1
|
Quyen TLT, Hsieh YC, Li SW, Wu LT, Liu YZ, Pan YJ. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii group in Taiwan. mSphere 2025; 10:e0079324. [PMID: 39745372 PMCID: PMC11774041 DOI: 10.1128/msphere.00793-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/21/2024] [Indexed: 01/29/2025] Open
Abstract
Acinetobacter, particularly the Acinetobacter baumannii group, is a major cause of nosocomial infections, and carbapenem-resistant Acinetobacter spp. are important human pathogens. We collected 492 Acinetobacter spp. strains from two hospitals in Taiwan and classified them using MALDI-TOF MS and blaOXA-51-like PCR; 94.5% were A. baumannii, and 5.5% were non-A. baumannii (NAB). We confirmed their identity by rpoB gene sequencing of 239 randomly selected A. baumannii strains and all 27 NAB strains. Our analysis revealed that the rpoB alleles of OXA51-like-negative strains matched those of two NAB species, A. seifertii and A. nosocomialis, while all OXA51-like-positive strains matched A. baumannii, as per the Pasteur MLST scheme database. Among the 492 strains, 240 exhibited carbapenem resistance, including 237 carbapenem-resistant A. baumannii (CRAB) strains and three CR-NAB strains. All CRAB strains were positive for blaOXA-51-like; 72.6% also carried blaOXA-23-like, 22.8% carried blaOXA-24-like, 3.4% co-carried blaOXA-23-like+blaOXA-24-like, and 1.27% carried blaOXA-51-like alone. Among the three CR-NAB strains, one carried blaNDM-1, and two co-carried blaOXA-58-like+blaIMP. We also established a new multiplex PCR method for rapid screening of common capsular types (KL), which showed a difference between CRAB and carbapenem-susceptible A. baumannii (CSAB). KL2, KL10, KL22, and KL52 accounted for 76.6% of CRAB strains, whereas about half of the CSAB strains were other KL types. Of the remaining CSAB strains, KL14 was the most predominant type at 10.3%. We further conducted MLST Pasteur typing for 262 isolates and found that the carbapenemase genes were correlated with either ST or KL types. Additionally, KL types showed correlations with ST types, carbapenem resistance, and certain clinical records. Whole-genome sequencing of a blaNDM-1-carrying A. seifertii strain revealed a plasmid transferable via in vitro conjugation, suggesting A. seifertii may be a reservoir for NDM-1 plasmids.IMPORTANCECarbapenem-resistant Acinetobacter spp. have been identified by the World Health Organization as a top priority for new antibiotic development. We established a rapid KL-typing method for efficient screening of Acinetobacter baumannii strains to enable epidemiological surveillance and provide a foundation for effective infection control. Our investigation of the molecular epidemiology of the A. baumannii group isolates revealed the prevalence of carbapenemase genes and major KL types among CR and CS strains of A. baumannii and NAB. We identified an A. seifertii strain carrying a Ti-type conjugative operon on a small plasmid that harbored genes encoding the NDM-1 carbapenemase alongside genes conferring resistance to aminoglycosides and bleomycin and closely resembled sequences detected in A. soli and A. pittii in Taiwan and China, respectively, suggesting its potential for transmitting multidrug resistance and contributing to the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Tran Lam Tu Quyen
- Department of Biological Science and Technology, College of Life Science, China Medical University, Taichung, Taiwan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Chia Hsieh
- Department of Pediatrics, Chang Gung Children’s Hospital, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Shiao-Wen Li
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| | - Lii-Tzu Wu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Ya-Zhu Liu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Jiun Pan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
2
|
Nasser F, Gaudreau A, Lubega S, Zaker A, Xia X, Mer AS, D'Costa VM. Characterization of the diversity of type IV secretion system-encoding plasmids in Acinetobacter. Emerg Microbes Infect 2024; 13:2320929. [PMID: 38530969 DOI: 10.1080/22221751.2024.2320929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/14/2024] [Indexed: 03/28/2024]
Abstract
The multi-drug resistant pathogen Acinetobacter baumannii has gained global attention as an important clinical challenge. Owing to its ability to survive on surfaces, its capacity for horizontal gene transfer, and its resistance to front-line antibiotics, A. baumannii has established itself as a successful pathogen. Bacterial conjugation is a central mechanism for pathogen evolution. The epidemic multidrug-resistant A. baumannii ACICU harbours a plasmid encoding a Type IV Secretion System (T4SS) with homology to the E. coli F-plasmid, and plasmids with homologous gene clusters have been identified in several A. baumannii sequence types. However the genetic and host strain diversity, global distribution, and functional ability of this group of plasmids is not fully understood. Using systematic analysis, we show that pACICU2 belongs to a group of almost 120 T4SS-encoding plasmids within four different species of Acinetobacter and one strain of Klebsiella pneumoniae from human and environmental origin, and globally distributed across 20 countries spanning 4 continents. Genetic diversity was observed both outside and within the T4SS-encoding cluster, and 47% of plasmids harboured resistance determinants, with two plasmids harbouring eleven. Conjugation studies with an extensively drug-resistant (XDR) strain showed that the XDR plasmid could be successfully transferred to a more divergent A. baumanii, and transconjugants exhibited the resistance phenotype of the plasmid. Collectively, this demonstrates that these T4SS-encoding plasmids are globally distributed and more widespread among Acinetobacter than previously thought, and that they represent an important potential reservoir for future clinical concern.
