1
|
Qin XL, Chen Y, Wu XZ, Chen WT, Xue YH, Huang JM, Tang SM, Lan YY, Feng ZQ, Zhou H, Zhang ZY, Zhan QX, Cheng K, Zheng HP. Emerging epidemic of the Africa-type plasmid in penicillinase-producing Neisseria gonorrhoeae in Guangdong, China, 2013-2022. Emerg Microbes Infect 2025; 14:2440489. [PMID: 39648890 DOI: 10.1080/22221751.2024.2440489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/08/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
The prevalence of penicillinase-producing Neisseria gonorrhoeae (PPNG) is a crucial public health concern because of its resistance to penicillin and cephalosporins. From 2013 to 2022, a total of 1748 N. gonorrhoeae isolates from Guangdong, China, were examined for their antibiotic susceptibility and molecular epidemiological characteristics. PPNG prevalence increased markedly from 37.25% to 63.87%. This increase was accompanied by a shift in predominant plasmid types carried by PPNG isolates: the rate of PPNG isolates carrying the Africa-type plasmid increased from 18.42% to 91.55%, whereas the rate of isolates carrying the Asia-type plasmid decreased from 81.58% to 7.58%. The prevalence of blaTEM-135, which is linked to cephalosporin resistance, declined from 52.63% to 4.37%, whereas that of blaTEM-1 increased from 47.37% to 86.88%, and new blaTEM variants emerged (10.99% by 2022). Most blaTEM-1 (88.26%) and new blaTEM alleles (83.70%) were associated with the Africa-type plasmid, whereas 86.79% of blaTEM-135 alleles were linked to the Asia-type plasmid. Resistance to ceftriaxone was higher in the Asia-type group (11.67%) than in the Africa-type, Toronto/Rio-type and non-PPNG groups. Genotyping identified diverse sequence types (STs) among PPNGs, in which MLST ST7363, NG-STAR ST2477, NG-MAST ST17748, and NG STAR CC1124 were predominant. This study underscores the rising prevalence of PPNG in Guangdong driven by clonal expansion and changing plasmid dynamics, affecting cephalosporin resistance and highlighting the need for continued surveillance and research into effective treatment strategies.
Collapse
Affiliation(s)
- Xiao-Lin Qin
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
- Dermatology Hospital, Southern Medical University, Guangzhou, People's Republic of China
- Guangzhou Key Laboratory for Sexually Transmitted Disease Control, Guangzhou, People's Republic of China
| | - Yang Chen
- Dermatology Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xing-Zhong Wu
- Dermatology Hospital, Southern Medical University, Guangzhou, People's Republic of China
- Guangzhou Key Laboratory for Sexually Transmitted Disease Control, Guangzhou, People's Republic of China
| | - Wen-Tao Chen
- Dermatology Hospital, Southern Medical University, Guangzhou, People's Republic of China
- Guangzhou Key Laboratory for Sexually Transmitted Disease Control, Guangzhou, People's Republic of China
| | - Yao-Hua Xue
- Dermatology Hospital, Southern Medical University, Guangzhou, People's Republic of China
- Guangzhou Key Laboratory for Sexually Transmitted Disease Control, Guangzhou, People's Republic of China
| | - Jin-Mei Huang
- Dermatology Hospital, Southern Medical University, Guangzhou, People's Republic of China
- Guangzhou Key Laboratory for Sexually Transmitted Disease Control, Guangzhou, People's Republic of China
| | - San-Mei Tang
- Dermatology Hospital, Southern Medical University, Guangzhou, People's Republic of China
- Guangzhou Key Laboratory for Sexually Transmitted Disease Control, Guangzhou, People's Republic of China
| | - Yin-Yuan Lan
- Dermatology Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhan-Qin Feng
- Dermatology Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Han Zhou
- Dermatology Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zi-Yan Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qing-Xian Zhan
- Dermatology Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Kui Cheng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - He-Ping Zheng
- Dermatology Hospital, Southern Medical University, Guangzhou, People's Republic of China
- Guangzhou Key Laboratory for Sexually Transmitted Disease Control, Guangzhou, People's Republic of China
| |
Collapse
|
2
|
