1
|
Raabis SM, Westerman TL, Cruz E, Deblois CL, Suen G, Elfenbein JR. Sensitivity of dairy calf Salmonella enterica serotype Cerro isolates to infection-relevant stressors. Microbiol Spectr 2024; 12:e0021224. [PMID: 39145636 PMCID: PMC11448428 DOI: 10.1128/spectrum.00212-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/16/2024] [Indexed: 08/16/2024] Open
Abstract
Salmonella enterica serotype Cerro (S. Cerro) is an emerging Salmonella serotype isolated from cattle, but the association of S. Cerro with disease is not well understood. While comparative genomic analyses of bovine S. Cerro isolates have indicated mutations in elements associated with virulence, the correlation of S. Cerro fecal shedding with clinical disease in cattle varies between epidemiologic studies. The primary objective of this study was to characterize the infection-relevant phenotypes of S. Cerro fecal isolates obtained from neonatal calves born on a dairy farm in Wisconsin, USA. The S. Cerro isolates varied in biofilm production and sensitivity to the bile salt deoxycholate. All S. Cerro isolates were sensitive to sodium hypochlorite, hydrogen peroxide, and acidic shock. However, S. Cerro isolates were resistant to nitric oxide stress. Two S. Cerro isolates were unable to compete with S. Typhimurium during infection of calf ligated intestinal loops, indicating decreased fitness in vivo. Together, our data suggest that S. Cerro is sensitive to some innate antimicrobial defenses present in the gut, many of which are also used to control Salmonella in the environment. The observed phenotypic variation in S. Cerro isolates from a single farm suggest phenotypic plasticity that could impact infectious potential, transmission, and persistence on a farm.IMPORTANCESalmonella enterica is a zoonotic pathogen that threatens both human and animal health. Salmonella enterica serotype Cerro is being isolated from cattle at increasing frequency over the past two decades; however, its association with clinical disease is unclear. The goal of this study was to characterize infection-relevant phenotypes of S. Cerro isolates obtained from dairy calves from a single farm. Our work shows that there can be variation among temporally related S. Cerro isolates and that these isolates are sensitive to killing by toxic compounds of the innate immune system and those used for environmental control of Salmonella. This work contributes to our understanding of the pathogenic potential of the emerging pathogen S. Cerro.
Collapse
Affiliation(s)
- Sarah M Raabis
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Trina L Westerman
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eddy Cruz
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Courtney L Deblois
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Garret Suen
- Department of Bacteriology, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Johanna R Elfenbein
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Sutar AA, Dashpute RS, Shinde YD, Mukherjee S, Chowdhury C. A Systemic Review on Fitness and Survival of Salmonella in Dynamic Environment and Conceivable Ways of Its Mitigation. Indian J Microbiol 2024; 64:267-286. [PMID: 39011015 PMCID: PMC11246371 DOI: 10.1007/s12088-023-01176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/05/2023] [Indexed: 07/17/2024] Open
Abstract
Gastroenteritis caused by non-typhoidal Salmonella still prevails resulting in several recent outbreaks affecting many people worldwide. The presence of invasive non-typhoidal Salmonella is exemplified by several characteristic symptoms and their severity relies on prominent risk factors. The persistence of this pathogen can be attributed to its broad host range, complex pathogenicity and virulence and adeptness in survival under challenging conditions inside the host. Moreover, a peculiar aid of the ever-changing climatic conditions grants this organism with remarkable potential to survive within the environment. Abusive use of antibiotics for the treatment of gastroenteritis has led to the emergence of multiple drug resistance, making the infections difficult to treat. This review emphasizes the importance of early detection of Salmonella, along with strategies for accomplishing it, as well as exploring alternative treatment approaches. The exceptional characteristics exhibited by Salmonella, like strategies of infection, persistence, and survival parallelly with multiple drug resistance, make this pathogen a prominent concern to human health.
Collapse
Affiliation(s)
- Ajit A Sutar
- Biochemical Sciences Division, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MH 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Rohit S Dashpute
- Biochemical Sciences Division, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MH 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Yashodhara D Shinde
- Biochemical Sciences Division, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MH 411008 India
| | - Srestha Mukherjee
- Biochemical Sciences Division, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MH 411008 India
| | - Chiranjit Chowdhury
- Biochemical Sciences Division, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MH 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
3
|
Giraud E, Baucheron S, Foubert I, Doublet B, Nishino K, Cloeckaert A. Major primary bile salts repress Salmonella enterica serovar Typhimurium invasiveness partly via the efflux regulatory locus ramRA. Front Microbiol 2024; 15:1338261. [PMID: 38410385 PMCID: PMC10895713 DOI: 10.3389/fmicb.2024.1338261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Bile represses Salmonella enterica serovar Typhimurium (S. Typhimurium) intestinal cell invasion, but it remains unclear which bile components and mechanisms are implicated. Previous studies reported that bile inhibits the RamR binding to the ramA promoter, resulting in ramA increased transcription, and that ramA overexpression is associated to decreased expression of type III secretion system 1 (TTSS-1) invasion genes and to impaired intestinal cell invasiveness in S. Typhimurium. In this study, we assessed the possible involvement of the ramRA multidrug efflux regulatory locus and individual bile salts in the bile-mediated repression of S. Typhimurium invasion, using Caco-2 intestinal epithelial cells and S. Typhimurium strain ATCC 14028s. Our results indicate that (i) major primary bile salts, chenodeoxycholate and its conjugated-derivative salts, cholate, and deoxycholate, activate ramA transcription in a RamR-dependent manner, and (ii) it results in repression of hilA, encoding the master activator of TTSS-1 genes, and as a consequence in the repression of cellular invasiveness. On the other hand, crude ox bile extract and cholate were also shown to repress the transcription of hilA independently of RamR, and to inhibit cell invasion independently of ramRA. Altogether, these data suggest that bile-mediated repression of S. Typhimurium invasion occurs through pleiotropic effects involving partly ramRA, as well as other unknown regulatory pathways. Bile components other than the bile salts used in this study might also participate in this phenomenon.
