1
|
Fernandez JE, Egli A, Overesch G, Perreten V. Time-calibrated phylogenetic and chromosomal mobilome analyses of Staphylococcus aureus CC398 reveal geographical and host-related evolution. Nat Commun 2024; 15:5526. [PMID: 38951499 PMCID: PMC11217367 DOI: 10.1038/s41467-024-49644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
An international collection of Staphylococcus aureus of clonal complex (CC) 398 from diverse hosts spanning all continents and a 30 year-period is studied based on whole-genome sequencing (WGS) data. The collection consists of publicly available genomic data from 2994 strains and 134 recently sequenced Swiss methicillin-resistant S. aureus (MRSA) CC398 strains. A time-calibrated phylogeny reveals the presence of distinct phylogroups present in Asia, North and South America and Europe. European MRSA diverged from methicillin-susceptible S. aureus (MSSA) at the beginning of the 1950s. Two major European phylogroups (EP4 and EP5), which diverged approximately 1974, are the main drivers of MRSA CC398 spread in Europe. Within EP5, an emergent MRSA lineage spreading among the European horse population (EP5-Leq) diverged approximately 1996 from the pig lineage (EP5-Lpg), and also contains human-related strains. EP5-Leq is characterized by staphylococcal cassette chromosome mec (SCCmec) IVa and spa type t011 (CC398-IVa-t011), and EP5-Lpg by CC398-SCCmecVc-t011. The lineage-specific antibiotic resistance and virulence gene patterns are mostly mediated by the acquisition of mobile genetic elements like SCCmec, S. aureus Genomic Islands (SaGIs), prophages and transposons. Different combinations of virulence factors are present on S. aureus pathogenicity islands (SaPIs), and novel antimicrobial resistance gene containing elements are associated with certain lineages expanding in Europe. This WGS-based analysis reveals the actual evolutionary trajectory and epidemiological trend of the international MRSA CC398 population considering host, temporal, geographical and molecular factors. It provides a baseline for global WGS-based One-Health studies of adaptive evolution of MRSA CC398 as well as for local outbreak investigations.
Collapse
Affiliation(s)
- Javier Eduardo Fernandez
- Division of Molecular Bacterial Epidemiology and Infectious Diseases, Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Adrian Egli
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Gudrun Overesch
- Center for Zoonoses, Animal Bacterial Diseases and Antimicrobial Resistance, Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Vincent Perreten
- Division of Molecular Bacterial Epidemiology and Infectious Diseases, Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
MacFadyen AC, Paterson GK. Methicillin resistance in Staphylococcus pseudintermedius encoded within novel staphylococcal cassette chromosome mec (SCCmec) variants. J Antimicrob Chemother 2024; 79:1303-1308. [PMID: 38564255 PMCID: PMC11144489 DOI: 10.1093/jac/dkae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Staphylococcus pseudintermedius is a common opportunistic pathogen of companion dogs and an occasional human pathogen. Treatment is hampered by antimicrobial resistance including methicillin resistance encoded by mecA within the mobile genetic element SCCmec. OBJECTIVES SCCmec elements are diverse, especially in non-Staphyloccocus aureus staphylococci, and novel variants are likely to be present in S. pseudintermedius. The aim was to characterize the SCCmec elements found in four canine clinical isolates of S. pseudintermedius. MATERIAL AND METHODS Isolates were whole-genome sequenced and SCCmec elements were assembled, annotated and compared to known SCCmec types. RESULTS AND DISCUSSION Two novel SSCmec are present in these isolates. SCCmec7017-61515 is characterized by a novel combination of a Class A mec gene complex and a type 5 ccr previously only described in composite SCCmec elements. The other three isolates share a novel composite SCCmec with features of SCCmec types IV and VI. CONCLUSIONS S. pseudintermedius is a reservoir of novel SSCmec elements that has implications for understanding antimicrobial resistant in veterinary and human medicine.
