while colonic Mϕs are regulated by the microbiota. However, the role which resident Mϕs play in SI homeostasis has not yet been fully elucidated. Here, we show that SI Mϕs regulate the integrity of the epithelial barrier via secretion of IL-10. We used an animal model of non-steroidal anti-inflammatory drug (NSAID)-induced SI epithelial injury to show that IL-10 is mainly produced by MHCII+ CD64+ Ly6Clow Mϕs early in injury and that it is involved in the restoration of the epithelial barrier. We found that a lack of IL-10, particularly its secretion by Mϕs, compromised the recovery of SI epithelial barrier. IL-10 production by MHCII+ CD64+ Ly6Clow Mϕs in the SI is not regulated by the gut microbiota, hence depletion of the microbiota did not influence epithelial regeneration in the SI. Collectively, these results highlight the critical role IL-10-producing Mϕs play in recovery from intestinal epithelial injury induced by NSAID.
Collapse
Affiliation(s)
- Tina L Morhardt
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Division of Pediatric Gastroenterology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Atsushi Hayashi
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Research Laboratory, Miyarisan Pharmaceutical Co., Ltd, Tokyo, 114-0016, Japan
| | - Takanori Ochi
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Miguel Quirós
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sho Kitamoto
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Hiroko Nagao-Kitamoto
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Peter Kuffa
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Koji Atarashi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Kenya Honda
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - John Y Kao
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Piedra-Quintero ZL, Serrano C, Villegas-Sepúlveda N, Maravillas-Montero JL, Romero-Ramírez S, Shibayama M, Medina-Contreras O, Nava P, Santos-Argumedo L. Myosin 1F Regulates M1-Polarization by Stimulating Intercellular Adhesion in Macrophages. Front Immunol 2019; 9:3118. [PMID: 30687322 PMCID: PMC6335276 DOI: 10.3389/fimmu.2018.03118] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
Intestinal macrophages are highly mobile cells with extraordinary plasticity and actively contribute to cytokine-mediated epithelial cell damage. The mechanisms triggering macrophage polarization into a proinflammatory phenotype are unknown. Here, we report that during inflammation macrophages enhance its intercellular adhesion properties in order to acquire a M1-phenotype. Using in vitro and in vivo models we demonstrate that intercellular adhesion is mediated by integrin-αVβ3 and relies in the presence of the unconventional class I myosin 1F (Myo1F). Intercellular adhesion mediated by αVβ3 stimulates M1-like phenotype in macrophages through hyperactivation of STAT1 and STAT3 downstream of ILK/Akt/mTOR signaling. Inhibition of integrin-αVβ3, Akt/mTOR, or lack of Myo1F attenuated the commitment of macrophages into a pro-inflammatory phenotype. In a model of colitis, Myo1F deficiency strongly reduces the secretion of proinflammatory cytokines, decreases epithelial damage, ameliorates disease activity, and enhances tissue repair. Together our findings uncover an unknown role for Myo1F as part of the machinery that regulates intercellular adhesion and polarization in macrophages.
Collapse
Affiliation(s)
| | - Carolina Serrano
- Department of Physiology, Biophysics and Neurosciences, Cinvestav Zacatenco, Mexico City, Mexico
| | | | - José L Maravillas-Montero
- Research Support Network, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Sandra Romero-Ramírez
- Research Support Network, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Cinvestav Zacatenco, Mexico City, Mexico
| | - Oscar Medina-Contreras
- Immunology and Proteomics Laboratory, Mexico Children's Hospital Federico Gómez, Mexico City, Mexico
| | - Porfirio Nava
- Department of Physiology, Biophysics and Neurosciences, Cinvestav Zacatenco, Mexico City, Mexico
| | | |
Collapse
|
13
|
Dandrieux JR, Martinez Lopez LM, Stent A, Jergens A, Allenspach K, Nowell CJ, Firestone SM, Kimpton W, Mansfield CS. Changes in duodenal CD163-positive cells in dogs with chronic enteropathy after successful treatment. Innate Immun 2018; 24:400-410. [PMID: 30223681 PMCID: PMC6830873 DOI: 10.1177/1753425918799865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic enteropathy (CE) in dogs is characterized retrospectively per treatment response as food-responsive enteropathy (FRE), antibiotic-responsive enteropathy (ARE), and immunosuppressant-responsive enteropathy (IRE) - the latter most resembling inflammatory bowel disease in people. The aim of this study was to characterize duodenal macrophages (Mϕ) in CE using immunohistochemistry; with calprotectin (CAL) as a marker of early differentiated Mϕ and CD163 expression as a marker for resident Mϕ in the duodenum before and after treatment. Prior to treatment, dogs with FRE and IRE had a lower CD163+/CAL+ ratio than control dogs (CTRL) in crypts; this increased significantly and normalized compared with CTRL after treatment. Conversely, the CD163+/CAL+ ratio in dogs with ARE was comparable to that in healthy dogs before and after treatment. In summary, these results suggest that Mϕ play a role in the pathogenesis of CE in FRE and IRE, with a decrease in resident Mϕ and an increase in early differentiated Mϕ, but not in ARE dogs. Mϕ normalize after successful treatment.
