1
|
Ahmadi H, Bognar Z, Csabai-Tanics T, Obodo BN, Szekeres-Bartho J. Allergic Disposition of IVF-Conceived Mice. Int J Mol Sci 2024; 25:12993. [PMID: 39684703 DOI: 10.3390/ijms252312993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
With the increased utilization of assisted reproductive technology (ART), concerns about the potential health risks for ART-conceived babies have also been raised. Increased prevalences of allergic and metabolic diseases have been reported among ART offspring. This study aimed to evaluate the impact of IVF on the tendency to develop allergic responses following ovalbumin (OVA) sensitization in IVF-conceived mice. Mice were divided into four groups (non-OVA naturally conceived, OVA naturally conceived, non-OVA IVF-conceived, and OVA IVF-conceived). In the OVA groups, the mice were subjected to intraperitoneal and intranasal immunization with OVA. Two days after the final immunization, blood samples were taken, and the serum levels of IgE and IL-4 were detected by ELISA. The mice were sacrificed by cervical dislocation, their spleens and lungs were removed, and their weights were measured and recorded. Sensitization with OVA resulted in significantly increased concentrations of IL-4 and total IgE, as well as increased lung and spleen weights, among offspring from both natural and IVF conception. The concentrations of IgE and IL-4 and the lung and spleen weights in IVF-conceived mice were significantly higher compared to those in naturally conceived mice before and after sensitization with OVA. It is concluded that compared to naturally conceived mice, IVF-conceived mice exhibit a greater tendency to develop allergic responses against OVA.
Collapse
Affiliation(s)
- Hamid Ahmadi
- Department of Medical Biology, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Zoltan Bognar
- Department of Medical Biology, Medical School, University of Pecs, 7624 Pecs, Hungary
- National Laboratory on Human Reproduction, University of Pecs, 7624 Pecs, Hungary
- HUN-REN-PTE Human Reproduction Research Group, Hungarian Academy of Sciences, 1245 Budapest, Hungary
| | - Timea Csabai-Tanics
- Department of Medical Biology, Medical School, University of Pecs, 7624 Pecs, Hungary
- National Laboratory on Human Reproduction, University of Pecs, 7624 Pecs, Hungary
- HUN-REN-PTE Human Reproduction Research Group, Hungarian Academy of Sciences, 1245 Budapest, Hungary
| | - Basil Nnaemeka Obodo
- Department of Medical Biology, Medical School, University of Pecs, 7624 Pecs, Hungary
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Julia Szekeres-Bartho
- Department of Medical Biology, Medical School, University of Pecs, 7624 Pecs, Hungary
- National Laboratory on Human Reproduction, University of Pecs, 7624 Pecs, Hungary
- HUN-REN-PTE Human Reproduction Research Group, Hungarian Academy of Sciences, 1245 Budapest, Hungary
| |
Collapse
|
2
|
Li T, Bu G, Chen Y, Zhao Q, Chang Y. Heat/non-heat treatment alleviates β-conglycinin-triggered food allergy reactions by modulating the Th1/Th2 immune balance in a BALB/c mouse model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6531-6540. [PMID: 38517196 DOI: 10.1002/jsfa.13476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/02/2024] [Accepted: 03/22/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND With the increasing popularity of plant protein-based diets, soy proteins are favored as the most important source of plant protein worldwide. However, potential food allergy risks limit their use in the food industry. This work aims to reveal the mechanism of β-conglycinin-induced food allergy, and to explore the regulatory mechanism of heat treatment and high hydrostatic pressure (HHP) treatment in a BALB/c mouse model. RESULTS Our results showed that oral administration of β-conglycinin induced severe allergic symptoms in BALB/c mice, but these symptoms were effectively alleviated through heat treatment and HHP treatment. Moreover, β-conglycinin stimulated lymphocyte proliferation and differentiation; a large number of cytokines interleukin (IL)-4, IL-5, IL-10, IL-12 and IL-13 were released and interferon γ secretion was inhibited, which disrupted the Th1/Th2 immune balance and promoted the differentiation and proliferation of naive T cells into Th2-type cells. CONCLUSION Heat/non-heat treatment altered the conformation of soybean protein, which significantly reduced allergic reactions in mice. This regulatory mechanism may be associated with Th1/Th2 immune balance. Our results provide data support for understanding the changes in allergenicity of soybean protein within the food industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tanghao Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Gaungzhou, China