Collapse
Affiliation(s)
| | | | | | | | - Kunihiko Nishino
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | | |
Collapse
|
4
|
Choroszy-Król I, Futoma-Kołoch B, Kuźnik K, Wojnicz D, Tichaczek-Goska D, Frej-Mądrzak M, Jama-Kmiecik A, Sarowska J. Exposing Salmonella Senftenberg and Escherichia coli Strains Isolated from Poultry Farms to Formaldehyde and Lingonberry Extract at Low Concentrations. Int J Mol Sci 2023; 24:14579. [PMID: 37834022 PMCID: PMC10572950 DOI: 10.3390/ijms241914579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
European Union (EU) countries strive to improve the quality and safety of food of animal origin. Food production depends on a good microbiological quality of fodder. However, feed can be a reservoir or vector of pathogenic microorganisms, including Salmonella or Escherichia coli bacteria. Salmonella spp. and E. coli are the two most important food-borne pathogens of public health concern. Contamination with these pathogens, mainly in the poultry sector, can lead to serious food-borne diseases. Both microorganisms can form biofilms on abiotic and biotic surfaces. The cells that form biofilms are less sensitive to disinfectants, which in turn makes it difficult to eliminate them from various surfaces. Because the usage of formaldehyde in animal feed is prohibited in European countries, the replacement of this antibacterial with natural plant products seems very promising. This study aimed to assess the inhibitory effectiveness of Vaccinium vitis-idaea extract against biofilm produced by model Salmonella enterica and E. coli strains. We found that formaldehyde could effectively kill both species of bacterial cells in biofilm, while the lingonberry extract showed some antibiofilm effect on S. enterica serovar Senftenberg. In conclusion, finding natural plant products that are effective against biofilms formed by Gram-negative bacteria is still challenging.
Collapse
Affiliation(s)
- Irena Choroszy-Król
- Department of Basic Sciences, Faculty of Health Sciences, Wrocław Medical University, Chałubińskiego 4, 50-368 Wroclaw, Poland; (I.C.-K.); (M.F.-M.); (A.J.-K.); (J.S.)
| | - Bożena Futoma-Kołoch
- Department of Microbiology, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63–77, 51-148 Wroclaw, Poland;
| | - Klaudia Kuźnik
- Department of Microbiology, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63–77, 51-148 Wroclaw, Poland;
| | - Dorota Wojnicz
- Department of Biology and Medical Parasitology, Faculty of Medicine, Wrocław Medical University, Mikulicza-Radeckiego 9, 50-345 Wroclaw, Poland; (D.W.); (D.T.-G.)
| | - Dorota Tichaczek-Goska
- Department of Biology and Medical Parasitology, Faculty of Medicine, Wrocław Medical University, Mikulicza-Radeckiego 9, 50-345 Wroclaw, Poland; (D.W.); (D.T.-G.)
| | - Magdalena Frej-Mądrzak
- Department of Basic Sciences, Faculty of Health Sciences, Wrocław Medical University, Chałubińskiego 4, 50-368 Wroclaw, Poland; (I.C.-K.); (M.F.-M.); (A.J.-K.); (J.S.)
| | - Agnieszka Jama-Kmiecik
- Department of Basic Sciences, Faculty of Health Sciences, Wrocław Medical University, Chałubińskiego 4, 50-368 Wroclaw, Poland; (I.C.-K.); (M.F.-M.); (A.J.-K.); (J.S.)
| | - Jolanta Sarowska
- Department of Basic Sciences, Faculty of Health Sciences, Wrocław Medical University, Chałubińskiego 4, 50-368 Wroclaw, Poland; (I.C.-K.); (M.F.-M.); (A.J.-K.); (J.S.)
| |
Collapse
|
5
|
Yamasaki S, Zwama M, Yoneda T, Hayashi-Nishino M, Nishino K. Drug resistance and physiological roles of RND multidrug efflux pumps in Salmonella enterica, Escherichia coli and Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001322. [PMID: 37319001 PMCID: PMC10333786 DOI: 10.1099/mic.0.001322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/18/2023] [Indexed: 06/17/2023]
Abstract
Drug efflux pumps transport antimicrobial agents out of bacteria, thereby reducing the intracellular antimicrobial concentration, which is associated with intrinsic and acquired bacterial resistance to these antimicrobials. As genome analysis has advanced, many drug efflux pump genes have been detected in the genomes of bacterial species. In addition to drug resistance, these pumps are involved in various essential physiological functions, such as bacterial adaptation to hostile environments, toxin and metabolite efflux, biofilm formation and quorum sensing. In Gram-negative bacteria, efflux pumps in the resistance–nodulation–division (RND) superfamily play a clinically important role. In this review, we focus on Gram-negative bacteria, including Salmonella enterica , Escherichia coli and Pseudomonas aeruginosa , and discuss the role of RND efflux pumps in drug resistance and physiological functions.
Collapse
Affiliation(s)
- Seiji Yamasaki
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Martijn Zwama
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tomohiro Yoneda
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mitsuko Hayashi-Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kunihiko Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, 2-8 Yamadaoka, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Nano-technology platforms to increase the antibacterial drug suitability of essential oils: A drug prospective assessment. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Effects of Natural Rheum tanguticum on the Cell Wall Integrity of Resistant Phytopathogenic Pectobacterium carotovorum subsp. Carotovorum. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165291. [PMID: 36014529 PMCID: PMC9414576 DOI: 10.3390/molecules27165291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022]
Abstract
The abuse of agricultural antibiotics has led to the emergence of drug-resistant phytopathogens. Rifampicin and streptomycin and streptomycin resistance Pectobacterium carotovorum subsp. carotovorum (PccS1) was obtained from pathological plants in a previous experiment. Rheum tanguticum, derived from the Chinese plateau area, exhibits excellent antibacterial activity against PccS1, yet the action mode has not been fully understood. In present text, the cell wall integrity of the PccS1 was tested by the variation of the cellular proteins, SDS polyacrylamide gel electrophoresis (SDS-PAGE), scanning electron microscopy (SEM) and Fourier transform infrared spectrophotometer (FTIR) characteristics. Label-free quantitative proteomics was further used to identify the DEPs in the pathogen response to treatment with Rheum tanguticum Maxim. ex Balf. extract (abbreviated as RTMBE). Based on the bioinformatics analysis of these different expressed proteins (DEPs), RTMBE mainly inhibited some key protein expressions of beta-Lactam resistance, a two-component system and phosphotransferase system. Most of these membrane proteins were extraordinarily suppressed, which was also consistent with the morphological tests. In addition, from the downregulated flagellar motility related proteins, it was also speculated that RTMBE played an essential antibacterial role by affecting the swimming motility of the cells. The results indicated that Rheum tanguticum can be used to attenuate the virulence of the drug-resistant phytopathogenic bacteria.