Collapse
Affiliation(s)
- A C MacFadyen
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - G K Paterson
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
3
|
Ali L, Abdel Aziz MH. Crosstalk involving two-component systems in Staphylococcus aureus signaling networks. J Bacteriol 2024; 206:e0041823. [PMID: 38456702 PMCID: PMC11025333 DOI: 10.1128/jb.00418-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Staphylococcus aureus poses a serious global threat to human health due to its pathogenic nature, adaptation to environmental stress, high virulence, and the prevalence of antimicrobial resistance. The signaling network in S. aureus coordinates and integrates various internal and external inputs and stimuli to adapt and formulate a response to the environment. Two-component systems (TCSs) of S. aureus play a central role in this network where surface-expressed histidine kinases (HKs) receive and relay external signals to their cognate response regulators (RRs). Despite the purported high fidelity of signaling, crosstalk within TCSs, between HK and non-cognate RR, and between TCSs and other systems has been detected widely in bacteria. The examples of crosstalk in S. aureus are very limited, and there needs to be more understanding of its molecular recognition mechanisms, although some crosstalk can be inferred from similar bacterial systems that share structural similarities. Understanding the cellular processes mediated by this crosstalk and how it alters signaling, especially under stress conditions, may help decipher the emergence of antibiotic resistance. This review highlights examples of signaling crosstalk in bacteria in general and S. aureus in particular, as well as the effect of TCS mutations on signaling and crosstalk.
Collapse
Affiliation(s)
- Liaqat Ali
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, USA
| | - May H. Abdel Aziz
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, USA
| |
Collapse
|
4
|
Liu Z, Wang L, Sun J, Zhang Q, Peng Y, Tang S, Zhang L, Li X, Yu Z, Zhang T. Whole Genome Sequence Analysis of Two Oxacillin-Resistant and mecA-Positive Strains of Staphylococcus haemolyticus Isolated from Ear Swab Samples of Patients with Otitis Media. Infect Drug Resist 2024; 17:1291-1301. [PMID: 38576824 PMCID: PMC10992674 DOI: 10.2147/idr.s455051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/15/2024] [Indexed: 04/06/2024] Open
Abstract
Objective Staphylococcus haemolyticus can cause a series of infections including otitis media (OM), and the oxacillin-resistant S. haemolyticus has become a serious health concern. This study aimed to investigate the genomic characteristics of two strains of oxacillin-resistant and mecA-positive S. haemolyticus isolated from the samples of ear swabs from patients with OM and explore their acquired antibiotic resistance genes (ARGs) and the mobile genetic elements (MGEs). Methods Two oxacillin-resistant S. haemolyticus strains, isolated from ear swab samples of patients with OM, underwent antimicrobial susceptibility evaluation, followed by whole-genome sequencing. The acquired ARGs and the MGEs carried by the ARGs, harbored by the genomes of two strains of S. haemolyticus were identified. Results The two strains of oxacillin-resistant S. haemolyticus (strain SH1275 and strain SH9361) both carried the genetic contexts of mecA with high similarity with the SCCmec type V(5C2&5) subtype c. Surprisingly, the chromosomal aminoglycoside resistance gene aac(6')-aph(2") harbored by S. haemolyticus strain SH936 was flanked by two copies of IS256, forming the IS256-element (IS256-GNAT-[aac(6')-aph(2")]-IS256), which was widely present in strains of both Staphylococcus and Enterococcus genus. Furthermore, the two strains of oxacillin-resistant and MDR S. haemolyticus were found to harbor antimicrobial resistance plasmids, including one 26.9-kb plasmid (pSH1275-2) containing msr(A)-mph(C)) and qacA, one mobilizable plasmid pSH1275-3 harboring vga(A)LC, one plasmid (pSH9361-1) carrying erm(C), and one plasmid (pSH9361-2) carrying qacJ. Conclusion The systematic analysis of whole-genome sequences provided insights into the mobile genetic elements responsible for multi-drug resistance in these two strains of oxacillin-resistant and mecA-positive S. haemolyticus, which will assist clinicians in devising precise, personalized, and clinical therapeutic strategies for treating otitis media caused by multi-drug resistant S. haemolyticus.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Otolaryngology, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, People’s Republic of China
| | - Ling Wang
- Department of Obstetrics, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Jiabing Sun
- Department of Otolaryngology, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, People’s Republic of China
| | - Qinghuan Zhang
- Department of Clinical Laboratory, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Yue Peng
- Department of Otolaryngology, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, People’s Republic of China
| | - Susu Tang
- Department of Otolaryngology, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, People’s Republic of China