| | - Guanhao Bu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Yixuan Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Qingqing Zhao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Yongfeng Chang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
3
|
Krajewski D, Ranjitkar S, Tedeschi C, Perez NM, Jordan N, Mire M, Schneider SS, Mathias CB. IL-10 Neutralization Attenuates Mast Cell Responses in a Murine Model of Experimental Food Allergy. Immunohorizons 2024; 8:431-441. [PMID: 38888412 PMCID: PMC11220741 DOI: 10.4049/immunohorizons.2400002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
IgE-mediated mast cell (MC) activation is a critical component of allergic responses to oral Ags. Several T cell-derived cytokines have been shown to promote MC reactivity, and we recently demonstrated a critical role for the cytokine IL-10 in mediating MC responses during food allergy. In this study, we further validate the role of IL-10 using Ab-mediated IL-10 depletion. IL-10 neutralization significantly attenuated MC responses, leading to decreased MC accumulation and activation, as well as inhibition of MC-mediated symptoms such as allergic diarrhea. This was accompanied by decreased Th2 cytokine gene expression, attenuated systemic T cell responses, and fewer CD4 T cells, B cells, and MCs in the spleen. Our data further confirm the role of IL-10 in driving MC responses and suggest that IL-10-responsive MCs may constitute an important player in allergic responses.
Collapse
Affiliation(s)
- Dylan Krajewski
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA
| | - Saurav Ranjitkar
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Caitlin Tedeschi
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | | | - Nathan Jordan
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Mohamed Mire
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA
| | - Sallie S. Schneider
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA
| | - Clinton B. Mathias
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| |
Collapse
|
4
|
Saunders MN, Rad LM, Williams LA, Landers JJ, Urie RR, Hocevar SE, Quiros M, Chiang MY, Angadi AR, Janczak KW, Bealer EJ, Crumley K, Benson OE, Griffin KV, Ross BC, Parkos CA, Nusrat A, Miller SD, Podojil JR, O'Konek JJ, Shea LD. Allergen-Encapsulating Nanoparticles Reprogram Pathogenic Allergen-Specific Th2 Cells to Suppress Food Allergy. Adv Healthc Mater 2024:e2400237. [PMID: 38691819 PMCID: PMC11527797 DOI: 10.1002/adhm.202400237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/10/2024] [Indexed: 05/03/2024]
Abstract
Food allergy is a prevalent, potentially deadly disease caused by inadvertent sensitization to benign food antigens. Pathogenic Th2 cells are a major driver for disease, and allergen-specific immunotherapies (AIT) aim to increase the allergen threshold required to elicit severe allergic symptoms. However, the majority of AIT approaches require lengthy treatments and convey transient disease suppression, likely due to insufficient targeting of pathogenic Th2 responses. Here, the ability of allergen-encapsulating nanoparticles to directly suppress pathogenic Th2 responses and reactivity is investigated in a mouse model of food allergy. NPs associate with pro-tolerogenic antigen presenting cells, provoking accumulation of antigen-specific, functionally suppressive regulatory T cells in the small intestine lamina propria. Two intravenous doses of allergen encapsulated in poly(lactide-co-glycolide) nanoparticles (NPs) significantly reduces oral food challenge (OFC)-induced anaphylaxis. Importantly, NP treatment alters the fates of pathogenic allergen-specific Th2 cells, reprogramming these cells toward CD25+FoxP3+ regulatory and CD73+FR4+ anergic phenotypes. NP-mediated reductions in the frequency of effector cells in the gut and mast cell degranulation following OFC are also demonstrated. These studies reveal mechanisms by which an allergen-encapsulating NP therapy and, more broadly, allergen-specific immunotherapies, can rapidly attenuate allergic responses by targeting pathogenic Th2 cells.