Collapse
|
8
|
Nishino K, Yamasaki S, Nakashima R, Zwama M, Hayashi-Nishino M. Function and Inhibitory Mechanisms of Multidrug Efflux Pumps. Front Microbiol 2021; 12:737288. [PMID: 34925258 PMCID: PMC8678522 DOI: 10.3389/fmicb.2021.737288] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/14/2021] [Indexed: 12/31/2022] Open
Abstract
Multidrug efflux pumps are inner membrane transporters that export multiple antibiotics from the inside to the outside of bacterial cells, contributing to bacterial multidrug resistance (MDR). Postgenomic analysis has demonstrated that numerous multidrug efflux pumps exist in bacteria. Also, the co-crystal structural analysis of multidrug efflux pumps revealed the drug recognition and export mechanisms, and the inhibitory mechanisms of the pumps. A single multidrug efflux pump can export multiple antibiotics; hence, developing efflux pump inhibitors is crucial in overcoming infectious diseases caused by multidrug-resistant bacteria. This review article describes the role of multidrug efflux pumps in MDR, and their physiological functions and inhibitory mechanisms.
Collapse
Affiliation(s)
- Kunihiko Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| | - Seiji Yamasaki
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| | - Ryosuke Nakashima
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| | - Martijn Zwama
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| | - Mitsuko Hayashi-Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| |
Collapse
|
9
|
Arisetti N, Fuchs HLS, Coetzee J, Orozco M, Ruppelt D, Bauer A, Heimann D, Kuhnert E, Bhamidimarri SP, Bafna JA, Hinkelmann B, Eckel K, Sieber SA, Müller PP, Herrmann J, Müller R, Winterhalter M, Steinem C, Brönstrup M. Total synthesis and mechanism of action of the antibiotic armeniaspirol A. Chem Sci 2021; 12:16023-16034. [PMID: 35024125 PMCID: PMC8672772 DOI: 10.1039/d1sc04290d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/24/2021] [Indexed: 01/02/2023] Open
Abstract
Emerging antimicrobial resistance urges the discovery of antibiotics with unexplored, resistance-breaking mechanisms. Armeniaspirols represent a novel class of antibiotics with a unique spiro[4.4]non-8-ene scaffold and potent activities against Gram-positive pathogens. We report a concise total synthesis of (±) armeniaspirol A in six steps with a yield of 20.3% that includes the formation of the spirocycle through a copper-catalyzed radical cross-coupling reaction. In mechanistic biological experiments, armeniaspirol A exerted potent membrane depolarization, accounting for the pH-dependent antibiotic activity. Armeniaspirol A also disrupted the membrane potential and decreased oxygen consumption in mitochondria. In planar lipid bilayers and in unilamellar vesicles, armeniaspirol A transported protons across membranes in a protein-independent manner, demonstrating that armeniaspirol A acted as a protonophore. We provide evidence that this mechanism might account for the antibiotic activity of multiple chloropyrrole-containing natural products isolated from various origins that share a 4-acylphenol moiety coupled to chloropyrrole as a joint pharmacophore. We additionally describe an efflux-mediated mechanism of resistance against armeniaspirols.
Collapse
Affiliation(s)
- Nanaji Arisetti
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
- German Centre for Infection Research Partner Site Hannover-Braunschweig Germany
| | - Hazel L S Fuchs
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Janetta Coetzee
- German Centre for Infection Research Partner Site Hannover-Braunschweig Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research Saarland University Campus E8.1 66123 Saarbrücken Germany
| | - Manuel Orozco
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research Saarland University Campus E8.1 66123 Saarbrücken Germany
| | - Dominik Ruppelt
- Georg-August-Universität Göttingen, Institute of Organic and Biomolecular Chemistry Tammannstraße 2 37077 Göttingen Germany
| | - Armin Bauer
- Sanofi R&D Industriepark Höchst 65926 Frankfurt Germany
| | - Dominik Heimann
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Eric Kuhnert
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | | | - Jayesh A Bafna
- Jacobs University Bremen Campus Ring 1 28759 Bremen Germany
| | - Bettina Hinkelmann
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Konstantin Eckel
- Department of Chemistry, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Technische Universität München Ernst-Otto-Fischer-Straße 8 85748 Garching Germany
| | - Stephan A Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Technische Universität München Ernst-Otto-Fischer-Straße 8 85748 Garching Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research Saarland University Campus E8.1 66123 Saarbrücken Germany
| | - Peter P Müller
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Jennifer Herrmann
- German Centre for Infection Research Partner Site Hannover-Braunschweig Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research Saarland University Campus E8.1 66123 Saarbrücken Germany
| | - Rolf Müller
- German Centre for Infection Research Partner Site Hannover-Braunschweig Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research Saarland University Campus E8.1 66123 Saarbrücken Germany
| | | | - Claudia Steinem
- Georg-August-Universität Göttingen, Institute of Organic and Biomolecular Chemistry Tammannstraße 2 37077 Göttingen Germany
- Max-Planck-Institute for Dynamics and Self Organization Am Faßberg 17 37077 Göttingen Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
- German Centre for Infection Research Partner Site Hannover-Braunschweig Germany
- Center for Biomolecular Drug Research (BMWZ), Leibniz Universität 30159 Hannover Germany
| |
Collapse
|
10
|