Collapse
Affiliation(s)
- Farah Nasser
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Avery Gaudreau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Shareefah Lubega
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Arvin Zaker
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Xuhua Xia
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
- Department of Biology, University of Ottawa, Ottawa, Canada
| | - Arvind S Mer
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Vanessa M D'Costa
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| |
Collapse
|
3
|
Barth PO, Pereira DC, de Oliveira GS, Konkewicz LR, Lutz L, Matos WL, Mott MP, Constante CC, Wilhelm CM, Antochevis LC, Paiva RM, Tragnago KF, Barth AL, Martins AF. Nosocomial outbreak due to a novel sequence type of carbapenem-resistant Acinetobacter seifertii. Am J Infect Control 2024:S0196-6553(24)00859-9. [PMID: 39617323 DOI: 10.1016/j.ajic.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/22/2024]
Abstract
BACKGROUND Acinetobacter seifertii, a member of A baumannii-calcoaceticus complex, can be considered a pathogen of concern due to the presence of resistance genes. The aim of the study was to describe an outbreak of carbapenem-resistant A seifertii among neonates admitted to the neonatal intensive care unit (NICU) at a tertiary care hospital. METHODS All patients with carbapenem-resistant A seifertii diagnosed and admitted to the NICU from June 2023 to October 2023 were included. The presence of carbapenemase genes (blaIMP, blaVIM, blaNDM, blaKPC, blaGES, blaOXA-48-like, and blaOXA-23) was investigated by qPCR. Whole-genome sequencing (WGS) was performed by MiSeq (Illumina) and MinION (Nanopore) platforms. Fourier-transform infrared spectroscopy (IR Biotyper) was applied for microbial strain typing. RESULTS Eleven patients were affected and a set of measures were implemented at NICU to reduce the risk of transmission. The isolates exhibited identical resistance patterns; additionally, all isolates presented the blaNDM-1 gene and were grouped in the same cluster by IR Biotyper. The WGS revealed that the isolates belonged to a novel ST assigned as ST2712, and the blaNDM-1 was carried by the same plasmid type. DISCUSSION Our study has identified a novel strain of A seifertii carrying blaNDM-1 responsible for the outbreak, indicating its emergence in the institution. CONCLUSIONS This is the first report of carbapenem-resistant A seifertii ST2712. The use of WGS for genomic surveillance allowed understanding the dissemination of Carbapenem-resistant A baumannii, which is crucial in outbreak scenarios.