Collapse
Affiliation(s)
- Michael N Saunders
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Laila M Rad
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Laura A Williams
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffrey J Landers
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Russell R Urie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sarah E Hocevar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Miguel Quiros
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ming-Yi Chiang
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL, 60611, USA
| | - Amogh R Angadi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Katarzyna W Janczak
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Elizabeth J Bealer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kelly Crumley
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Olivia E Benson
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kate V Griffin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brian C Ross
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Charles A Parkos
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL, 60611, USA
- Center for Human Immunobiology, Northwestern University, Chicago, IL, 60611, USA
- Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Joseph R Podojil
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL, 60611, USA
- Center for Human Immunobiology, Northwestern University, Chicago, IL, 60611, USA
- Cour Pharmaceuticals Development Company, Northbrook, IL, 60077, USA
| | - Jessica J O'Konek
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
5
|
Song G, Zhang Y, Gao H, Fu Y, Chen Y, Yin Y, Xu K. Differences in Immune Characteristics and Related Gene Expression in Spleen among Ningxiang, Berkshire Breeds and Their Hybrid Pigs. Genes (Basel) 2024; 15:205. [PMID: 38397195 PMCID: PMC10888219 DOI: 10.3390/genes15020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
To investigate the differential immunology in Ningxiang and Berkshire pigs and their F1 offspring (F1 offspring), physiological and biochemical indicators in the plasma and spleen were analyzed. Then, transcriptomic analysis of the spleen identified 1348, 408, and 207 differentially expressed genes (DEGs) in comparisons of Ningxiang vs. Berkshire, Berkshire vs. F1 offspring, and Ningxiang vs. F1 offspring, respectively. In Ningxiang vs. Berkshire pigs, the gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the DEGs included CD163, MARCO, CXCL14, CCL19, and PPBP, which are associated with immunity. GO and KEGG analyses were also conducted comparing F1 offspring and their parents. The DEGs, including BPIFB1, HAVCR2, CD163, DDX3X, CCR5, and ITGB3, were enriched in immune-related pathways. Protein-protein interaction (PPI) analysis indicated that the EGFR and ITGA2 genes were key hub genes. In conclusion, this study identifies significant immune DEGs in different pig breeds, providing data to support the exploration of breeding strategies for disease resistance in local and crossbred pig populations.
Collapse
Affiliation(s)
- Gang Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (G.S.); (Y.Z.); (H.G.); (Y.F.)
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yuebo Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (G.S.); (Y.Z.); (H.G.); (Y.F.)
| | - Hu Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (G.S.); (Y.Z.); (H.G.); (Y.F.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China;
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yawei Fu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (G.S.); (Y.Z.); (H.G.); (Y.F.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China;
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| | - Yue Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China;
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| | - Yulong Yin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China;
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Kang Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China;
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| |
Collapse
|
6
|
Huang M, Shao H, Zhang X, Yang F, Wang J, Tan S, Chen H, Li X. Comparison of cow's milk allergy models highlighted higher humoral and Th2 immune responses in BALB/c than C3H/HeNCrl mice. Food Chem Toxicol 2024; 184:114315. [PMID: 38081529 DOI: 10.1016/j.fct.2023.114315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 12/25/2023]
Abstract
Cow's milk allergy (CMA) is common in early childhood and the incidence is increasing. However, its mechanisms of action are still not fully understood due to the range of different clinical symptoms. So far, the development of different mouse models has been the best choice to study the molecular mechanisms triggering allergy. However, the selection of suitable strains for the establishment of animal models truly representative of associated human pathologies is still a challenge. Hence, we focused on both C3H/HeNCrl and BALB/c mice to characterize their susceptibility to CMA. After intraperitoneal sensitization, BALB/c and C3H/HeNCrl strains were challenged with β-lactoglobulin (BLG), and compared in allergic symptoms and active immune response, which assessed by specific antibody production and cytokine release. At first, both groups exhibited anaphylaxis, showed specific BLG-related IgE, Th2 response and seemed both suitable for the development of CMA models. However, a detailed analysis revealed that BALB/c had both stronger humoral and Th2 immune responses, producing more antibodies (IgE and IgG/IgG1/IgG2a), and releasing higher levels of Th2-associated cytokines (IL-4, IL-5, IL-13) compared to C3H/HeNCrl mice. Therefore, BALB/c strain would represent a preferential choice in the establishment of CMA models. This study highlights the subtle differences and major outcomes in the selection of mouse strains for the development of suitable food allergy models.