Liu D, Wang Y, Wang X, Ou D, Ling N, Zhang J, Wu Q, Ye Y. Role of the multiple efflux pump protein TolC on growth, morphology, and biofilm formation under nitric oxide stress in Cronobacter malonaticus. JDS COMMUNICATIONS 2021; 2:98-103. [PMID: 36339506 PMCID: PMC9623651 DOI: 10.3168/jdsc.2020-0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/19/2021] [Indexed: 06/13/2023]
Abstract
Nitric oxide (NO) is a biological signal molecule that can control and prevent the growth of most pathogens. Cronobacter species are a group of gram-negative foodborne pathogens that cause severe diseases, including neonatal meningitis, septicemia, and necrotizing enterocolitis, especially among newborns and infants consuming contaminated powdered infant formula. Cronobacter species might be tolerant to NO, resulting in severe infections. However, the specific mechanism of tolerance to NO in Cronobacter species is unclear. Here, we explore the effects of a key component, the protein TolC, of a multiple efflux pump on the growth, morphological changes, and biofilm formation of Cronobacter malonaticus under NO stress. We found that deletion of tolC resulted in a decreased growth rate under 100 mM sodium nitroprusside (NO donor) and led to more disruptive morphological injury to the bacterial cells. Furthermore, C. malonaticus lacking the TolC protein (ΔtolC mutant) showed weaker biofilm formation than the wild-type strain under normal or NO stress conditions. We have proved that TolC plays an important role in cell growth and biofilm formation of C. malonaticus. Therefore, our results may provide valuable theoretical basis for formulating clinical guidelines for treatment of disease caused by C. malonaticus and ensuring food safety.
Collapse
Affiliation(s)
- Dengyu Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yaping Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Dexin Ou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Na Ling
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yingwang Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| |
Collapse
|
11
|
Debroy R, Miryala SK, Naha A, Anbarasu A, Ramaiah S. Gene interaction network studies to decipher the multi-drug resistance mechanism in Salmonella enterica serovar Typhi CT18 reveal potential drug targets. Microb Pathog 2020; 142:104096. [PMID: 32097747 DOI: 10.1016/j.micpath.2020.104096] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 01/13/2023]
Abstract
Salmonella enterica subsp. enterica serovar Typhi, a human enteric pathogen causing typhoid fever, developed resistance to multiple antibiotics over the years. The current study was dedicated to understand the multi-drug resistance (MDR) mechanism of S. enterica serovar Typhi CT18 and to identify potential drug targets that could be exploited for new drug discovery. We have employed gene interaction network analysis for 44 genes which had 275 interactions. Clustering analysis resulted in three highly interconnecting clusters (C1-C3). Functional enrichment analysis revealed the presence of drug target alteration and three different multi-drug efflux pumps in the bacteria that were associated with antibiotic resistance. We found seven genes (arnA,B,C,D,E,F,T) conferring resistance to Cationic Anti-Microbial Polypeptide (CAMP) molecules by membrane Lipopolysaccharide (LPS) modification, while macB was observed to be an essential controlling hub of the network and played a crucial role in MacAB-TolC efflux pump. Further, we identified five genes (mdtH, mdtM, mdtG, emrD and mdfA) which were involved in Major Facilitator Superfamily (MFS) efflux system and acrAB contributed towards AcrAB-TolC efflux pump. All three efflux pumps were seen to be highly dependent on tolC gene. The five genes, namely tolC, macB, acrA, acrB and mdfA which were involved in multiple resistance pathways, can act as potential drug targets for successful treatment strategies. Therefore, this study has provided profound insights into the MDR mechanism in S. Typhi CT18. Our results will be useful for experimental biologists to explore new leads for S. enterica.
Collapse
Affiliation(s)
- Reetika Debroy
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Sravan Kumar Miryala
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Aniket Naha
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
12
|
Raspoet R, Eeckhaut V, Vermeulen K, De Smet L, Wen Y, Nishino K, Haesebrouck F, Ducatelle R, Devreese B, Van Immerseel F. The Salmonella Enteritidis TolC outer membrane channel is essential for egg white survival. Poult Sci 2019; 98:2281-2289. [PMID: 30624709 DOI: 10.3382/ps/pey584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/10/2018] [Indexed: 01/06/2023] Open
Abstract
Salmonella Enteritidis has developed the potential to contaminate eggs by surviving in the antimicrobial environment of the hen's egg white. This has led to a worldwide pandemic of foodborne salmonellosis infections in humans due to the consumption of contaminated eggs and egg-derived products. The molecular mechanisms of Salmonella Enteritidis egg white survival are not fully clear. Using in vivo expression technology and promoter-reporter fusions we showed that the promoter of the tolC gene, encoding the TolC outer membrane channel that is used by multidrug efflux pumps to export harmful molecules and to secrete bacterial products, is activated by egg white at the chicken body temperature. Using a Salmonella Enteritidis tolC deletion mutant we showed that TolC has an important role in egg white survival. Chromatographic separation techniques and subsequent testing of antimicrobial activities of separated egg white fractions led to the identification of ovotransferrin as the egg white antimicrobial factor which is capable of inhibiting growth of a tolC deletion strain but not the wild type strain. We provide evidence that TolC protects Salmonella Enteritidis against ovotransferrin-mediated growth inhibition in egg white.