Collapse
Affiliation(s)
- Patricia Orlandi Barth
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Dariane Castro Pereira
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Unidade de Microbiologia e Biologia Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriela Simões de Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Bioinformatic Core, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Loriane Rita Konkewicz
- Serviço de Controle de Infecção Hospitalar, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Larissa Lutz
- Unidade de Microbiologia e Biologia Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - William Latosinski Matos
- Unidade de Microbiologia e Biologia Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mariana Preussler Mott
- Unidade de Microbiologia e Biologia Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Caroline Collioni Constante
- Unidade de Microbiologia e Biologia Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Camila Morschbacher Wilhelm
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Laura Czekster Antochevis
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rodrigo Minuto Paiva
- Unidade de Microbiologia e Biologia Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Kellen Figueira Tragnago
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Afonso Luis Barth
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andreza Francisco Martins
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Bioinformatic Core, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
4
|
Na IY, Seo J, Jin Y, Ko KS. Whole-plasmid analysis of NDM-1-producing Acinetobacter seifertii isolate and its fitness in several Acinetobacter species. J Glob Antimicrob Resist 2024; 38:223-226. [PMID: 38723713 DOI: 10.1016/j.jgar.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/24/2024] [Accepted: 05/01/2024] [Indexed: 08/02/2024] Open
Abstract
OBJECTIVES The aim of this study was to characterize an NDM-1-producing Acinetobacter seifertii isolates from a patient in South Korea. METHODS Antibiotic susceptibility testing and genotyping using multigene sequencing were performed and whole plasmid sequences were determined. RESULTS The genotype of A. seifertii was ST1899 and was resistant to ceftazidime, trimethoprim-sulfamethoxazole, and piperacillin-tazobactam, in addition to carbapenem. blaNDM-1 was surrounded by the ISAba125 insertion sequence within the structure of Tn125 in the 47 kb-sized plasmid. The plasmid exhibited a structure similar to that of other plasmids of diverse Acinetobacter sp. found worldwide. Transconjugation and the growth curve indicated that the plasmid was adapted to A. seifertii rather than other closely related Acinetobacter sp. CONCLUSIONS Acquisition of carbapenem resistance by horizontal transfer of the blaNDM-1-carrying plasmid from another Acinetobacter species was found with no growth defect.
Collapse
Affiliation(s)
- In Young Na
- Department of Microbiology and Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Jungyu Seo
- Department of Microbiology and Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Yanhong Jin
- Department of Microbiology and Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kwan Soo Ko
- Department of Microbiology and Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
5
|
Kikuchi Y, Yoshida M, Kuwae A, Asami Y, Inahashi Y, Abe A. Correlation between the spread of IMP-producing bacteria and the promoter strength of bla IMP genes. J Antibiot (Tokyo) 2024; 77:315-323. [PMID: 38491135 DOI: 10.1038/s41429-024-00715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/10/2024] [Accepted: 02/21/2024] [Indexed: 03/18/2024]
Abstract
The first report of transmissible carbapenem resistance encoded by blaIMP-1 was discovered in Pseudomonas aeruginosa GN17203 in 1988, and blaIMP-1 has since been detected in other bacteria, including Enterobacterales. Currently, many variants of blaIMPs exist, and point mutations in the blaIMP promoter have been shown to alter promoter strength. For example, the promoter (Pc) of blaIMP-1, first reported in P. aeruginosa GN17203, was a weak promoter (PcW) with low-level expression intensity. This study investigates whether point mutations in the promoter region have helped to create strong promoters under antimicrobial selection pressure. Using bioinformatic approaches, we retrieved 115 blaIMPs from 14,529 genome data of Pseudomonadota and performed multiple alignment analyses. The results of promoter analysis of the 115 retrieved blaIMPs showed that most of them used the Pc located in class 1 integrons (n = 112, 97.4%). The promoter analysis by year revealed that the blaIMP population with the strong promoter, PcS, was transient. In contrast, the PcW-TG population, which had acquired a TGn-extended -10 motif in PcW and had an intermediate promoter strength, gradually spread throughout the world. An inverse correlation between Pc promoter strength and Intl1 integrase excision efficiency has been reported previously [1]. Because of this trade-off, it is unlikely that blaIMPs with strong promoters will increase rapidly, but the possibility that promoter strength will increase with the use of other integrons cannot be ruled out. Monitoring of the blaIMP genes, including promoter analysis, is necessary for global surveillance of carbapenem-resistant bacteria.
Collapse
Affiliation(s)
- Yuta Kikuchi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Mariko Yoshida
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Asaomi Kuwae
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Yukihiro Asami
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Yuki Inahashi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Akio Abe
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan.