Collapse
Affiliation(s)
- Meijia Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, Jiangxi, PR China; School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Huming Shao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, Jiangxi, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Xing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, Jiangxi, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Fan Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, Jiangxi, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Jingshu Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, Jiangxi, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Shuijie Tan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, Jiangxi, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, Jiangxi, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, Jiangxi, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, Jiangxi, PR China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, Jiangxi, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330031, Jiangxi, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, Jiangxi, PR China.
| |
Collapse
|
7
|
The Immune System Response to 15-kDa Barley Protein: A Mouse Model Study. Nutrients 2022; 14:nu14204371. [PMID: 36297055 PMCID: PMC9611736 DOI: 10.3390/nu14204371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 12/04/2022] Open
Abstract
Barley (Hordeum vulgare L.) proteins are taxonomically homologous to wheat proteins and react with sera from patients with baker’s asthma. In the current work, the crude extract of barley proteins was divided into six fractions on DEAE-Sepharose. Their immunoreactivity in reacting with sera from patients with a confirmed food allergy varied, and the 15-kDa fraction (B−FrVI) showed the strongest response. In silico analysis confirmed that 15-kDa B-FrVI protein belongs to the trypsin/amylase inhibitor family and to a group of MHC type II allergens. In the next step, the immunogenicity of the B-FrVI was examined in a mouse model. It was shown that, compared to the PBS group, administration of B-FrVI to mice induced almost 2× higher amounts of specific IgG, ~217, and IgA ~29, as early as day 28 after immunization, regardless of the route (intraperitoneal or oral) of antigen administration (p < 0.0001). An ELISpot for B-cell responses confirmed it. Stimulation of mesenteric lymphocytes with pure B-FrVI significantly increased (p < 0.001) the proliferation of lymphocytes from all groups compared to cells growing in media only and stimulated with lyophilized beer. The experiments prove the strong immunogenicity of the 15-kDa B-FrVI protein and provide a basis for future studies of the allergenic nature of this protein.
Collapse
|
8
|
Wu Y, Lu Y, Huang Y, Wang J, Li S, Xu M, Lin H, Li Z. Comparative Analysis of Glycosylation Affecting Sensitization by Regulating the Cross-Reactivity of Parvalbumins in Turbot ( Scophthalmus maximus), Conger Eel ( Conger myriaster) and Sea Bass ( Micropterus salmoides). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10611-10619. [PMID: 35952368 DOI: 10.1021/acs.jafc.2c04423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Parvalbumin (PV) is the most common allergen in fish. Some patients with fish allergy are allergic to only one species of fish but are tolerant to others; however, the underlying mechanism has not been identified. This study showed that three types of glycated fishes' PV showed a similar decrease in immunoglobulin E (IgE) binding. Glycosylation could improve the simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) digestion resistance of fishes' PV. We also discovered that the cross-reactivity between eel and turbot was weaker than that of bass; glycosylation can reduce cross-reactivity between eel/bass and turbot by downregulating Th2 cytokines and upregulating Th1 cytokines as well as downregulating the expression of G-T PV, G-E PV, G-B PV of IL-4 (94.31 ± 3.16, 73.26 ± 0.91, 94.95 ± 3.03 ng/mL), and IL-13 (38.84 ± 0.75, 33.77 ± 0.71, 36.51 ± 0.50 ng/mL) and upregulating the expression of IFN-γ (318.01 ± 3.46, 387.15 ± 3.30, 318.01 ± 4.21 ng/mL) compared with T PV, respectively. This study showed that glycosylation affected sensitization by regulating the cross-reactivity of parvalbumins.
Collapse
Affiliation(s)
- Yeting Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266000, China
| | - Youyou Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Yuhao Huang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266000, China
| | - Junyu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266000, China
| | - Siyue Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266000, China
| | - Mengyao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266000, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266000, China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266000, China
| |
Collapse
|
9
|
Li Xu L, Wei Zhang H, Lin H, Mei Zhang X, Qi Wen Y, Long Zhao J, Xing Li Z, Gasset M. SWATH-MS-based proteomics reveals functional biomarkers of Th1/Th2 responses of tropomyosin allergy in mouse models. Food Chem 2022; 383:132474. [PMID: 35189446 DOI: 10.1016/j.foodchem.2022.132474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/22/2022] [Accepted: 02/13/2022] [Indexed: 12/01/2022]
Abstract
Type-I food allergies are hypersensitive reactions compromising the immune organs and epithelial barriers. To investigate the organ-specific proteomic alterations of the allergy responses, the spleen and intestine of mice sensitized with high (shrimp and clam) and weak (fish) allergenic tropomyosins were analyzed using sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS)-based proteomics. The results showed that Th1 and Th2 tropomyosin-induced responses in the spleen are characterized by the unique upregulation of innate (cochlin) and adaptive (Ig κ chain V-III region PC 7175) immune regulators, respectively. In the intestine, tropomyosin allergy concurred with the downregulation of 35 differentiating proteins featuring the overall impairment of metabolic pathways, absorption processes and ammonium ion responses. These data provide new functional biomarkers of tropomyosin-induced immune responses as well as candidate targets for intervention.