Ye M, Yao L, Lu X, Ding F, Zou D, Tian T, Lin Y, Ning Z, Jiang J, Zhou P. Emergence of Neisseria gonorrhoeae Clone with Reduced Susceptibility to Sitafloxacin in China: An In Vitro and Genomic Study. Antibiotics (Basel) 2024; 13:468. [PMID: 38786196 PMCID: PMC11118021 DOI: 10.3390/antibiotics13050468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Drug-resistant Neisseria gonorrhoeae poses an urgent threat to public health. Recently, sitafloxacin, a new-generation fluoroquinolone, has shown high in vitro activity against drug-resistant N. gonorrhoeae. However, data on its effectiveness in clinical isolates remains limited. In this study, we collected 507 N. gonorrhoeae isolates from 21 hospitals in Shanghai, China, during 2020 and 2021. Antimicrobial susceptibility testing revealed that sitafloxacin minimum inhibitory concentrations (MICs) exhibited a bimodal distribution, ranging from <0.004 to 2 mg/L. The MIC50 and MIC90 for sitafloxacin were 0.125 mg/L and 0.5 mg/L, respectively, which are 32 and 16 times lower than those for ciprofloxacin (4 mg/L and 8 mg/L, respectively). Sitafloxacin demonstrated high in vitro activity against isolates resistant to either ceftriaxone, azithromycin, or both. Notably, among the isolates with reduced sitafloxacin susceptibility (MIC ≥ MIC90), 83.7% (36/43) were identified as sequence type (ST) 8123. Further phylogenetic analysis showed that ST8123 has evolved into two subclades, designated as subclade-I and subclade-II. A majority of the isolates (80%, 36/45) within subclade-I exhibited reduced susceptibility to sitafloxacin. In contrast, all isolates from subclade-II were found to be susceptible to sitafloxacin. Subsequent genomic investigations revealed that the GyrA-S91F, D95Y, and ParC-S87N mutations, which were exclusively found in ST8123 subclade-I, might be linked to reduced sitafloxacin susceptibility. Our study reveals that sitafloxacin is a promising antibiotic for combating drug-resistant N. gonorrhoeae. However, caution is advised in the clinical application of sitafloxacin for treating N. gonorrhoeae infections due to the emergence of a clone exhibiting reduced susceptibility.
Collapse
Affiliation(s)
- Meiping Ye
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- STD Institute, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Linxin Yao
- STD Institute, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Xinying Lu
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- STD Institute, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Fangyuan Ding
- STD Institute, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Danyang Zou
- STD Institute, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Tingli Tian
- STD Institute, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Yi Lin
- Division of Tuberculosis and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200051, China
| | - Zhen Ning
- Division of Tuberculosis and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200051, China
| | - Jianping Jiang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Pingyu Zhou
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- STD Institute, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
3
|
Hiyama Y, Yamamoto S, Sato T, Ogasawara N, Masumori N, Takahashi S, Yokota SI. Affinity of β-Lactam Antibiotics for Neisseria gonorrhoeae Penicillin-Binding Protein 2 Having Wild, Cefixime-Reduced-Susceptible, and Cephalosporin (Ceftriaxone)-Resistant penA Alleles. Microb Drug Resist 2024; 30:141-146. [PMID: 38215246 DOI: 10.1089/mdr.2023.0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024] Open
Abstract
Multidrug-resistant Neisseria gonorrhoeae is a serious concern worldwide. Resistance to β-lactam antibiotics occurs through mutations in penicillin-binding proteins (PBPs), acquisition of β-lactamases, and alteration of antibiotic penetration. Mosaic structures of penA, which encodes PBP2, play a major role in resistance to β-lactams, especially cephalosporins. Ceftriaxone (CRO) is recognized as the only satisfiable antibiotic for the treatment of gonococcal infections; however, CRO-resistant isolates have emerged in the community. Here, we examined the affinity of β-lactam antibiotics for recombinant PBP2 in a competition assay using fluorescence-labeled penicillin. We found no or little difference in the affinities of penicillins and meropenem (MEM) for PBP2 from cefixime (CFM)-reduced-susceptible strain and cephalosporin-resistant strain. However, the affinity of cephalosporins, including CRO, for PBP2 from the cephalosporin-resistant strain was markedly lower than that for PBP2 from the CFM-reduced-susceptible-resistant strain. Notably, piperacillin (PIP) showed almost the same affinity for PBP2 from penicillin-susceptible, CFM-reduced-susceptible, and cephalosporin (including CRO)-resistant strains. Thus, PIP/tazobactam and MEM are candidate antibiotics for the treatment of CRO-resistant/multidrug-resistant N. gonorrhoeae.