Collapse
Affiliation(s)
- Julien Rs Dandrieux
- 1 Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Australia.,2 Translational Research and Animal Clinical Trial Study (TRACTS) group, U-Vet Animal Hospital, Australia
| | - Lina Maria Martinez Lopez
- 1 Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Australia.,2 Translational Research and Animal Clinical Trial Study (TRACTS) group, U-Vet Animal Hospital, Australia
| | - Andrew Stent
- 1 Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Australia.,2 Translational Research and Animal Clinical Trial Study (TRACTS) group, U-Vet Animal Hospital, Australia
| | - Albert Jergens
- 3 College of Veterinary Medicine, Iowa State University, USA
| | | | - Cameron J Nowell
- 4 Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Australia
| | - Simon M Firestone
- 1 Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Australia.,5 Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Australia
| | - Wayne Kimpton
- 1 Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Australia
| | - Caroline S Mansfield
- 1 Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Australia.,2 Translational Research and Animal Clinical Trial Study (TRACTS) group, U-Vet Animal Hospital, Australia
| |
Collapse
|
14
|
Henry A, Boulagnon-Rombi C, Menguy T, Giustiniani J, Garbar C, Mascaux C, Labrousse M, Milas C, Barbe C, Bensussan A, Durlach V, Arndt C. CD160 Expression in Retinal Vessels Is Associated With Retinal Neovascular Diseases. ACTA ACUST UNITED AC 2018; 59:2679-2686. [DOI: 10.1167/iovs.18-24021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Adrien Henry
- Department of Ophthalmology, Hôpital Robert Debré, Reims, France
| | | | | | - Jérôme Giustiniani
- INSERM U976, Hôpital Saint-Louis, UMR-S 976, Université Paris Diderot, Paris, France
- Department of Research, Institut Jean Godinot, Reims, France
- Derm-I-C Research Unit, EA-7319, Faculté de Médecine de Reims, Reims, France
| | - Christian Garbar
- Department of Pathology, Hôpital Robert Debré, Reims, France
- Department of Research, Institut Jean Godinot, Reims, France
| | - Corinne Mascaux
- Department of Research, Institut Jean Godinot, Reims, France
| | - Marc Labrousse
- Department of Anatomy, Faculté de Médecine de Reims, Reims, France
| | - Corentin Milas
- Department of Ophthalmology, Hôpital Robert Debré, Reims, France
| | - Coralie Barbe
- Department of Clinical Research, Hôpital Robert Debré, Reims, France
| | - Armand Bensussan
- INSERM U976, Hôpital Saint-Louis, UMR-S 976, Université Paris Diderot, Paris, France
| | - Vincent Durlach
- Cardiovascular and Thoracic Division, Hôpital Robert Debré, Reims, France
| | - Carl Arndt
- Department of Ophthalmology, Hôpital Robert Debré, Reims, France
| |
Collapse
|
15
|
Menguy T, Briaux A, Jeunesse E, Giustiniani J, Calcei A, Guyon T, Mizrahi J, Haegel H, Duong V, Soler V, Brousset P, Bensussan A, Raymond Letron I, Le Bouteiller P. Anti-CD160, Alone or in Combination With Bevacizumab, Is a Potent Inhibitor of Ocular Neovascularization in Rabbit and Monkey Models. ACTA ACUST UNITED AC 2018; 59:2687-2698. [DOI: 10.1167/iovs.18-24024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
| | - Anne Briaux
- Centre de Physiopathologie de Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Toulouse III, Toulouse, France
| | - Elisabeth Jeunesse
- STROMALab, Université de Toulouse, EFS, ENVT, INSERM U1031, Toulouse, France et LabHPEC, Ecole Nationale Vétérinaire, Toulouse, France
| | - Jérôme Giustiniani
- INSERM UMR 976, Hôpital Saint-Louis, Paris, France
- Université Paris Diderot-Paris 7, Paris, France
- Institut Jean Godinot, Unicancer, F-51726 Reims, France
- Université Reims-Champagne-Ardenne, DERM-I-C, EA7319, Reims, France
| | | | | | | | | | | | - Vincent Soler
- Unité de Rétine, Ophthalmology Department, Hôpital Pierre-Paul Riquet, Toulouse University Hospital, Place Baylac, Toulouse, France