Collapse
Affiliation(s)
- Li Li Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, China; Institute of Physical Chemistry Rocasolano, Spanish National Research Council, 28006 Madrid, Spain
| | - Hong Wei Zhang
- Technology Center of Qingdao Customs District, Qingdao 266002 Shandong, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, China
| | - Xiao Mei Zhang
- Technology Center of Qingdao Customs District, Qingdao 266002 Shandong, China
| | - Yun Qi Wen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, China
| | - Jin Long Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, China
| | - Zhen Xing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, China.
| | - María Gasset
- Institute of Physical Chemistry Rocasolano, Spanish National Research Council, 28006 Madrid, Spain.
| |
Collapse
|
10
|
Zhang Y, Liu JY, Shao JW, Luo QQ, Zhang YQ, Song G, Wang CY, Zhao SY, Wan C, Du XH, Xu LZ. Effective Model of Food Allergy in Mice Sensitized with Ovalbumin and Freud's Adjuvant. Bull Exp Biol Med 2021; 171:352-356. [PMID: 34297293 DOI: 10.1007/s10517-021-05226-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 12/29/2022]
Abstract
To better explore the pathophysiology of FA and its therapy, we aimed to establish a simple and practicable FA model with Freund's adjuvant and introduce an easy and reliable laboratory evaluation method for assessment of inflammation in intestinal segments at different anatomical locations. BALB/c mice were sensitized with ovalbumin combined with Freund's adjuvant. Complete Freund's adjuvant was chosen for the first sensitization and two weeks later incomplete Freund's adjuvant was used for a second sensitization. Two weeks later, the sensitized mice were challenged with 50 mg ovalbumin every other day. After the 6 challenge, all mice were assessed for systemic anaphylaxis, and then sacrificed for sample collection. All sensitized mice showed anaphylactic symptoms and markedly increased levels of serum ovalbumin-specific IgE and IgG1. The activity of mast cell protease-1 (mMCPT-1) was significantly increased in the serum and interstitial fluid of the duodenum, jejunum, ileum, and colon. A successful FA model was established, of which inflammation occurred in the duodenum, jejunum, ileum, and colon. This model provides a reliable and simple tool for analysis of the mechanism of FA and methods of immunotherapy. Moreover, combined detection of ovalbumin-specific antibody and local mMCPT-1 levels could potentially be used as the major indicator for assessment of food allergy.
Collapse
Affiliation(s)
- Y Zhang
- Key Lab for Immunology, Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - J Y Liu
- Key Lab for Immunology, Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - J W Shao
- Key Lab for Immunology, Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Q Q Luo
- Key Lab for Immunology, Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Y Q Zhang
- Key Lab for Immunology, Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - G Song
- Key Lab for Immunology, Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - C Y Wang
- Key Lab for Immunology, Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - S Y Zhao
- Key Lab for Immunology, Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - C Wan
- Key Lab for Immunology, Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - X H Du
- Key Lab for Immunology, Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - L Z Xu
- Key Lab for Immunology, Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China.
| |
Collapse
|
11
|
Zhao X, Thijssen S, Chen H, Garssen J, Knippels LMJ, Hogenkamp A. Selenium Modulates the Allergic Response to Whey Protein in a Mouse Model for Cow's Milk Allergy. Nutrients 2021; 13:2479. [PMID: 34444651 PMCID: PMC8400770 DOI: 10.3390/nu13082479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 12/27/2022] Open
Abstract
Cow's milk allergy is a common food allergy in infants, and is associated with an increased risk of developing other allergic diseases. Dietary selenium (Se), one of the essential micronutrients for humans and animals, is an important bioelement which can influence both innate and adaptive immune responses. However, the effects of Se on food allergy are still largely unknown. In the current study it was investigated whether dietary Se supplementation can inhibit whey-induced food allergy in an animal research model. Three-week-old female C3H/HeOuJ mice were intragastrically sensitized with whey protein and cholera toxin and randomly assigned to receive a control, low, medium or high Se diet. Acute allergic symptoms, allergen specific immunoglobulin (Ig) E levels and mast cell degranulation were determined upon whey challenge. Body temperature was significantly higher in mice that received the medium Se diet 60 min after the oral challenge with whey compared to the positive control group, which is indicative of impaired anaphylaxis. This was accompanied by reductions in antigen-specific immunoglobulins and reduced levels of mouse mast cell protease-1 (mMCP-1). This study demonstrates that oral Se supplementation may modulate allergic responses to whey by decreasing specific antibody responses and mMCP-1 release.