Collapse
Affiliation(s)
- Yoshiki Hiyama
- Department of Urology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Urology, NTT Medical Center Sapporo, Sapporo, Japan
| | - Soh Yamamoto
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toyotaka Sato
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Noriko Ogasawara
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naoya Masumori
- Department of Urology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoshi Takahashi
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Division of Laboratory Medicine, Sapporo Medical University Hospital, Sapporo, Japan
| | - Shin-Ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
4
|
Abdellati S, Gestels Z, Laumen JGE, Van Dijck C, De Baetselier I, de Block T, Van den Bossche D, Vanbaelen T, Kanesaka I, Manoharan-Basil SS, Kenyon C. Antimicrobial susceptibility of commensal Neisseria spp. in parents and their children in Belgium: a cross-sectional survey. FEMS Microbiol Lett 2024; 371:fnae069. [PMID: 39210455 DOI: 10.1093/femsle/fnae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND commensal Neisseria species are part of the oropharyngeal microbiome and play an important role in nitrate reduction and protecting against colonization by pathogenic bacteria. They do, however, also serve as a reservoir of antimicrobial resistance. Little is known about the prevalence of these species in the general population, how this varies by age and how antimicrobial susceptibility varies between species. METHODS we assessed the prevalence and antimicrobial susceptibility of commensal Neisseria species in the parents (n = 38) and children (n = 50) of 35 families in Belgium. RESULTS various commensal Neisseria (n = 5) could be isolated from the participants. Most abundant were N. subflava and N. mucosa. Neisseria subflava was detected in 77 of 88 (87.5%) individuals and N. mucosa in 64 of 88 (72.7%). Neisseria mucosa was more prevalent in children [41/50 (82%)] than parents [23/38 (60.5%); P < .05], while N. bacilliformis was more prevalent in parents [7/36 (19.4%)] than children [2/50 (4%); P < .05]. Neisseria bacilliformis had high ceftriaxone minimum inhibitory concentrations (MICs; median MIC 0.5 mg/l; IQR 0.38-0.75). The ceftriaxone MICs of all Neisseria isolates were higher in the parents than in the children. This could be explained by a higher prevalence of N. bacilliformis in the parents. INTERPRETATION the N. bacilliformis isolates had uniformly high ceftriaxone MICs which warrant further investigation.
Collapse
Affiliation(s)
- Saïd Abdellati
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium
| | - Zina Gestels
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium
| | | | - Christophe Van Dijck
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium
| | - Irith De Baetselier
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium
| | - Tessa de Block
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium
| | - Dorien Van den Bossche
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium
| | - Thibaut Vanbaelen
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium
| | - Izumo Kanesaka
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 3219, Japan
| | | | - Chris Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium
- University of Cape Town, Cape Town, 42145, South Africa
| |
Collapse
|
5
|
Wang D, Li Y, Zhang C, Zeng Y, Peng J, Wang F. Genomic epidemiology of Neisseria gonorrhoeae in Shenzhen, China, during 2019-2020: increased spread of ceftriaxone-resistant isolates brings insights for strengthening public health responses. Microbiol Spectr 2023; 11:e0172823. [PMID: 37732794 PMCID: PMC10580820 DOI: 10.1128/spectrum.01728-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/28/2023] [Indexed: 09/22/2023] Open
Abstract