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
6
|
Mancilla-Rojano J, Flores V, Cevallos MA, Ochoa SA, Parra-Flores J, Arellano-Galindo J, Xicohtencatl-Cortes J, Cruz-Córdova A. A bioinformatic approach to identify confirmed and probable CRISPR-Cas systems in the Acinetobacter calcoaceticus- Acinetobacter baumannii complex genomes. Front Microbiol 2024; 15:1335997. [PMID: 38655087 PMCID: PMC11035748 DOI: 10.3389/fmicb.2024.1335997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction The Acinetobacter calcoaceticus-Acinetobacter baumannii complex, or Acb complex, consists of six species: Acinetobacter baumannii, Acinetobacter calcoaceticus, Acinetobacter nosocomialis, Acinetobacter pittii, Acinetobacter seifertii, and Acinetobacter lactucae. A. baumannii is the most clinically significant of these species and is frequently related to healthcare-associated infections (HCAIs). Clustered regularly interspaced short palindromic repeat (CRISPR) arrays and associated genes (cas) constitute bacterial adaptive immune systems and function as variable genetic elements. This study aimed to conduct a genomic analysis of Acb complex genomes available in databases to describe and characterize CRISPR systems and cas genes. Methods Acb complex genomes available in the NCBI and BV-BRC databases, the identification and characterization of CRISPR-Cas systems were performed using CRISPRCasFinder, CRISPRminer, and CRISPRDetect. Sequence types (STs) were determined using the Oxford scheme and ribosomal multilocus sequence typing (rMLST). Prophages were identified using PHASTER and Prophage Hunter. Results A total of 293 genomes representing six Acb species exhibited CRISPR-related sequences. These genomes originate from various sources, including clinical specimens, animals, medical devices, and environmental samples. Sequence typing identified 145 ribosomal multilocus sequence types (rSTs). CRISPR-Cas systems were confirmed in 26.3% of the genomes, classified as subtypes I-Fa, I-Fb and I-Fv. Probable CRISPR arrays and cas genes associated with CRISPR-Cas subtypes III-A, I-B, and III-B were also detected. Some of the CRISPR-Cas systems are associated with genomic regions related to Cap4 proteins, and toxin-antitoxin systems. Moreover, prophage sequences were prevalent in 68.9% of the genomes. Analysis revealed a connection between these prophages and CRISPR-Cas systems, indicating an ongoing arms race between the bacteria and their bacteriophages. Furthermore, proteins associated with anti-CRISPR systems, such as AcrF11 and AcrF7, were identified in the A. baumannii and A. pittii genomes. Discussion This study elucidates CRISPR-Cas systems and defense mechanisms within the Acb complex, highlighting their diverse distribution and interactions with prophages and other genetic elements. This study also provides valuable insights into the evolution and adaptation of these microorganisms in various environments and clinical settings.
Collapse
Affiliation(s)
- Jetsi Mancilla-Rojano
- Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico, Mexico
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico, Mexico
| | - Víctor Flores
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Miguel A. Cevallos
- Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sara A. Ochoa
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico, Mexico
| | - Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán, Chile
| | - José Arellano-Galindo
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gomez, Mexico, Mexico
| | - Juan Xicohtencatl-Cortes
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico, Mexico
| | - Ariadnna Cruz-Córdova
- Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico, Mexico
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico, Mexico
| |
Collapse
|
7
|
Migliaccio A, Bray J, Intoccia M, Stabile M, Scala G, Jolley KA, Brisse S, Zarrilli R. Phylogenomics of Acinetobacter species and analysis of antimicrobial resistance genes. Front Microbiol 2023; 14:1264030. [PMID: 37928684 PMCID: PMC10620307 DOI: 10.3389/fmicb.2023.1264030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Non-baumannii Acinetobacter species are increasingly isolated in the clinical setting and the environment. The aim of the present study was to analyze a genome database of 837 Acinetobacter spp. isolates, which included 798 non-baumannii Acinetobacter genomes, in order to define the concordance of classification and discriminatory power of 7-gene MLST, 53-gene MLST, and single-nucleotide polymorphism (SNPs) phylogenies. Methods Phylogenies were performed on Pasteur Multilocus Sequence Typing (MLST) or ribosomal Multilocus Sequence Typing (rMLST) concatenated alleles, or SNPs extracted from core genome alignment. Results The Pasteur MLST scheme was able to identify and genotype 72 species in the Acinetobacter genus, with classification results concordant with the ribosomal MLST scheme. The discriminatory power and genotyping reliability of the Pasteur MLST scheme were assessed in comparison to genome-wide SNP phylogeny on 535 non-baumannii Acinetobacter genomes assigned to Acinetobacter pittii, Acinetobacter nosocomialis, Acinetobacter seifertii, and Acinetobacter lactucae (heterotypic synonym of Acinetobacter dijkshoorniae), which were the most clinically relevant non-baumannii species of the A. baumannii group. The Pasteur MLST and SNP phylogenies were congruent at Robinson-Fould and Matching cluster tests and grouped genomes into four and three clusters in A. pittii, respectively, and one each in A. seifertii. Furthermore, A. lactucae genomes were grouped into one cluster within A. pittii genomes. The SNP phylogeny of A. nosocomialis genomes showed a heterogeneous population and did not correspond to the Pasteur MLST phylogeny, which identified two recombinant clusters. The antimicrobial resistance genes belonging to at least three different antimicrobial classes were identified in 91 isolates assigned to 17 distinct species in the Acinetobacter genus. Moreover, the presence of a class D oxacillinase, which is a naturally occurring enzyme in several Acinetobacter species, was found in 503 isolates assigned to 35 Acinetobacter species. Conclusion In conclusion, Pasteur MLST phylogeny of non-baumannii Acinetobacter isolates coupled with in silico detection of antimicrobial resistance makes it important to study the population structure and epidemiology of Acinetobacter spp. isolates.