Collapse
Affiliation(s)
- R Raspoet
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - V Eeckhaut
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - K Vermeulen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - L De Smet
- Department of Physiology, Faculty of Sciences, Ghent University, Krijgslaan 281 S2, 9000 Ghent, Belgium.,Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Y Wen
- Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - K Nishino
- Laboratory of Microbiology and Infectious Diseases, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - F Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - R Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - B Devreese
- Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - F Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| |
Collapse
|
13
|
Zhu Z, Dong C, Weng S, He J. Identification of outer membrane protein TolC as the major adhesin and potential vaccine candidate for Vibrio harveyi in hybrid grouper, Epinephelus fuscoguttatus (♀) × E. lanceolatus (♂). FISH & SHELLFISH IMMUNOLOGY 2019; 86:143-151. [PMID: 30453046 DOI: 10.1016/j.fsi.2018.11.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 05/21/2023]
Abstract
Vibrio harveyi is a serious pathogen of scale drop and muscle necrosis disease in marine commercial fishes. Adhesion to and colonization of the host cells surfaces is the first and crucial step for pathogenic bacterial infection, which is usually mediated by outer membrane proteins (Omps). The objectives of this study were to identify the major adhesin in Omps that plays the essential role in adhesion of V. harveyi to the host cells, and to assess the potential of this adhesin as a vaccine candidate for V. harveyi infection. We observed that pathogenic V. harveyi adhered to the surface of grouper embryonic cells (GEM cells) and induced apoptosis of them. Native Omps were extracted from nine different V. harveyi strains, and five common Omp bands were isolated by SDS-PAGE analysis. Western blot analysis and an anti-native Omp antibodies blocking assay indicated that one strong and several weak immunoreactivity Omps bands presence. Next, a total of five Omps, including TolC, Agg (Agglutination protein), Omp47, Fla (Flagellin), and OmpW, were identified and their encoding genes were cloned, characterized, and expressed in E. coli. The purified recombinant TolC could competitively inhibit the invasion of V. harveyi to GEM cells in vitro, and anti-TolC antibody also could significantly block the adhesion of V. harveyi to GEM cells. When used to immunize hybrid groupers, the recombinant TolC could confer significant protection to fish against experimental V. harveyi challenge. These data suggested that outer membrane protein TolC functions as a major adhesin in V. harveyi and could be a potential vaccine candidate for V. harveyi infection.
Collapse
Affiliation(s)
- Zhiming Zhu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; State Key Laboratory of Biocontrol / MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Institute of Aquatic Economic Animals, and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Chuanfu Dong
- State Key Laboratory of Biocontrol / MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Institute of Aquatic Economic Animals, and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Shaoping Weng
- State Key Laboratory of Biocontrol / MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Institute of Aquatic Economic Animals, and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Jianguo He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; State Key Laboratory of Biocontrol / MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Institute of Aquatic Economic Animals, and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
14
|
Yamasaki S, Nakashima R, Sakurai K, Baucheron S, Giraud E, Doublet B, Cloeckaert A, Nishino K. Crystal structure of the multidrug resistance regulator RamR complexed with bile acids. Sci Rep 2019; 9:177. [PMID: 30655545 PMCID: PMC6336783 DOI: 10.1038/s41598-018-36025-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/12/2018] [Indexed: 02/06/2023] Open
Abstract
During infection, Salmonella senses and responds to harsh environments within the host. Persistence in a bile-rich environment is important for Salmonella to infect the small intestine or gallbladder and the multidrug efflux system AcrAB-TolC is required for bile resistance. The genes encoding this system are mainly regulated by the ramRA locus, which is composed of the divergently transcribed ramA and ramR genes. The acrAB and tolC genes are transcriptionally activated by RamA, whose encoding gene is itself transcriptionally repressed by RamR. RamR recognizes multiple drugs; however, the identity of the environmental signals to which it responds is unclear. Here, we describe the crystal structures of RamR in complexes with bile components, including cholic acid and chenodeoxycholic acid, determined at resolutions of 2.0 and 1.8 Å, respectively. Both cholic and chenodeoxycholic acids form four hydrogen bonds with Tyr59, Thr85, Ser137 and Asp152 of RamR, instead of π–π interactions with Phe155, a residue that is important for the recognition of multiple compounds including berberine, crystal violet, dequalinium, ethidium bromide and rhodamine 6 G. Binding of these compounds to RamR reduces its DNA-binding affinity, resulting in the increased transcription of ramA and acrAB-tolC. Our results reveal that Salmonella senses bile acid components through RamR and then upregulates the expression of RamA, which can lead to induction of acrAB-tolC expression with resulting tolerance to bile-rich environments.
Collapse
Affiliation(s)
- Suguru Yamasaki
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Ryosuke Nakashima
- Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Keisuke Sakurai
- Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Sylvie Baucheron
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380, Nouzilly, France.,Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000, Tours, France
| | - Etienne Giraud
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380, Nouzilly, France.,Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000, Tours, France
| | - Benoît Doublet
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380, Nouzilly, France.,Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000, Tours, France
| | - Axel Cloeckaert
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380, Nouzilly, France.,Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000, Tours, France
| | - Kunihiko Nishino
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan. .,Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
15
|
Falcó I, Verdeguer M, Aznar R, Sánchez G, Randazzo W. Sanitizing food contact surfaces by the use of essential oils. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2018.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
16
|
Beyond Antimicrobial Resistance: Evidence for a Distinct Role of the AcrD Efflux Pump in Salmonella Biology. mBio 2016; 7:mBio.01916-16. [PMID: 27879336 PMCID: PMC5120143 DOI: 10.1128/mbio.01916-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
For over 20 years, bacterial multidrug resistance (MDR) efflux pumps have been studied because of their impact on resistance to antimicrobials. However, critical questions remain, including why produce efflux pumps under non-antimicrobial treatment conditions, and why have multiple pumps if their only purpose is antimicrobial efflux? Salmonella spp. possess five efflux pump families, including the resistance-nodulation-division (RND) efflux pumps. Notably, the RND efflux pump AcrD has a unique substrate profile, distinct from other Salmonella efflux pumps. Here we show that inactivation of acrD results in a profoundly altered transcriptome and modulation of pathways integral to Salmonella biology. The most significant transcriptome changes were central metabolism related, with additional changes observed in pathogenicity, environmental sensing, and stress response pathway expression. The extent of tricarboxylic acid cycle and fumarate metabolism expression changes led us to hypothesize that acrD inactivation may result in motility defects due to perturbation of metabolite concentrations, such as fumarate, for which a role in motility has been established. Despite minimal detectable changes in flagellar gene expression, we found that an acrD mutant Salmonella enterica serovar Typhimurium isolate was significantly impaired for swarming motility, which was restored by addition of fumarate. The acrD mutant outcompeted the wild type in fitness experiments. The results of these diverse experiments provide strong evidence that the AcrD efflux pump is not simply a redundant system providing response resilience, but also has distinct physiological functions. Together, these data indicate that the AcrD efflux pump has a significant and previously underappreciated impact on bacterial biology, despite only minor perturbations of antibiotic resistance profiles. Efflux pumps in Gram-negative bacteria are studied because of their important contributions to antimicrobial resistance. However, the role of these pumps in bacterial biology has remained surprisingly elusive. Here, we provide evidence that loss of the AcrD efflux pump significantly impacts the physiology of Salmonella enterica serovar Typhimurium. Inactivation of acrD led to changes in the expression of 403 genes involved in fundamental processes, including basic metabolism, virulence, and stress responses. Pathways such as these allow Salmonella to grow, survive in the environment, and cause disease. Indeed, our data show that the acrD mutant is more fit than wild-type Salmonella under standard lab conditions. We hypothesized that inactivation of acrD would alter levels of bacterial metabolites, impacting traits such as swarming motility. We demonstrated this by exogenous addition of the metabolite fumarate, which partially restored the acrD mutant’s swarming defect. This work extends our understanding of the role of bacterial efflux pumps.