The antimicrobial resistance (AMR) in gonorrhea poses global threat of increasing public health concern. In response to this concern, molecular surveillance has been widely utilized to detail the changes in the evolution and distribution of Neisseria gonorrhoeae during AMR transmission. In this study, we performed a comprehensive molecular surveillance of 664 N. gonorrhoeae isolates collected in Shenzhen, one of the cities with the largest mobile population in China, 2019-2020. In 2020, ceftriaxone showed an unprecedented high resistance rate of 24.87%, and 67.83% of the ceftriaxone-resistant (Cro-R) isolates harbored a nonmosaic penA allele. The Cro-R isolates with nonmosaic penA alleles showed a tremendous increasing trend from 0.00% in 2014 to 20.45% in 2020, which proves the need for monitoring nonmosaic penA-related resistance. Importantly, genotyping indicated that multilocus sequence typing ST11231 (35.71%) had a notable rate of ceftriaxone resistance, which might become the focus of future surveillance. Whole-genome sequencing analysis showed that the internationally spreading FC428 clones have circulated in Shenzhen region with typical ceftriaxone resistance (MIC ≥ 0.5 mg/L) maintained. Our surveillance combined with genomic analysis provides current information to update gonorrhea management guidelines and emphasizes that continuous AMR surveillance for N. gonorrhoeae is essential. IMPORTANCE We conducted a comprehensive molecular epidemiology analysis for antimicrobial-resistant Neisseria gonorrhoeae in Shenzhen during 2019-2020, which provided important data for personalized treatment and adjustment of monitoring strategy. Briefly, the proportion of ceftriaxone-resistant (Cro-R) isolates reached a stunning prevalence rate of 24.87% in 2020. A typical increment of Cro-R isolates with nonmosaic penA alleles proves the necessity of monitoring nonmosaic AMR mechanism and involving it into developing molecular detection methods. Whole-genome sequencing analysis showed that the international spreading FC428 clone has been circulating in Shenzhen with typical ceftriaxone resistance (MIC ≥ 0.5 mg/L) maintained. In summary, we conducted a comprehensive epidemiology study, providing significant data for therapy management. Our results not only improve the understanding of the distribution and transmission of AMR in N. gonorrhoeae but also provide effective AMR data for improving surveillance strategies in China.
Collapse
Affiliation(s)
- Di Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yamei Li
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chi Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yaling Zeng
- Shenzhen Center for Chronic Disease Control, Shenzhen Institute of Dermatology, Shenzhen, People’s Republic of China, China
| | - Junping Peng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng Wang
- Shenzhen Center for Chronic Disease Control, Shenzhen Institute of Dermatology, Shenzhen, People’s Republic of China, China
| |
Collapse
|
6
|
Tayimetha CY, Njunda LA, Akenji B, Founou RC, Feteh V, Zofou D, Chafa A, Oyono Y, Etogo B, Tseuko D, Fonkoua MC, Harrison OB. Phenotypic and genotypic characterization of Neisseria gonorrhoeae isolates from Yaoundé, Cameroon, 2019 to 2020. Microb Genom 2023; 9:mgen001091. [PMID: 37590058 PMCID: PMC10483411 DOI: 10.1099/mgen.0.001091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
This study investigated antimicrobial resistance (AMR) phenotypes and genotypes exhibited by Neisseria gonorrhoeae from Yaoundé, Cameroon. AMR to tetracycline, penicillin and ciprofloxacin was observed although none of the isolates had reduced susceptibility to azithromycin, cefixime or ceftriaxone. Whole genome sequence (WGS) data were obtained and, using a threshold of 300 or fewer locus differences in the N. gonorrhoeae core gene multilocus sequence typing (cgMLST) scheme, four distinct core genome lineages were identified. Publicly available WGS data from 1355 gonococci belonging to these four lineages were retrieved from the PubMLST database, allowing the Cameroonian isolates to be examined in the context of existing data and compared with related gonococci. Examination of AMR genotypes in this dataset found an association between the core genome and AMR with, for example, isolates belonging to the core genome group, Ng_cgc_300 : 21, possessing GyrA and ParC alleles with amino acid substitutions conferring high-level resistance to ciprofloxacin while lineages Ng_cgc_300 : 41 and Ng_cgc_300 : 243 were predicted to be susceptible to several antimicrobials. A core genome lineage, Ng_cgc_300 : 498, was observed which largely consisted of gonococci originating from Africa. Analyses from this study demonstrate the advantages of using the N. gonorrhoeae cgMLST scheme to find related gonococci to carry out genomic analyses that enhance our understanding of the population biology of this important pathogen.