Collapse
Affiliation(s)
- Xiaoli Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.Z.); (H.C.)
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands; (S.T.); (J.G.); (L.M.J.K.)
- School of Food Science Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Suzan Thijssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands; (S.T.); (J.G.); (L.M.J.K.)
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.Z.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands; (S.T.); (J.G.); (L.M.J.K.)
- Danone/Nutricia Research, Global Centre of Excellence Immunology, 3584 CT Utrecht, The Netherlands
| | - Leon M. J. Knippels
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands; (S.T.); (J.G.); (L.M.J.K.)
- Danone/Nutricia Research, Global Centre of Excellence Immunology, 3584 CT Utrecht, The Netherlands
| | - Astrid Hogenkamp
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands; (S.T.); (J.G.); (L.M.J.K.)
| |
Collapse
|
12
|
OVA-Experienced CD4 + T Cell Transfer and Chicken Protein Challenge Affect the Immune Response to OVA in a Murine Model. Int J Mol Sci 2021; 22:ijms22126573. [PMID: 34207474 PMCID: PMC8234906 DOI: 10.3390/ijms22126573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Chicken meat is often a major component of a modern diet. Allergy to chicken meat is relatively rare and occurs independently or in subjects allergic to ovalbumin (OVA). We examined the effect of adoptive transfer of OVA-CD4+ T cells on the immune response to OVA in mice fed chicken meat. Donor mice were injected intraperitoneally with 100 µg of OVA with Freund’s adjuvant two times over a week, and CD4+ T cells were isolated from them and transferred to naïve mice (CD4+/OVA/ChM group), which were then provoked with OVA with FA and fed freeze-dried chicken meat for 14 days. The mice injected with OVA and fed chicken meat (OVA/ChM group), and sensitized (OVA group) and healthy (PBS group) mice served as controls. Humoral and cellular response to OVA was monitored over the study. The CD4+/OVA/ChM group had lowered levels of anti-OVA IgG and IgA, and total IgE. There were significant differences in CD4+, CD4+CD25+, and CD4+CD25+Foxp3+ T cells between groups. OVA stimulation decreased the splenocyte proliferation index and IFN-γ secretion in the CD4+/OVA/ChM group compared to the OVA group. IL-4 was increased in the OVA/ChM mice, which confirms allergenic potential of the egg–meat protein combination. Transfer of OVA-experienced CD4+ T cells ameliorated the negative immune response to OVA.
Collapse
|
13
|
Pinke KH, Zorzella-Pezavento SFG, Lara VS, Sartori A. Should mast cells be considered therapeutic targets in multiple sclerosis? Neural Regen Res 2020; 15:1995-2007. [PMID: 32394947 PMCID: PMC7716037 DOI: 10.4103/1673-5374.282238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/19/2019] [Accepted: 01/16/2020] [Indexed: 12/23/2022] Open
Abstract
Mast cells are immune cells of the myeloid lineage that are found throughout the body, including the central nervous system. They perform many functions associated with innate and specific immunity, angiogenesis, and vascular homeostasis. Moreover, they have been implicated in a series of pathologies (e.g., hypersensitivity reactions, tumors, and inflammatory disorders). In this review, we propose that this cell could be a relevant therapeutic target in multiple sclerosis, which is a central nervous system degenerative disease. To support this proposition, we describe the general biological properties of mast cells, their contribution to innate and specific immunity, and the participation of mast cells in the various stages of multiple sclerosis and experimental autoimmune encephalomyelitis development. The final part of this review is dedicated to an overview of the available mast cells immunomodulatory drugs and their activity on multiple sclerosis and experimental autoimmune encephalomyelitis, including our own experience related to the effect of ketotifen fumarate on experimental autoimmune encephalomyelitis evolution.