Collapse
Affiliation(s)
| | - James Bray
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Michele Intoccia
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Maria Stabile
- Department of Public Health, University of Naples “Federico II”, Naples, Italy
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Giovanni Scala
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Keith A. Jolley
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
8
|
Vasconcellos L, Silva SV, da Costa LV, de Miranda RVDSL, Dos Reis CMF, Braga LMPDS, Silva C, Conceição G, Mattoso J, Silva IB, Forsythe SJ, Midlej V, Boas MHSV, Brandão MLL. Phenotypical and molecular characterization of Acinetobacter spp. isolated from a pharmaceutical facility. Lett Appl Microbiol 2023; 76:ovad101. [PMID: 37660241 DOI: 10.1093/lambio/ovad101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 09/04/2023]
Abstract
Characterizing microorganisms according to different criteria is useful when investigating sources of microbiological contamination in the pharmaceutical industry. The aim of this study was to characterize 38 Acinetobacter baumannii complex strains isolated from a biopharmaceutical industry by 16S rRNA sequencing, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS), multilocus sequence typing (MLST), antimicrobial susceptibility profile, biofilm formation, and sensibility to disinfectants. Thirty-three (86.9%) strains were identified by 16S rRNA gene sequencing as A. seifertii/pitti/nosocomialis/lactucae, four (10.5%) as A. baumannii, and one (2.6%) as A. vivianii/courvalini. MALDI-TOF/MS did not identify one strain, and incorrectly identified 30/37 (81.1%) strains as A. baumannii. Strains were assigned to 12 different STs, of which nine were newly defined in this study (STs 2091-2099). Twenty-six (68.4%) strains showed resistance to amikacin and gentamicin. Thirty-three (86.8%) strains were classified as moderately or strongly adherent on polystyrene. Alcohol 70%/15 min and quaternary ammonium 0.08%/20 min were not able to eliminate the biofilm formed, but sodium hypochlorite 0.1%/15 min was efficient. In conclusion, improved methods are needed to improve the identification of Acinetobacter strains in pharmaceutical industries. This organism is of particular concern as it forms recalcitrant biofilms, leading to persistence in the manufacturing environment and increased risk of product contamination.