| | - Limei Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, People’s Republic of China
| | - Xiaobin Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, People’s Republic of China
- Zhuhai Precision Medical Center, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, People’s Republic of China
| | - Zhijian Yu
- Department of Otolaryngology, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, People’s Republic of China
| | - Tao Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| |
Collapse
|
5
|
Kovařovic V, Finstrlová A, Sedláček I, Petráš P, Švec P, Mašlaňová I, Neumann-Schaal M, Šedo O, Botka T, Staňková E, Doškař J, Pantůček R. Staphylococcus brunensis sp. nov. isolated from human clinical specimens with a staphylococcal cassette chromosome-related genomic island outside of the rlmH gene bearing the ccrDE recombinase gene complex. Microbiol Spectr 2023; 11:e0134223. [PMID: 37712674 PMCID: PMC10581047 DOI: 10.1128/spectrum.01342-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/03/2023] [Indexed: 09/16/2023] Open
Abstract
Novel species of coagulase-negative staphylococci, which could serve as reservoirs of virulence and antimicrobial resistance factors for opportunistic pathogens from the genus Staphylococcus, are recognized in human and animal specimens due to advances in diagnostic techniques. Here, we used whole-genome sequencing, extensive biotyping, MALDI-TOF mass spectrometry, and chemotaxonomy to characterize five coagulase-negative strains from the Staphylococcus haemolyticus phylogenetic clade obtained from human ear swabs, wounds, and bile. Based on the results of polyphasic taxonomy, we propose the species Staphylococcus brunensis sp. nov. (type strain NRL/St 16/872T = CCM 9024T = LMG 31872T = DSM 111349T). The genomic analysis revealed numerous variable genomic elements, including staphylococcal cassette chromosome (SCC), prophages, plasmids, and a unique 18.8 kb-long genomic island SbCIccrDE integrated into the ribosomal protein L7 serine acetyltransferase gene rimL. SbCIccrDE has a cassette chromosome recombinase (ccr) gene complex with a typical structure found in SCCs. Based on nucleotide and amino acid identity to other known ccr genes and the distinct integration site that differs from the canonical methyltransferase gene rlmH exploited by SCCs, we classified the ccr genes as novel variants, ccrDE. The comparative genomic analysis of SbCIccrDE with related islands shows that they can accumulate virulence and antimicrobial resistance factors creating novel resistance elements, which reflects the evolution of SCC. The spread of these resistance islands into established pathogens such as Staphylococcus aureus would pose a great threat to the healthcare system. IMPORTANCE The coagulase-negative staphylococci are important opportunistic human pathogens, which cause bloodstream and foreign body infections, mainly in immunocompromised patients. The mobile elements, primarily the staphylococcal cassette chromosome mec, which confers resistance to methicillin, are the key to the successful dissemination of staphylococci into healthcare and community settings. Here, we present a novel species of the Staphylococcus genus isolated from human clinical material. The detailed analysis of its genome revealed a previously undescribed genomic island, which is closely related to the staphylococcal cassette chromosome and has the potential to accumulate and spread virulence and resistance determinants. The island harbors a set of conserved genes required for its mobilization, which we recognized as novel cassette chromosome recombinase genes ccrDE. Similar islands were revealed not only in the genomes of coagulase-negative staphylococci but also in S. aureus. The comparative genomic study contributes substantially to the understanding of the evolution and pathogenesis of staphylococci.
Collapse
Affiliation(s)
- Vojtěch Kovařovic
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Adéla Finstrlová
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ivo Sedláček
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Petráš
- Reference Laboratory for Staphylococci, National Institute of Public Health, Praha, Czech Republic
| | - Pavel Švec
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ivana Mašlaňová
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ondrej Šedo
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tibor Botka
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Eva Staňková
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiří Doškař
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Roman Pantůček
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
6
|
Romanò A, Ivanovic I, Segessemann T, Vazquez Rojo L, Widmer J, Egger L, Dreier M, Sesso L, Vaccani M, Schuler M, Frei D, Frey J, Ahrens CH, Steiner A, Graber HU. Elucidation of the Bovine Intramammary Bacteriome and Resistome from healthy cows of Swiss dairy farms in the Canton Tessin. Front Microbiol 2023; 14:1183018. [PMID: 37583512 PMCID: PMC10425240 DOI: 10.3389/fmicb.2023.1183018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/26/2023] [Indexed: 08/17/2023] Open