Collapse
Affiliation(s)
- Carolle Yanique Tayimetha
- Faculty of Health Sciences of the University of Buea, Buea, Cameroon
- National Public Health Laboratory, Yaounde, Cameroon
| | | | - Blaise Akenji
- National Public Health Laboratory, Yaounde, Cameroon
| | - Raspail Carrel Founou
- Department of Microbiology, Haematology and Immunology of University of Dschang, Dschang, Cameroon
| | - Vitalis Feteh
- Faculty of Health Sciences of the University of Buea, Buea, Cameroon
| | - Denis Zofou
- Faculty of Health Sciences of the University of Buea, Buea, Cameroon
| | - Anicet Chafa
- Medical Bacteriology Laboratory of University Hospital Center, Yaoundé, Cameroon
| | - Yannick Oyono
- Faculty of Health Sciences of the University of Buea, Buea, Cameroon
| | | | - Dorine Tseuko
- National Public Health Laboratory, Yaounde, Cameroon
| | - Marie Christine Fonkoua
- Centre Pasteur du Cameroon, Yaoundé, Cameroon
- Cameroonian Society of Microbiology, Yaoundé, Cameroon
| | - Odile B. Harrison
- Department of Biology, University of Oxford, Oxford, UK
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Molecular Mechanisms of Drug Resistance and Epidemiology of Multidrug-Resistant Variants of Neisseria gonorrhoeae. Int J Mol Sci 2022; 23:ijms231810499. [PMID: 36142410 PMCID: PMC9505821 DOI: 10.3390/ijms231810499] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 01/16/2023] Open
Abstract
The paper presents various issues related to the increasing drug resistance of Neisseria gonorrhoeae and the occurrence and spread of multidrug-resistant clones. One of the most important is the incidence and evolution of resistance mechanisms of N. gonorrhoeae to beta-lactam antibiotics. Chromosomal resistance to penicillins and oxyimino-cephalosporins and plasmid resistance to penicillins are discussed. Chromosomal resistance is associated with the presence of mutations in the PBP2 protein, containing mosaic variants and nonmosaic amino acid substitutions in the transpeptidase domain, and their correlation with mutations in the mtrR gene and its promoter regions (the MtrCDE membrane pump repressor) and in several other genes, which together determine reduced sensitivity or resistance to ceftriaxone and cefixime. Plasmid resistance to penicillins results from the production of beta-lactamases. There are different types of beta-lactamases as well as penicillinase plasmids. In addition to resistance to beta-lactam antibiotics, the paper covers the mechanisms and occurrence of resistance to macrolides (azithromycin), fluoroquinolones and some other antibiotics. Moreover, the most important epidemiological types of multidrug-resistant N. gonorrhoeae, prevalent in specific years and regions, are discussed. Epidemiological types are defined as sequence types, clonal complexes and genogroups obtained by various typing systems such as NG-STAR, NG-MAST and MLST. New perspectives on the treatment of N. gonorrhoeae infections are also presented, including new drugs active against multidrug-resistant strains.