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde UMR 1056 Inserm - Université Toulouse III, Toulouse, France
- Université Toulouse III, Toulouse, France
| | - Pierre Brousset
- Centre de Recherche en Cancérologie de Toulouse, INSERM UMR1037, Toulouse, France
| | | | - Isabelle Raymond Letron
- STROMALab, Université de Toulouse, EFS, ENVT, INSERM U1031, Toulouse, France et LabHPEC, Ecole Nationale Vétérinaire, Toulouse, France
| | - Philippe Le Bouteiller
- Centre de Physiopathologie de Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Toulouse III, Toulouse, France
- INSERM UMR 976, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
16
|
Abstract
BACKGROUND Human intestinal innate myeloid cells can be divided into 3 subsets: HLA-DRCD14 cells, HLA-DRCD103 dendritic cells (DCs), and HLA-DRCD14CD103 cells. CD103 DCs generate Treg cells and Th17 cells in the ileum, but their function in the colon remains largely unknown. This study characterized CD103 DCs in the colon and investigated whether these cells are implicated in the pathogenesis of ulcerative colitis (UC). METHODS Normal intestinal mucosa was obtained from intact sites of patients with colorectal cancer (n = 24). Noninflamed and inflamed colonic tissues were obtained from surgically resected specimens of patients with UC (n = 13). Among LinCD45HLA-DR intestinal lamina propria cells, CD14 cells and CD103 DCs were sorted and analyzed for microRNA expression of cytokines and toll-like receptors by quantitative real-time polymerase chain reaction. In addition, IL-4/IL-5/IL-13/IL-17/IFN-γ production and Foxp3 expression by naive T cells cultured with CD14 cells and CD103 DCs were analyzed. RESULTS CD103 DCs in the normal colon showed lower expression of toll-like receptors and proinflammatory cytokines than CD14 cells. Coculture with naive T cells revealed that CD103 DCs generated Treg cells. CD103 DCs from patients with UC did not generate Treg cells, but they induced IFN-γ-, IL-13-, and IL-17-producing CD4 T cells and showed higher expression of IL6 (P < 0.0001), IL23A (P < 0.05), IL12p35 (P < 0.05), and TNF (P < 0.05). CONCLUSIONS In patients with UC, CD103 DCs show the impaired ability to generate Treg cells, but exhibit a colitogenic function inducing Th1/Th2/Th17 responses. These findings show how human CD103 DCs could contribute to the pathogenesis of UC.
Collapse
|
17
|
Kayama H, Takeda K. Regulation of the human gut homeostasis by anti-inflammatory CD14 + CD163 high CD160 high myeloid cells. ACTA ACUST UNITED AC 2017; 39:441-447. [PMID: 27795500 DOI: 10.2177/jsci.39.441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The gut is a unique tissue where a refined balance is maintained between immune responses and tolerance to a variety of foreign antigens including food and commensal bacteria. Although activation of T helper (Th) cells, such as Th1 and Th17 cells, is responsible for the host defense against invading pathogens in the gut, inappropriate Th1/Th17 responses cause onset and/or progression of inflammatory bowel disease (IBD) comprised of two major disorders; ulcerative colitis and Crohn's disease. Therefore, the inflammatory responses by Th1/Th17 cells in the gut are tightly regulated through a number of mechanisms. In the human intestine, several innate immune cell subsets play important roles in the maintenance of the gut homeostasis by controlling adaptive immune responses. We recently identified CD14+ CD163low cells and CD14+ CD163high CD160high cells as Th17-inducing dendritic cells and anti-inflammatory phagocytes, respectively. In addition, the dysfunction of these cell subsets was observed in the patients with IBD. Therefore, it would be an important future issue to analyze the mechanisms underlying regulation of intestinal innate immune cell homeostasis for the development of a novel therapeutic intervention for IBD.
Collapse
Affiliation(s)
- Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University
| | | |
Collapse
|