Abstract
Healthy, untreated cows of nine dairy herds from the Swiss Canton Tessin were analyzed three times within one year to identify the most abundant species of the intramammary bacteriome. Aseptically collected milk samples were cultured and bacteria identified using MALDI-TOF. Of 256 cows analyzed, 96% were bacteriologically positive and 80% of the 1,024 quarters were positive for at least one bacterial species. 84.5% of the quarters were healthy with somatic cell counts (SCC) < 200,000 cells/mL, whereas 15.5% of the quarters showed a subclinical mastitis (SCC ≥ 200,000 cells/mL). We could assign 1,288 isolates to 104 different bacterial species including 23 predominant species. Non-aureus staphylococci and mammaliicocci (NASM) were most prevalent (14 different species; 73.5% quarters). Staphylococcus xylosus and Mammaliicoccus sciuri accounted for 74.7% of all NASM isolates. To describe the intramammary resistome, 350 isolates of the predominant species were selected and subjected to short-read whole genome sequencing (WGS) and phenotypic antibiotic resistance profiling. While complete genomes of eight type strains were available, the remaining 15 were de novo assembled with long reads as a resource for the community. The 23 complete genomes served for reference-based assembly of the Illumina WGS data. Both chromosomes and mobile genetic elements were examined for antibiotic resistance genes (ARGs) using in-house and online software tools. ARGs were then correlated with phenotypic antibiotic resistance data from minimum inhibitory concentration (MIC). Phenotypic and genomic antimicrobial resistance was isolate-specific. Resistance to clindamycin and oxacillin was most frequently observed (65 and 30%) in Staphylococcus xylosus but could not be linked to chromosomal or plasmid-borne ARGs. However, in several cases, the observed antimicrobial resistance could be explained by the presence of mobile genetic elements like tetK carried on small plasmids. This represents a possible mechanism of transfer between non-pathogenic bacteria and pathogens of the mammary gland within and between herds. The-to our knowledge-most extensive bacteriome reported and the first attempt to link it with the resistome promise to profoundly affect veterinary bacteriology in the future and are highly relevant in a One Health context, in particular for mastitis, the treatment of which still heavily relies on antibiotics.
Collapse
Affiliation(s)
- Alicia Romanò
- Food Microbial Systems, Group Microbiological Safety of Foods of Animal Origin, Agroscope, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Ivana Ivanovic
- Food Microbial Systems, Group Microbiological Safety of Foods of Animal Origin, Agroscope, Bern, Switzerland
| | - Tina Segessemann
- SIB, Swiss Institute of Bioinformatics, Zürich, Switzerland
- Method Development and Analytics, Group Molecular Ecology, Agroscope, Zürich, Switzerland
| | - Laura Vazquez Rojo
- Food Microbial Systems, Group Microbiological Safety of Foods of Animal Origin, Agroscope, Bern, Switzerland
| | - Jérôme Widmer
- Method Development and Analytics, Group Biochemistry of Milk, Agroscope, Bern, Switzerland
| | - Lotti Egger
- Method Development and Analytics, Group Biochemistry of Milk, Agroscope, Bern, Switzerland
| | - Matthias Dreier
- Food Microbial Systems, Group Cultures, Biodiversity, and Terroir, Agroscope, Bern, Switzerland
| | - Lorenzo Sesso
- Clinic of Ruminants, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Michael Vaccani
- Clinic of Ruminants, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Martin Schuler
- SIB, Swiss Institute of Bioinformatics, Zürich, Switzerland
- Method Development and Analytics, Group Molecular Ecology, Agroscope, Zürich, Switzerland
| | - Daniel Frei
- Method Development and Analytics, Group Molecular Diagnostics, Genomics, and Bioinformatics, Agroscope, Wädenswil, Switzerland
| | - Juerg Frey
- Method Development and Analytics, Group Molecular Diagnostics, Genomics, and Bioinformatics, Agroscope, Wädenswil, Switzerland
| | - Christian H. Ahrens
- SIB, Swiss Institute of Bioinformatics, Zürich, Switzerland
- Method Development and Analytics, Group Molecular Ecology, Agroscope, Zürich, Switzerland
| | - Adrian Steiner
- Clinic of Ruminants, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Hans Ulrich Graber
- Food Microbial Systems, Group Microbiological Safety of Foods of Animal Origin, Agroscope, Bern, Switzerland
| |
Collapse
|
7
|