Collapse
Affiliation(s)
- Luiza Vasconcellos
- Microbiological Control Laboratory, Bio-Manguinhos, Fiocruz, Rio de Janeiro, CEP:21040-360, Brazil
- Laboratory of Microbiology of Food and Sanitizes, INCQS/Fiocruz, Rio de Janeiro, CEP:21040-360, Brazil
| | - Samara Verly Silva
- Microbiological Control Laboratory, Bio-Manguinhos, Fiocruz, Rio de Janeiro, CEP:21040-360, Brazil
| | - Luciana Veloso da Costa
- Microbiological Control Laboratory, Bio-Manguinhos, Fiocruz, Rio de Janeiro, CEP:21040-360, Brazil
| | - Rebeca Vitoria da Silva Lage de Miranda
- Microbiological Control Laboratory, Bio-Manguinhos, Fiocruz, Rio de Janeiro, CEP:21040-360, Brazil
- Laboratory of Microbiology of Food and Sanitizes, INCQS/Fiocruz, Rio de Janeiro, CEP:21040-360, Brazil
| | | | | | - Claudiane Silva
- Laboratory of Cellular Ultrastructure, IOC/Fiocruz, Rio de Janeiro, CEP:21040-360, Brazil
| | - Greice Conceição
- Department of Quality Control, Bio-Manguinhos, Fiocruz, Rio de Janeiro, CEP:21040-360, Brazil
| | - Josiane Mattoso
- Microbiological Control Laboratory, Bio-Manguinhos, Fiocruz, Rio de Janeiro, CEP:21040-360, Brazil
| | - Igor Barbosa Silva
- Microbiological Control Laboratory, Bio-Manguinhos, Fiocruz, Rio de Janeiro, CEP:21040-360, Brazil
| | | | - Victor Midlej
- Laboratory of Cellular Ultrastructure, IOC/Fiocruz, Rio de Janeiro, CEP:21040-360, Brazil
| | | | | |
Collapse
|
9
|
Álvarez VE, Quiroga MP, Centrón D. Identification of a Specific Biomarker of Acinetobacter baumannii Global Clone 1 by Machine Learning and PCR Related to Metabolic Fitness of ESKAPE Pathogens. mSystems 2023:e0073422. [PMID: 37184409 DOI: 10.1128/msystems.00734-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Since the emergence of high-risk clones worldwide, constant investigations have been undertaken to comprehend the molecular basis that led to their prevalent dissemination in nosocomial settings over time. So far, the complex and multifactorial genetic traits of this type of epidemic clones have allowed only the identification of biomarkers with low specificity. A machine learning algorithm was able to recognize unequivocally a biomarker for early and accurate detection of Acinetobacter baumannii global clone 1 (GC1), one of the most disseminated high-risk clones. A support vector machine model identified the U1 sequence with a length of 367 nucleotides that matched a fragment of the moaCB gene, which encodes the molybdenum cofactor biosynthesis C and B proteins. U1 differentiates specifically between A. baumannii GC1 and non-GC1 strains, becoming a suitable biomarker capable of being translated into clinical settings as a molecular typing method for early diagnosis based on PCR as shown here. Since the metabolic pathways of Mo enzymes have been recognized as putative therapeutic targets for ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens, our findings highlight that machine learning can also be useful in knowledge gaps of high-risk clones and provides noteworthy support to the literature to identify relevant nosocomial biomarkers for other multidrug-resistant high-risk clones. IMPORTANCE A. baumannii GC1 is an important high-risk clone that rapidly develops extreme drug resistance in the nosocomial niche. Furthermore, several strains have been identified worldwide in environmental samples, exacerbating the risk of human interactions. Early diagnosis is mandatory to limit its dissemination and to outline appropriate antibiotic stewardship schedules. A region with a length of 367 bp (U1) within the moaCB gene that is not subjected to lateral genetic transfer or to antibiotic pressures was successfully found by a support vector machine model that predicts A. baumannii GC1 strains. At the same time, research on the group of Mo enzymes proposed this metabolic pathway related to the superbug's metabolism as a potential future drug target site for ESKAPE pathogens due to its central role in bacterial fitness during infection. These findings confirm that machine learning used for the identification of biomarkers of high-risk lineages can also serve to identify putative novel therapeutic target sites.
Collapse
Affiliation(s)
- Verónica Elizabeth Álvarez
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos (LIMRA), Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - María Paula Quiroga
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos (LIMRA), Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Nodo de Bioinformática. Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniela Centrón
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos (LIMRA), Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
10
|
Mohd Rani F, Lean SS, A Rahman NI, Ismail S, Alattraqchi AG, Amonov M, Cleary DW, Clarke SC, Yeo CC. Comparative genomic analysis of clinical Acinetobacter nosocomialis isolates from Terengganu, Malaysia led to the discovery of a novel tetracycline-resistant plasmid. J Glob Antimicrob Resist 2022; 31:104-109. [PMID: 36049733 DOI: 10.1016/j.jgar.2022.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/21/2022] [Accepted: 08/23/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES To analyse the genome sequences of four archival Acinetobacter nosocomialis clinical isolates (designated AC13, AC15, AC21 and AC25) obtained from Terengganu, Malaysia in 2011 to determine their genetic relatedness and basis of antimicrobial resistance. METHODS Antimicrobial susceptibility profiles of the A. nosocomialis isolates were determined by disk diffusion. Genome sequencing was performed using the Illumina NextSeq platform. RESULTS The four A. nosocomialis isolates were cefotaxime resistant whereas three isolates (namely, AC13, AC15 and AC25) were tetracycline resistant. The carriage of the blaADC-255-encoded cephalosporinase gene is likely responsible for cefotaxime resistance in all four isolates. Phylogenetic analysis indicated that the three tetracycline-resistant isolates were closely related, with an average nucleotide identity of 99.9%, suggestive of nosocomial spread, whereas AC21 had an average nucleotide identity of 97.9% when compared to these three isolates. The tetracycline-resistant isolates harboured two plasmids: a 13476 bp Rep3-family plasmid of the GR17 group designated pAC13-1, which encodes the tetA(39) tetracycline-resistance gene, and pAC13-2, a 4872 bp cryptic PriCT-1-family plasmid of a new Acinetobacter plasmid group, GR60. The tetA(39) gene was in a 2 001 bp fragment flanked by XerC/XerD recombination sites characteristic of a mobile pdif module. Both plasmids also harboured mobilisation/transfer-related genes. CONCLUSIONS Genome sequencing of A. nosocomialis isolates led to the discovery of two novel plasmids, one of which encodes the tetA(39) tetracycline-resistant gene in a mobile pdif module. The high degree of genetic relatedness among the three tetracycline-resistant A. nosocomialis isolates is indicative of nosocomial transmission.