Collapse
|
8
|
Hadad R, Golparian D, Velicko I, Ohlsson AK, Lindroth Y, Ericson EL, Fredlund H, Engstrand L, Unemo M. First National Genomic Epidemiological Study of Neisseria gonorrhoeae Strains Spreading Across Sweden in 2016. Front Microbiol 2022; 12:820998. [PMID: 35095823 PMCID: PMC8794790 DOI: 10.3389/fmicb.2021.820998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/14/2021] [Indexed: 12/05/2022] Open
Abstract
The increasing transmission and antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a global health concern with worrying trends of decreasing susceptibility to also the last-line extended-spectrum cephalosporin (ESC) ceftriaxone. A dramatic increase of reported gonorrhea cases has been observed in Sweden from 2016 and onward. The aim of the present study was to comprehensively investigate the genomic epidemiology of all cultured N. gonorrhoeae isolates in Sweden during 2016, in conjunction with phenotypic AMR and clinical and epidemiological data of patients. In total, 1279 isolates were examined. Etest and whole-genome sequencing (WGS) were performed, and epidemiological data obtained from the Public Health Agency of Sweden. Overall, 51.1%, 1.7%, and 1.3% resistance to ciprofloxacin, cefixime, and azithromycin, respectively, was found. No isolates were resistant to ceftriaxone, however, 9.3% of isolates showed a decreased susceptibility to ceftriaxone and 10.5% to cefixime. In total, 44 penA alleles were found of which six were mosaic (n = 92). Using the typing schemes of MLST, NG-MAST, and NG-STAR; 133, 422, and 280 sequence types, respectively, and 93 NG-STAR clonal complexes were found. The phylogenomic analysis revealed two main lineages (A and B) with lineage A divided into two main sublineages (A1 and A2). Resistance and decreased susceptibility to ESCs and azithromycin and associated AMR determinants, such as mosaic penA and mosaic mtrD, were predominantly found in sublineage A2. Resistance to cefixime and azithromycin was more prevalent among heterosexuals and MSM, respectively, and both were predominantly spread through domestic transmission. Continuous surveillance of the spread and evolution of N. gonorrhoeae, including phenotypic AMR testing and WGS, is essential for enhanced knowledge regarding the dynamic evolution of N. gonorrhoeae and gonorrhea epidemiology.
Collapse
Affiliation(s)
- Ronza Hadad
- World Health Organization Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Daniel Golparian
- World Health Organization Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Anna-Karin Ohlsson
- Department of Clinical Microbiology, Karolinska University Hospital, Huddinge, Sweden
| | - Ylva Lindroth
- Department of Laboratory Medicine, Medical Microbiology, Lund University, Skåne Laboratory Medicine, Lund, Sweden
| | - Eva-Lena Ericson
- Department of Clinical Microbiology, Karolinska University Hospital, Huddinge, Sweden
| | - Hans Fredlund
- World Health Organization Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Lars Engstrand
- Center for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Magnus Unemo
- World Health Organization Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
9
|
Laumen JGE, Van Dijck C, Abdellati S, De Baetselier I, Serrano G, Manoharan-Basil SS, Bottieau E, Martiny D, Kenyon C. Antimicrobial susceptibility of commensal Neisseria in a general population and men who have sex with men in Belgium. Sci Rep 2022; 12:9. [PMID: 34997050 PMCID: PMC8741786 DOI: 10.1038/s41598-021-03995-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/08/2021] [Indexed: 12/03/2022] Open
Abstract
Non-pathogenic Neisseria are a reservoir of antimicrobial resistance genes for pathogenic Neisseria meningitidis and Neisseria gonorrhoeae. Men who have sex with men (MSM) are at risk of co-colonization with resistant non-pathogenic and pathogenic Neisseria. We assessed if the antimicrobial susceptibility of non-pathogenic Neisseria among MSM differs from a general population and if antimicrobial exposure impacts susceptibility. We recruited 96 participants at our center in Belgium: 32 employees, 32 MSM who did not use antibiotics in the previous 6 months, and 32 MSM who did. Oropharyngeal Neisseria were cultured and identified with MALDI-TOF–MS. Minimum inhibitory concentrations for azithromycin, ceftriaxone and ciprofloxacin were determined using E-tests® and compared between groups with non-parametric tests. Non-pathogenic Neisseria from employees as well as MSM were remarkably resistant. Those from MSM were significantly less susceptible than employees to azithromycin and ciprofloxacin (p < 0.0001, p < 0.001), but not ceftriaxone (p = 0.3). Susceptibility did not differ significantly according to recent antimicrobial exposure in MSM. Surveilling antimicrobial susceptibility of non-pathogenic Neisseria may be a sensitive way to assess impact of antimicrobial exposure in a population. The high levels of antimicrobial resistance in this survey indicate that novel resistance determinants may be readily available for future transfer from non-pathogenic to pathogenic Neisseria.