Carroll LM, Pierneef R, Mafuna T, Magwedere K, Matle I. Genus-wide genomic characterization of Macrococcus: insights into evolution, population structure, and functional potential. Front Microbiol 2023; 14:1181376. [PMID: 37547688 PMCID: PMC10400458 DOI: 10.3389/fmicb.2023.1181376] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Macrococcus species have been isolated from a range of mammals and mammal-derived food products. While they are largely considered to be animal commensals, Macrococcus spp. can be opportunistic pathogens in both veterinary and human clinical settings. This study aimed to provide insight into the evolution, population structure, and functional potential of the Macrococcus genus, with an emphasis on antimicrobial resistance (AMR) and virulence potential. Methods All high-quality, publicly available Macrococcus genomes (n = 104, accessed 27 August 2022), plus six South African genomes sequenced here (two strains from bovine clinical mastitis cases and four strains from beef products), underwent taxonomic assignment (using four different approaches), AMR determinant detection (via AMRFinderPlus), and virulence factor detection (using DIAMOND and the core Virulence Factor Database). Results Overall, the 110 Macrococcus genomes were of animal commensal, veterinary clinical, food-associated (including food spoilage), and environmental origins; five genomes (4.5%) originated from human clinical cases. Notably, none of the taxonomic assignment methods produced identical results, highlighting the potential for Macrococcus species misidentifications. The most common predicted antimicrobial classes associated with AMR determinants identified across Macrococcus included macrolides, beta-lactams, and aminoglycosides (n = 81, 61, and 44 of 110 genomes; 73.6, 55.5, and 40.0%, respectively). Genes showing homology to Staphylococcus aureus exoenzyme aureolysin were detected across multiple species (using 90% coverage, n = 40 and 77 genomes harboring aureolysin-like genes at 60 and 40% amino acid [AA] identity, respectively). S. aureus Panton-Valentine leucocidin toxin-associated lukF-PV and lukS-PV homologs were identified in eight M. canis genomes (≥40% AA identity, >85% coverage). Using a method that delineates populations using recent gene flow (PopCOGenT), two species (M. caseolyticus and M. armenti) were composed of multiple within-species populations. Notably, M. armenti was partitioned into two populations, which differed in functional potential (e.g., one harbored beta-lactamase family, type II toxin-antitoxin system, and stress response proteins, while the other possessed a Type VII secretion system; PopCOGenT p < 0.05). Discussion Overall, this study leverages all publicly available Macrococcus genomes in addition to newly sequenced genomes from South Africa to identify genomic elements associated with AMR or virulence potential, which can be queried in future experiments.
Collapse
Affiliation(s)
- Laura M. Carroll
- Department of Clinical Microbiology, SciLifeLab, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Integrated Science Lab, Umeå University, Umeå, Sweden
| | - Rian Pierneef
- Biotechnology Platform, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort, South Africa
| | - Thendo Mafuna
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Kudakwashe Magwedere
- Directorate of Veterinary Public Health, Department of Agriculture, Land Reform and Rural Development, Pretoria, South Africa
| | - Itumeleng Matle
- Bacteriology Division, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort, South Africa
| |
Collapse
|
8
|
Colombo APV, do Souto RM, Araújo LL, Espíndola LCP, Hartenbach FARR, Magalhães CB, da Silva Oliveira Alves G, Lourenço TGB, da Silva-Boghossian CM. Antimicrobial resistance and virulence of subgingival staphylococci isolated from periodontal health and diseases. Sci Rep 2023; 13:11613. [PMID: 37463947 DOI: 10.1038/s41598-023-38599-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
The dysbiotic biofilm of periodontitis may function as a reservoir for opportunistic human pathogens of clinical relevance. This study explored the virulence and antimicrobial susceptibility of staphylococci isolated from the subgingival biofilm of individuals with different periodontal conditions. Subgingival biofilm was obtained from 142 individuals with periodontal health, 101 with gingivitis and 302 with periodontitis, and cultivated on selective media. Isolated strains were identified by mass spectrometry. Antimicrobial susceptibility was determined by disk diffusion. The mecA and virulence genes were surveyed by PCR. Differences among groups regarding species, virulence and antimicrobial resistance were examined by Chi-square, Kruskal-Wallis or Mann-Whitney tests. The overall prevalence of subgingival staphylococci was 46%, especially in severe periodontitis (> 60%; p < 0.01). S. epidermidis (59%) and S. aureus (22%) were the predominant species across groups. S. condimenti, S. hominis, S. simulans and S. xylosus were identified only in periodontitis. High rates of resistance/reduced sensitivity were found for penicillin (60%), amoxicillin (55%) and azithromycin (37%), but multidrug resistance was observed in 12% of the isolates. Over 70% of the mecA + strains in periodontitis were isolated from severe disease. Higher detection rates of fnB + isolates were observed in periodontitis compared to health and gingivitis, whereas luxF/luxS-pvl + strains were associated with sites with deep pockets and attachment loss (p < 0.05). Penicillin-resistant staphylococci is highly prevalent in the subgingival biofilm regardless of the periodontal status. Strains carrying virulence genes related to tissue adhesion/invasion, inflammation and cytotoxicity support the pathogenic potential of these opportunists in the periodontal microenvironment.