Collapse
|
17
|
Rocha TM, Andrade MA, Gonzales E, Stringhini JH, Santana ES, Pôrto RNG, Minafra-Rezende CS. Liver Function and Bacteriology of Organs in Broiler Inoculated with Nalidixic Acid-ResistantSalmonellaTyphimurium and Treated with Organic Acids. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2013.e55] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Thekkiniath J, Ravirala R, San Francisco M. Multidrug Efflux Pumps in the Genus Erwinia: Physiology and Regulation of Efflux Pump Gene Expression. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:131-49. [DOI: 10.1016/bs.pmbts.2016.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Kuda T, Kosaka M, Hirano S, Kawahara M, Sato M, Kaneshima T, Nishizawa M, Takahashi H, Kimura B. Effect of sodium-alginate and laminaran on Salmonella Typhimurium infection in human enterocyte-like HT-29-Luc cells and BALB/c mice. Carbohydr Polym 2015; 125:113-9. [PMID: 25857966 DOI: 10.1016/j.carbpol.2015.01.078] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/23/2015] [Accepted: 01/24/2015] [Indexed: 02/07/2023]
Abstract
Brown algal polysaccharides such as alginate, polymers of uronic acids, and laminaran, beta-1,3 and 1,6-glucan, can be fermented by human intestinal microbiota. To evaluate the effects of these polysaccharides on infections caused by food poisoning pathogens, we investigated the adhesion and invasion of pathogens (Salmonella Typhimurium, Listeria monocytogenes and Vibrio parahaemolyticus) in human enterocyte-like HT-29-Luc cells and in infections caused in BALB/c mice. Both sodium Na-alginate and laminaran (0.1% each) inhibited the adhesion of the pathogens to HT-29-Luc cells by approximately 70-90%. The invasion of S. Typhimurium was also inhibited by approximately 70 and 80% by Na-alginate and laminaran, respectively. We observed that incubation with Na-alginate for 18 h increased the transepithelial electrical resistance of HT-29-Luc monolayer cells. Four days after inoculation with 7 log CFU/mouse of S. Typhimurium, the faecal pathogen count in mice that were not fed polysaccharides (control mice) was about 6.5 log CFU/g while the count in mice that were fed Na-alginate had decreased to 5.0 log CFU/g. The liver pathogen count, which was 4.1 log CFU/g in the control mice, was also decreased in mice that were fed Na-alginate. In contrast, the mice that were fed laminaran exhibited a more severe infection than that exhibited by control mice.
Collapse
Affiliation(s)
- Takashi Kuda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato City, Tokyo 108-8477, Japan.
| | - Misa Kosaka
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato City, Tokyo 108-8477, Japan
| | - Shino Hirano
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato City, Tokyo 108-8477, Japan
| | - Miho Kawahara
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato City, Tokyo 108-8477, Japan
| | - Masahiro Sato
- Kaigen Pharma Co. Ltd., 1-25-18, Okusawa, Otaru 047-0013, Japan
| | - Tai Kaneshima
- Department of Food and Cosmetic Sciences, Tokyo University of Agriculture, Abashiri, Japan
| | - Makoto Nishizawa
- Department of Food and Cosmetic Sciences, Tokyo University of Agriculture, Abashiri, Japan
| | - Hajime Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato City, Tokyo 108-8477, Japan
| | - Bon Kimura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato City, Tokyo 108-8477, Japan
| |
Collapse
|
20
|
Sengupta C, Ray S, Chowdhury R. Fine tuning of virulence regulatory pathways in enteric bacteria in response to varying bile and oxygen concentrations in the gastrointestinal tract. Gut Pathog 2014; 6:38. [PMID: 25349633 PMCID: PMC4209513 DOI: 10.1186/s13099-014-0038-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/01/2014] [Indexed: 11/10/2022] Open
Abstract
After entering the gastrointestinal (GI) tract on the way to their physiological site of infection, enteric bacteria encounter a remarkable diversity in environmental conditions. There are gross differences in the physico-chemical parameters in different sections of the GI tract e.g. between the stomach, small intestine and large intestine. Furthermore, even within a certain anatomical site, there are subtle differences in the microenvironment e.g. between the lumen, mucous layer and epithelial surface. Enteric pathogens must not only survive passage through the rapidly changing environments encountered at different niches of the GI tract but must also appropriately coordinate expression of virulence determinants in response to environmental cues at different stages of infection. There are some common themes in the responses of enteric pathogens to environmental cues, there are also distinct differences that may reflect differences in basic pathogenesis mechanisms. The role of bile and oxygen concentration in spatiotemporal regulation of virulence genes in selected enteric pathogens has been reviewed.