Collapse
Affiliation(s)
- Karen Henriette Pinke
- Institute of Biosciences, Department of Microbiology and Immunology, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | - Vanessa Soares Lara
- Bauru School of Dentistry, Department of Surgery, Stomatology, Pathology and Radiology, University of São Paulo, Bauru, São Paulo, Brazil
| | - Alexandrina Sartori
- Institute of Biosciences, Department of Microbiology and Immunology, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
14
|
Rokytová I, Mravec B, Lauková M, Vargovič P. Effect of rapamycin on repeated immobilization stress-induced immune alterations in the rat spleen. J Neuroimmunol 2020; 346:577309. [PMID: 32645638 DOI: 10.1016/j.jneuroim.2020.577309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/26/2022]
Abstract
Chronic stress modulates immune system functions via neuroendocrine pathways. Rapamycin inhibits activity of immune cells through the mTOR signaling pathway. We investigated the effect of rapamycin (15 mg/kg, 3-times/week) on neuroimmune-endocrine system in the spleen of rats exposed to 42 cycles of 2-h immobilization. Rapamycin enhanced the activity of hypothalamic-pituitary-adrenocortical axis induced by stress exposure, prevented stress-induced expression of natural killer cell markers while reversed stress-evoked decline of Th2 immune response markers. Overall, our findings suggest that rapamycin may act on immune functions not only directly by inhibiting of mTOR in immune cells but also indirectly via modulation of neuroendocrine system.
Collapse
Affiliation(s)
- Ivana Rokytová
- Institute of Experimental Endocrinology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Boris Mravec
- Institute of Experimental Endocrinology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Marcela Lauková
- Institute of Experimental Endocrinology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia; Department of Public Health, Division of Environmental Health Science, School of Health Sciences and Practice, New York Medical College, Valhalla, NY, USA
| | - Peter Vargovič
- Institute of Experimental Endocrinology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
15
|
Chudzik-Kozłowska J, Wasilewska E, Złotkowska D. Evaluation of Immunoreactivity of Pea ( Pisum sativum) Albumins in BALB/c and C57BL/6 Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3891-3902. [PMID: 32178513 DOI: 10.1021/acs.jafc.0c00297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Green pea (Pisum sativum) is a component of European cuisine; however, an estimated 0.8% of Europeans suffer from allergies to pea proteins. We examined the immunoreactive potential of pea albumins (PA) in BALB/c and C57BL/6 mice. Mice were orally gavaged with PA or glycated pea albumins (G-PA) for 10 consecutive days, in combination with an adjuvant. Both PA and G-PA increased PA-specific serum antibody titers to about 212 for anti-PA IgG, ∼27 for anti-PA IgA, and ∼27.8 for anti-PA IgA in fecal extracts (p < 0.001). On day 42 postexposure, the antibodies titers decreased and were greater in BALB/c compared to C57BL/6 mice (p < 0.05). Distribution of CD4+ and CD8+ T cells in lymphoid tissues presented strain-specific differences. PA was found to induce lymphocyte proliferation; however, G-PA did not. Both PA and G-PA changed CD4+ and CD8+ T cells percentages in some lymphoid tissues; however, this did not impact cytokines production by splenocyte cultures evidenced by the stimulation of Th1, Th2, and Th17 cells. The observed immunomodulatory properties of PA and G-PA and lack of a sign of allergic reaction render them suitable for supplements in personalized diets, but further research is needed to precisely understand this activity.
Collapse
Affiliation(s)
- Justyna Chudzik-Kozłowska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, J. Tuwima 10 str., 10-748 Olsztyn, Poland
| | - Ewa Wasilewska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, J. Tuwima 10 str., 10-748 Olsztyn, Poland
| | - Dagmara Złotkowska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, J. Tuwima 10 str., 10-748 Olsztyn, Poland
| |
Collapse
|
16
|
Regan-Komito D, Swann JW, Demetriou P, Cohen ES, Horwood NJ, Sansom SN, Griseri T. GM-CSF drives dysregulated hematopoietic stem cell activity and pathogenic extramedullary myelopoiesis in experimental spondyloarthritis. Nat Commun 2020; 11:155. [PMID: 31919358 PMCID: PMC6952438 DOI: 10.1038/s41467-019-13853-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
Dysregulated hematopoiesis occurs in several chronic inflammatory diseases, but it remains unclear how hematopoietic stem cells (HSCs) in the bone marrow (BM) sense peripheral inflammation and contribute to tissue damage in arthritis. Here, we show the HSC gene expression program is biased toward myelopoiesis and differentiation skewed toward granulocyte-monocyte progenitors (GMP) during joint and intestinal inflammation in experimental spondyloarthritis (SpA). GM-CSF-receptor is increased on HSCs and multipotent progenitors, favoring a striking increase in myelopoiesis at the earliest hematopoietic stages. GMP accumulate in the BM in SpA and, unexpectedly, at extramedullary sites: in the inflamed joints and spleen. Furthermore, we show that GM-CSF promotes extramedullary myelopoiesis, tissue-toxic neutrophil accumulation in target organs, and GM-CSF prophylactic or therapeutic blockade substantially decreases SpA severity. Surprisingly, besides CD4+ T cells and innate lymphoid cells, mast cells are a source of GM-CSF in this model, and its pathogenic production is promoted by the alarmin IL-33.