Collapse
Affiliation(s)
- Ana Paula Vieira Colombo
- Institute of Microbiology, Department of Medical Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Department of Clinics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Renata Martins do Souto
- Institute of Microbiology, Department of Medical Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lélia Lima Araújo
- Institute of Microbiology, Department of Medical Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Clinics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laís Christina Pontes Espíndola
- Institute of Microbiology, Department of Medical Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Clinics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fátima Aparecida R R Hartenbach
- Institute of Microbiology, Department of Medical Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Clinics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarissa Bichara Magalhães
- Institute of Microbiology, Department of Medical Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Clinics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Talita Gomes Baêta Lourenço
- Institute of Microbiology, Department of Medical Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carina Maciel da Silva-Boghossian
- Institute of Microbiology, Department of Medical Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Clinics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Tsimbalyuk S, Shornikov A, Srivastava P, Le VTB, Warren I, Khandokar YB, Kuhn ML, Forwood JK. Structural and Kinetic Characterization of the SpeG Spermidine/Spermine N-acetyltransferase from Methicillin-Resistant Staphylococcus aureus USA300. Cells 2023; 12:1829. [PMID: 37508494 PMCID: PMC10378331 DOI: 10.3390/cells12141829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Polyamines are simple yet critical molecules with diverse roles in numerous pathogenic and non-pathogenic organisms. Regulating polyamine concentrations affects the transcription and translation of genes and proteins important for cell growth, stress, and toxicity. One way polyamine concentrations are maintained within the cell is via spermidine/spermine N-acetyltransferases (SSATs) that acetylate intracellular polyamines so they can be exported. The bacterial SpeG enzyme is an SSAT that exhibits a unique dodecameric structure and allosteric site compared to other SSATs that have been previously characterized. While its overall 3D structure is conserved, its presence and role in different bacterial pathogens are inconsistent. For example, not all bacteria have speG encoded in their genomes; in some bacteria, the speG gene is present but has become silenced, and in other bacteria, it has been acquired on mobile genetic elements. The latter is the case for methicillin-resistant Staphylococcus aureus (MRSA) USA300, where it appears to aid pathogenesis. To gain a greater understanding of the structure/function relationship of SpeG from the MRSA USA300 strain (SaSpeG), we determined its X-ray crystal structure in the presence and absence of spermine. Additionally, we showed the oligomeric state of SaSpeG is dynamic, and its homogeneity is affected by polyamines and AcCoA. Enzyme kinetic assays showed that pre-incubation with polyamines significantly affected the positive cooperativity toward spermine and spermidine and the catalytic efficiency of the enzyme. Furthermore, we showed bacterial SpeG enzymes do not have equivalent capabilities to acetylate aminopropyl versus aminbutyl ends of spermidine. Overall, this study provides new insight that will assist in understanding the SpeG enzyme and its role in pathogenic and non-pathogenic bacteria at a molecular level.