Collapse
Affiliation(s)
- Chirantana Sengupta
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Sreejana Ray
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Rukhsana Chowdhury
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India ; Academy for Scientific and Innovative Research, CSIR-IICB Campus, Kolkata 700032, India
| |
Collapse
|
21
|
Baucheron S, Nishino K, Monchaux I, Canepa S, Maurel MC, Coste F, Roussel A, Cloeckaert A, Giraud E. Bile-mediated activation of the acrAB and tolC multidrug efflux genes occurs mainly through transcriptional derepression of ramA in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother 2014; 69:2400-6. [PMID: 24816212 DOI: 10.1093/jac/dku140] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES In Salmonella Typhimurium, the genes encoding the AcrAB-TolC multidrug efflux system are mainly regulated by the ramRA locus, composed of the divergently transcribed ramA and ramR genes. The acrAB and tolC genes are transcriptionally activated by RamA, the gene for which is itself transcriptionally repressed by RamR. Previous studies have reported that bile induces acrAB in a ramA-dependent manner, but none provided evidence for an induction of ramA expression by bile. Therefore, the objective of this study was to clarify the regulatory mechanism by which bile activates acrAB and tolC. METHODS qRT-PCR was used to address the effects of bile (using choleate, an ox-bile extract) on the expression of ramA, ramR, acrB and tolC. Electrophoretic mobility shift assays and surface plasmon resonance experiments were used to measure the effect of bile on RamR binding to the ramA promoter (PramA) region. RESULTS We show that ramA is transcriptionally activated by bile and is strictly required for the bile-mediated activation of acrB and tolC. Additionally, bile is shown to specifically inhibit the binding of RamR to the PramA region, which overlaps the putative divergent ramR promoter, thereby explaining our observation that bile also activates ramR transcription. CONCLUSIONS We propose a regulation model whereby the bile-mediated activation of the acrAB and tolC multidrug efflux genes occurs mainly through the transcriptional derepression of the ramA activator gene.
Collapse
Affiliation(s)
- Sylvie Baucheron
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France
| | - Kunihiko Nishino
- Laboratory of Microbiology and Infectious Diseases, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, Japan
| | - Isabelle Monchaux
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France
| | - Sylvie Canepa
- INRA, UMR7247, Plateforme d'Analyse Intégrative des Biomolécules et de Phénomique des Animaux d'Intérêt Bio-agronomique, Nouzilly, France
| | - Marie-Christine Maurel
- INRA, UMR7247, Plateforme d'Analyse Intégrative des Biomolécules et de Phénomique des Animaux d'Intérêt Bio-agronomique, Nouzilly, France
| | - Franck Coste
- Centre de Biophysique Moléculaire CNRS, UPR4301, Orléans, France
| | - Alain Roussel
- Centre de Biophysique Moléculaire CNRS, UPR4301, Orléans, France
| | - Axel Cloeckaert
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France
| | - Etienne Giraud
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France
| |
Collapse
|
22
|
Fàbrega A, Soto SM, Ballesté-Delpierre C, Fernández-Orth D, Jiménez de Anta MT, Vila J. Impact of quinolone-resistance acquisition on biofilm production and fitness in Salmonella enterica. J Antimicrob Chemother 2014; 69:1815-24. [PMID: 24706735 DOI: 10.1093/jac/dku078] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To investigate the potential relationship between quinolone resistance and biofilm production in a collection of Salmonella enterica clinical isolates and in S. enterica serovar Typhimurium serial mutants with increasing resistance to ciprofloxacin. METHODS Nalidixic acid susceptibility and biofilm formation were assessed in a collection of 122 S. enterica clinical isolates. An in vitro quinolone-resistant mutant, 59-64, was obtained from a biofilm-producing and quinolone-susceptible clinical isolate, 59-wt, in a multistep selection process after increasing ciprofloxacin concentrations. The quinolone resistance mechanisms [target gene and multidrug resistance (MDR) regulatory mutations, MICs of several antibiotics, cell envelope protein analysis, real-time PCR and ciprofloxacin accumulation] were characterized for mutant strains. In addition, analysis of fitness, biofilm formation, rdar morphotype and expression of biofilm-related genes by real-time PCR were also determined. RESULTS Nalidixic acid-susceptible S. enterica strains were more prevalent in producing biofilm than the resistant counterparts. Strain 59-64 acquired five target gene mutations and showed an MDR phenotype. AcrAB and acrF overexpression were ruled out, whereas TolC did show increased expression in 59-64, which, in addition, accumulated less ciprofloxacin. Consistently, increased ramA expression was seen in 59-64 and attributed to a mutation within its promoter. Reduced biofilm production related to diminished csgB expression as well as reduced fitness was seen for 59-64, which was unable to form the rdar morphotype. CONCLUSIONS Quinolone resistance acquisition may be associated with decreased production of biofilm due to lower csgB expression. Efflux, biofilm production and fitness seem to be interrelated.