Collapse
Affiliation(s)
- Daniel Regan-Komito
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, UK
| | - James W Swann
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Philippos Demetriou
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, UK
| | - E Suzanne Cohen
- Biopharmaceutical Research Division, AstraZeneca, Cambridge, UK
| | - Nicole J Horwood
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, UK
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, James Watson Road, Norwich Research Park, Norwich, UK
| | - Stephen N Sansom
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Thibault Griseri
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, UK.
| |
Collapse
|
17
|
El-Naseery NI, Mousa HSE, Noreldin AE, El-Far AH, Elewa YHA. Aging-associated immunosenescence via alterations in splenic immune cell populations in rat. Life Sci 2019; 241:117168. [PMID: 31838133 DOI: 10.1016/j.lfs.2019.117168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022]
Abstract
AIM Immunosenescence is the decline of the host immune system due to aging, resulting in various complications. The splenic lymphoid nodule is the pivotal compartment involved in immunosenescence. In this study, we investigated the important changes in the splenic immune cell populations of aged rats (18-24 months) in comparison with young rats (3-5 months). MATERIALS AND METHODS We, also, studied the effects of aging on the activities of total superoxide dismutase (T-SOD) and malondialdehyde (MDA) levels in spleen of both groups, besides the changes of the splenic architecture. Furthermore, immunohistochemical staining was performed to detect the aging effects in T cells, B cells, macrophages, granulocytes, mast cells, proliferating cells, apoptotic cells, and cells positive for interleukin-1β (IL-1β), interleukin-6 (IL-6), and Toll-like receptor 4 (TLR4). KEY FINDINGS The aged rats had significantly lower spleen/body weight ratios and smaller splenic nodules, indicating a decline in general immunity in them. With aging, T-SOD activities were decreased, while MDA levels were increased, exhibiting that oxidative stress increases in spleens. In addition, the aged group also had significantly fewer T and B cells, macrophages, granulocytes, IL-6 and TLR4 immuno-positive cells, and proliferating cells in the periarterial lymphatic sheaths, marginal zone, and lymphoid follicles compared with the young group. On the other hand, the number of mast cells and apoptotic cells was significantly increased with age. Therefore, we can conclude that cellular immunity and humoral immunity were crumpled with age.
Collapse
Affiliation(s)
- Nesma I El-Naseery
- Histology and Cytology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Hanaa S E Mousa
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed E Noreldin
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Yaser H A Elewa
- Histology and Cytology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; Laboratory of Anatomy, Faculty of Veterinary Medicine, Basic Veterinary Sciences, Hokkaido University, Sapporo 060-0818, Japan.
| |
Collapse
|
18
|
Fan Z, Che H, Yang S, Chen C. Estrogen and estrogen receptor signaling promotes allergic immune responses: Effects on immune cells, cytokines, and inflammatory factors involved in allergy. Allergol Immunopathol (Madr) 2019; 47:506-512. [PMID: 31248582 DOI: 10.1016/j.aller.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 12/21/2022]
Abstract
Hypersensitivity occurs when the body is stimulated by an antigen, resulting in an immune response, and leads to a physiological disorder or abnormal tissue trauma. Various immune cells, cytokines, and inflammatory mediators are involved in the immune responses related to allergic diseases, which are the core of anaphylaxis. Estrogen receptors are widely distributed in immune cells, which combine with estrogen and participate in allergic responses by affecting immune cells, cytokines, and inflammatory factors. We aimed to summarize the association between estrogen and allergic reactions to provide a scientific basis for understanding and studying the mechanisms of allergic diseases.
Collapse
|