Collapse
Affiliation(s)
- Sofiya Tsimbalyuk
- School of Dentistry and Medical Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW 2678, Australia
| | - Aleksander Shornikov
- Deparment of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA 94132, USA
| | - Parul Srivastava
- School of Dentistry and Medical Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW 2678, Australia
| | - Van Thi Bich Le
- Deparment of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA 94132, USA
| | - Imani Warren
- Deparment of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA 94132, USA
| | - Yogesh B Khandokar
- School of Dentistry and Medical Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW 2678, Australia
| | - Misty L Kuhn
- Deparment of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA 94132, USA
| | - Jade K Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW 2678, Australia
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
10
|
Hou Z, Liu L, Wei J, Xu B. Progress in the Prevalence, Classification and Drug Resistance Mechanisms of Methicillin-Resistant Staphylococcus aureus. Infect Drug Resist 2023; 16:3271-3292. [PMID: 37255882 PMCID: PMC10226514 DOI: 10.2147/idr.s412308] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/12/2023] [Indexed: 06/01/2023] Open
Abstract
Staphylococcus aureus is a common human pathogen with a variety of virulence factors, which can cause multiple infectious diseases. In recent decades, due to the constant evolution and the abuse of antibiotics, Staphylococcus aureus was becoming more resistant, the infection rate of MRSA remained high, and clinical treatment of MRSA became more difficult. The genetic diversity of MRSA was mainly represented by the continuous emergence of epidemic strains, resulting in the constant changes of epidemic clones. Different classes of MRSA resulted in different epidemics and resistance characteristics, which could affect the clinical symptoms and treatments. MRSA had also spread from traditional hospitals to community and livestock environments, and the new clones established a relationship between animals and humans, promoting further evolution of MRSA. Since the resistance mechanism of MRSA is very complex, it is important to clarify these resistance mechanisms at the molecular level for the treatment of infectious diseases. We firstly described the diversity of SCCmec elements, and discussed the types of SCCmec, its drug resistance mechanisms and expression regulations. Then, we described how the vanA operon makes Staphylococcus aureus resistant to vancomycin and its expression regulation. Finally, a brief introduction was given to the drug resistance mechanisms of biofilms and efflux pump systems. Analyzing the resistance mechanism of MRSA can help study new anti-infective drugs and alleviate the evolution of MRSA. At the end of the review, we summarized the treatment strategies for MRSA infection, including antibiotics, anti-biofilm agents and efflux pump inhibitors. To sum up, here we reviewed the epidemic characteristics of Staphylococcus aureus, summarized its classifications, drug resistance mechanisms of MRSA (SCCmec element, vanA operon, biofilm and active efflux pump system) and novel therapy strategies, so as to provide a theoretical basis for the treatment of MRSA infection.
Collapse
Affiliation(s)
- Zhuru Hou
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
| | - Ling Liu
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| | - Jianhong Wei
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
| | - Benjin Xu
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| |
Collapse
|
11
|
Belhout C, Boyen F, Vereecke N, Theuns S, Taibi N, Stegger M, de la Fé-Rodríguez PY, Bouayad L, Elgroud R, Butaye P. Prevalence and Molecular Characterization of Methicillin-Resistant Staphylococci (MRS) and Mammaliicocci (MRM) in Dromedary Camels from Algeria: First Detection of SCC mec- mecC Hybrid in Methicillin-Resistant Mammaliicoccus lentus. Antibiotics (Basel) 2023; 12:674. [PMID: 37107036 PMCID: PMC10134997 DOI: 10.3390/antibiotics12040674] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Dromedary camels are an important source of food and income in many countries. However, it has been largely overlooked that they can also transmit antibiotic-resistant bacteria. The aim of this study was to identify the Staphylococcaceae bacteria composition of the nasal flora in dromedary camels and evaluate the presence of methicillin-resistant Mammaliicoccus (MRM) and methicillin-resistant Staphylococcus (MRS) in dromedary camels in Algeria. Nasal swabs were collected from 46 camels from seven farms located in two different regions of Algeria (M'sila and Ouargla). We used non-selective media to determine the nasal flora, and antibiotic-supplemented media to isolate MRS and MRM. The staphylococcal isolates were identified using an Autoflex Biotyper Mass Spectrometer (MALDI-TOF MS). The mecA and mecC genes were detected by PCR. Methicillin-resistant strains were further analysed by long-read whole genome sequencing (WGS). Thirteen known Staphylococcus and Mammaliicoccus species were identified in the nasal flora, of which half (49.2%) were coagulase-positive staphylococci. The results showed that four out of seven farms were positive for MRS and/or MRM, with a total of 16 isolates from 13 dromedary camels. The predominant species were M. lentus, S. epidermidis, and S. aureus. Three methicillin-resistant S. aureus (MRSA) were found to be ST6 and spa type t304. Among methicillin-resistant S. epidermidis (MRSE), ST61 was the predominant ST identified. Phylogenetic analysis showed clonal relatedness among M. lentus strains, while S. epidermidis strains were not closely related. Resistance genes were detected, including mecA, mecC, ermB, tet(K), and blaZ. An SCCmec type VIII element was found in a methicillin-resistant S. hominis (MRSH) belonging to the ST1 strain. An SCCmec-mecC hybrid element was detected in M. lentus, similar to what was previously detected in M. sciuri. This study highlights that dromedary camels may be a reservoir for MRS and MRM, and that they contain a specific set of SCCmec elements. This emphasizes the need for further research in this ecological niche from a One Health perspective.