Collapse
Affiliation(s)
- Farahiyah Mohd Rani
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Soo Sum Lean
- School of Molecular Sciences, University of Western Australia, Perth, WA, Australia
| | - Nor Iza A Rahman
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Salwani Ismail
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Ahmed Ghazi Alattraqchi
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Malik Amonov
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - David W Cleary
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Trust, Southampton, United Kingdom
| | - Stuart C Clarke
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Trust, Southampton, United Kingdom; Global Health Research Institute, University of Southampton, Southampton, United Kingdom; Centre for Translational Research, IMU Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
| | - Chew Chieng Yeo
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia.
| |
Collapse
|
11
|
Moran RA, Liu H, Doughty EL, Hua X, Cummins EA, Liveikis T, McNally A, Zhou Z, van Schaik W, Yu Y. GR13-type plasmids in Acinetobacter potentiate the accumulation and horizontal transfer of diverse accessory genes. Microb Genom 2022; 8. [PMID: 35731562 PMCID: PMC9455709 DOI: 10.1099/mgen.0.000840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Carbapenem and other antibiotic resistance genes (ARGs) can be found in plasmids in Acinetobacter, but many plasmid types in this genus have not been well-characterized. Here we describe the distribution, diversity and evolutionary capacity of rep group 13 (GR13) plasmids that are found in Acinetobacter species from diverse environments. Our investigation was prompted by the discovery of two GR13 plasmids in A. baumannii isolated in an intensive care unit (ICU). The plasmids harbour distinct accessory genes: pDETAB5 contains blaNDM-1 and genes that confer resistance to four further antibiotic classes, while pDETAB13 carries putative alcohol tolerance determinants. Both plasmids contain multiple dif modules, which are flanked by pdif sites recognized by XerC/XerD tyrosine recombinases. The ARG-containing dif modules in pDETAB5 are almost identical to those found in pDETAB2, a GR34 plasmid from an unrelated A. baumannii isolated in the same ICU a month prior. Examination of a further 41 complete, publicly available plasmid sequences revealed that the GR13 pangenome consists of just four core but 1186 accessory genes, 123 in the shell and 1063 in the cloud, reflecting substantial capacity for diversification. The GR13 core genome includes genes for replication and partitioning, and for a putative tyrosine recombinase. Accessory segments encode proteins with diverse putative functions, including for metabolism, antibiotic/heavy metal/alcohol tolerance, restriction-modification, an anti-phage system and multiple toxin–antitoxin systems. The movement of dif modules and actions of insertion sequences play an important role in generating diversity in GR13 plasmids. Discrete GR13 plasmid lineages are internationally disseminated and found in multiple Acinetobacter species, which suggests they are important platforms for the accumulation, horizontal transmission and persistence of accessory genes in this genus.
Collapse
Affiliation(s)
- Robert A Moran
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Haiyang Liu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, PR China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, 310016, PR China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, PR China
| | - Emma L Doughty
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, PR China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, 310016, PR China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, PR China
| | - Elizabeth A Cummins
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Tomas Liveikis
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Zhihui Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, PR China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, 310016, PR China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, PR China
| | - Willem van Schaik
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, PR China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, 310016, PR China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, PR China
| |
Collapse
|