Collapse
Affiliation(s)
- Jolein Gyonne Elise Laumen
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000, Antwerp, Belgium.,Laboratory of Medical Microbiology, University of Antwerp, Wilrijk, Belgium
| | - Christophe Van Dijck
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000, Antwerp, Belgium.,Laboratory of Medical Microbiology, University of Antwerp, Wilrijk, Belgium
| | - Saïd Abdellati
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000, Antwerp, Belgium
| | - Irith De Baetselier
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000, Antwerp, Belgium
| | - Gabriela Serrano
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles, Pôle Hospitalier Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Emmanuel Bottieau
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000, Antwerp, Belgium
| | - Delphine Martiny
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles, Pôle Hospitalier Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium.,Faculté de Médecine et Pharmacie, Université de Mons, Mons, Belgium
| | - Chris Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000, Antwerp, Belgium. .,Department of Medicine, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
10
|
Ohama Y, Aoki K, Harada S, Nagasawa T, Sawabe T, Nonaka L, Moriya K, Ishii Y, Tateda K. Genetic Environment Surrounding blaOXA-55-like in Clinical Isolates of Shewanella algae Clade and Enhanced Expression of blaOXA-55-like in a Carbapenem-Resistant Isolate. mSphere 2021; 6:e0059321. [PMID: 34643423 PMCID: PMC8513682 DOI: 10.1128/msphere.00593-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/23/2021] [Indexed: 11/20/2022] Open
Abstract
Although Shewanella spp. are most frequently isolated from marine environments; more rarely, they have been implicated in human infections. Shewanella spp. are also recognized as the origin of genes for carbapenem-hydrolyzing class D β-lactamases. Due to the spread globally among Enterobacterales in recent years, risk assessments of both clinical and environmental Shewanella strains are urgently needed. In this study, we analyzed the whole-genome sequences of 10 clinical isolates and 13 environmental isolates of Shewanella spp. and compared them with those of Shewanella species strains registered in public databases. In addition, the levels of blaOXA-55-like transcription and β-lactamase activity of a carbapenem-resistant Shewanella algae isolate were compared with those of carbapenem-susceptible S. algae clade isolates. All clinical isolates were genetically identified as S. algae clade (S. algae, Shewanella chilikensis, and Shewanella carassii), whereas all but one of the environmental isolates were identified as various Shewanella spp. outside the S. algae clade. Although all isolates of the S. algae clade commonly possessed an approximately 12,500-bp genetic region harboring blaOXA-55-like, genetic structures outside this region were different among species. Among S. algae clade isolates, only one showed carbapenem resistance, and this isolate showed a high level of blaOXA-55-like transcription and β-lactamase activity. Although this study documented the importance of the S. algae clade in human infections and the relationship between enhanced production of OXA-55-like and resistance to carbapenems in S. algae, further studies are needed to elucidate the generalizability of these findings. IMPORTANCEShewanella spp., which are known to carry chromosomally located blaOXA genes, have mainly been isolated from marine environments; however, they can also cause infections in humans. In this study, we compared the molecular characteristics of clinical isolates of Shewanella spp. with those originating from environmental sources. All 10 clinical isolates were genetically identified as members of the Shewanella algae clade (S. algae, S. chilikensis, and S. carassii); however, all but one of the 13 environmental isolates were identified as Shewanella species members outside the S. algae clade. Although all the S. algae clade isolates possessed an approximately 12,500-bp genetic region harboring blaOXA-55-like, only one isolate showed carbapenem resistance. The carbapenem-resistant isolate showed a high level of blaOXA-55-like transcription and β-lactamase activity compared with the carbapenem-susceptible isolates. To confirm the clinical significance and antimicrobial resistance mechanisms of the S. algae clade members, analysis involving more clinical isolates should be performed in the future.
Collapse
Affiliation(s)
- Yuki Ohama
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
- Department of Infection Control and Prevention, The University of Tokyo Hospital, Tokyo, Japan
| | - Kotaro Aoki
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Sohei Harada
- Department of Infection Control and Prevention, The University of Tokyo Hospital, Tokyo, Japan
| | - Tatsuya Nagasawa
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Lisa Nonaka
- Department of Nutritional Science, Faculty of Human Life Science, Shokei Gakuen, Kumamoto, Japan
| | - Kyoji Moriya
- Department of Infection Control and Prevention, The University of Tokyo Hospital, Tokyo, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|