Collapse
Affiliation(s)
- Chahrazed Belhout
- HASAQ Laboratory, High National Veterinary School, Issad Abbes Avenue, Oued Smar, El Harrach, Algiers 16270, Algeria
| | - Filip Boyen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Nick Vereecke
- PathoSense, Pastoriestraat 10, 2500 Lier, Belgium
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Sebastiaan Theuns
- PathoSense, Pastoriestraat 10, 2500 Lier, Belgium
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Nadia Taibi
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Bou-Ismail, Tipaza 42415, Algeria
| | - Marc Stegger
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Pedro Yoelvys de la Fé-Rodríguez
- Departamento de Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias, Universidad Central “Marta Abreu” de Las Villas, Carretera a Camajuaní km 5½, Santa Clara 54 830, Cuba
| | - Leila Bouayad
- HASAQ Laboratory, High National Veterinary School, Issad Abbes Avenue, Oued Smar, El Harrach, Algiers 16270, Algeria
| | - Rachid Elgroud
- Institute of Veterinary Sciences, University Frères Mentouri Constantine 1, Constantine 25017, Algeria
| | - Patrick Butaye
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
12
|
Keller JE, Schwendener S, Nováková D, Pantůček R, Perreten V. Letter to the Editor: Novel Antimicrobial Genetic Elements in Methicillin-Resistant Macrococcus armenti. Microb Drug Resist 2023; 29:65-68. [PMID: 36802274 DOI: 10.1089/mdr.2022.0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Affiliation(s)
- Jennifer Eleonora Keller
- Division of Bacterial Molecular Epidemiology and Infectious Diseases, Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sybille Schwendener
- Division of Bacterial Molecular Epidemiology and Infectious Diseases, Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Dana Nováková
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Roman Pantůček
- Division of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vincent Perreten
- Division of Bacterial Molecular Epidemiology and Infectious Diseases, Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Nosalova L, Willner J, Fornalczyk A, Saternus M, Sedlakova-Kadukova J, Piknova M, Pristas P. Diversity, heavy metals, and antibiotic resistance in culturable heterotrophic bacteria isolated from former lead–silver–zinc mine heap in Tarnowskie Gory (Silesia, Poland). Arch Microbiol 2023; 205:26. [DOI: 10.1007/s00203-022-03369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
|
14
|
Silva V, Caniça M, Manageiro V, Vieira-Pinto M, Pereira JE, Maltez L, Poeta P, Igrejas G. Antimicrobial Resistance and Molecular Epidemiology of Staphylococcus aureus from Hunters and Hunting Dogs. Pathogens 2022; 11:548. [PMID: 35631069 PMCID: PMC9143024 DOI: 10.3390/pathogens11050548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/30/2022] Open
Abstract
Several studies have showed that a dog-to-human transmission of Staphylococcus aureus occurs. Hunting dogs do not have as much contact with their owners as dogs that live in the same household as the owners; however, these dogs have contact with their owners during hunting activities as well as when hunting game; therefore, we aimed to isolate S. aureus from hunters and their hunting dogs to investigate a possible S. aureus transmission. Nose and mouth samples were collected from 30 hunters and their 78 hunting dogs for staphylococcal isolation. The species identification was performed using MALDI-TOF. The antimicrobial susceptibility profiles were accessed using the Kirby-Bauer method and respective antimicrobial resistance genes were investigated by PCR. Multilocus sequence typing (MLST) and spa- and agr-typing was performed in all S. aureus isolates. S. aureus were detected in 10 (30%) human samples and in 11 (15.4%) dog samples of which 11 and 5 were methicillin-resistant S. aureus (MRSA). Other staphylococci were identified, particularly, S. pseudintermedius. Most S. aureus isolates were resistant to penicillin, erythromycin, and tetracycline. Evidence of a possible transmission of S. aureus between human and dogs was detected in three hunters and their dogs. S. aureus isolates were ascribed to 10 STs and 9 spa-types. A moderate colonization of S. aureus in hunting dogs and their owners was detected in this study. A few dog-to-dog and dog-to-human possible transmissions were identified.
Collapse
Affiliation(s)
- Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.E.P.); (L.M.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal; (M.C.); (V.M.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal; (M.C.); (V.M.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - Madalena Vieira-Pinto
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - José Eduardo Pereira
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.E.P.); (L.M.)
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Luís Maltez
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.E.P.); (L.M.)
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.E.P.); (L.M.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|