Collapse
Affiliation(s)
- Anna Fàbrega
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Sara M Soto
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Clara Ballesté-Delpierre
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Dietmar Fernández-Orth
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - M Teresa Jiménez de Anta
- Department of Clinical Microbiology, Hospital Clínic, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Jordi Vila
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain Department of Clinical Microbiology, Hospital Clínic, School of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
23
|
Mardanova AM, Bogomol’naya LM, Romanova YD, Sharipova MR. Efflux systems in Serratia marcescens. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714010093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
24
|
Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel) 2013; 6:1451-74. [PMID: 24287491 PMCID: PMC3873673 DOI: 10.3390/ph6121451] [Citation(s) in RCA: 889] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 10/29/2013] [Accepted: 11/08/2013] [Indexed: 12/04/2022] Open
Abstract
The increasing resistance of microorganisms to conventional chemicals and drugs is a serious and evident worldwide problem that has prompted research into the identification of new biocides with broad activity. Plants and their derivatives, such as essential oils, are often used in folk medicine. In nature, essential oils play an important role in the protection of plants. Essential oils contain a wide variety of secondary metabolites that are capable of inhibiting or slowing the growth of bacteria, yeasts and moulds. Essential oils and their components have activity against a variety of targets, particularly the membrane and cytoplasm, and in some cases, they completely change the morphology of the cells. This brief review describes the activity of essential oils against pathogenic bacteria.
Collapse
Affiliation(s)
- Filomena Nazzaro
- Istituto di Scienze dell’Alimentazione, ISA-CNR, Via Roma 64, 83100 Avellino, Italy; E-Mails: (F.F.); (R.C)
| | - Florinda Fratianni
- Istituto di Scienze dell’Alimentazione, ISA-CNR, Via Roma 64, 83100 Avellino, Italy; E-Mails: (F.F.); (R.C)
| | - Laura De Martino
- Dipartimento di Farmacia,Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy; E-Mails: (L.D.M.); (V.D.F.)
| | - Raffaele Coppola
- Istituto di Scienze dell’Alimentazione, ISA-CNR, Via Roma 64, 83100 Avellino, Italy; E-Mails: (F.F.); (R.C)
| | - Vincenzo De Feo
- Dipartimento di Farmacia,Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy; E-Mails: (L.D.M.); (V.D.F.)
| |
Collapse
|
25
|
Hinchliffe P, Symmons MF, Hughes C, Koronakis V. Structure and operation of bacterial tripartite pumps. Annu Rev Microbiol 2013; 67:221-42. [PMID: 23808339 DOI: 10.1146/annurev-micro-092412-155718] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In bacteria such as Pseudomonas aeruginosa and Escherichia coli, tripartite membrane machineries, or pumps, determine the efflux of small noxious molecules, such as detergents, heavy metals, and antibiotics, and the export of large proteins including toxins. They are therefore influential in bacterial survival, particularly during infections caused by multidrug-resistant pathogens. In these tripartite pumps an inner membrane transporter, typically an ATPase or proton antiporter, binds and translocates export or efflux substrates. In cooperation with a periplasmic adaptor protein it recruits and opens a TolC family cell exit duct, which is anchored in the outer membrane and projects across the periplasmic space between inner and outer membranes. Assembled tripartite pumps thus span the entire bacterial cell envelope. We review the atomic structures of each of the three pump components and discuss how these have allowed high-resolution views of tripartite pump assembly, operation, and possible inhibition.
Collapse
Affiliation(s)
- Philip Hinchliffe
- Department of Pathology, Cambridge University, Cambridge CB2 1QP, United Kingdom; , , ,
| | | | | | | |
Collapse
|
26
|
Fernando DM, Kumar A. Resistance-Nodulation-Division Multidrug Efflux Pumps in Gram-Negative Bacteria: Role in Virulence. Antibiotics (Basel) 2013; 2:163-81. [PMID: 27029297 PMCID: PMC4790303 DOI: 10.3390/antibiotics2010163] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/05/2013] [Accepted: 03/11/2013] [Indexed: 01/13/2023] Open
Abstract
Resistance-Nodulation-Division (RND) efflux pumps are one of the most important determinants of multidrug resistance (MDR) in Gram-negative bacteria. With an ever increasing number of Gram-negative clinical isolates exhibiting MDR phenotypes as a result of the activity of RND pumps, it is clear that the design of novel effective clinical strategies against such pathogens must be grounded in a better understanding of these pumps, including their physiological roles. To this end, recent evidence suggests that RND pumps play an important role in the virulence of Gram-negative pathogens. In this review, we discuss the important role RND efflux pumps play in different facets of virulence including colonization, evasion of host defense mechanisms, and biofilm formation. These studies provide key insights that may ultimately be applied towards strategies used in the design of effective therapeutics against MDR Gram negative bacterial pathogens.
Collapse
Affiliation(s)
- Dinesh M Fernando
- Antimicrobial Resistance Research Group (ARRG), Applied Bioscience Program, Faculties of Health Sciences and Science, University of Ontario Institute of Technology, 2000 Simcoe Street N, Oshawa, ON L1H 7K4, Canada.
| | - Ayush Kumar
- Antimicrobial Resistance Research Group (ARRG), Applied Bioscience Program, Faculties of Health Sciences and Science, University of Ontario Institute of Technology, 2000 Simcoe Street N, Oshawa, ON L1H 7K4, Canada.
| |
Collapse
|
27
|
Li L, Yang YR, Liao XP, Lei CY, Sun J, Li LL, Liu BT, Yang SS, Liu YH. Development of Ceftriaxone Resistance Affects the Virulence Properties ofSalmonella entericaSerotype Typhimurium Strains. Foodborne Pathog Dis 2013; 10:28-34. [DOI: 10.1089/fpd.2012.1216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Liang Li
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (SCAU), South China Agricultural University, Guangzhou, China
| | - Yu-Rong Yang
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (SCAU), South China Agricultural University, Guangzhou, China
| | - Xiao-Ping Liao
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (SCAU), South China Agricultural University, Guangzhou, China
| | - Chun-Yin Lei
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (SCAU), South China Agricultural University, Guangzhou, China
| | - Jian Sun
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (SCAU), South China Agricultural University, Guangzhou, China
| | - Lu-Lu Li
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (SCAU), South China Agricultural University, Guangzhou, China
| | - Bao-Tao Liu
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (SCAU), South China Agricultural University, Guangzhou, China
| | - Shou-Shen Yang
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (SCAU), South China Agricultural University, Guangzhou, China
| | - Ya-Hong Liu
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (SCAU), South China Agricultural University, Guangzhou, China
| |
Collapse
|
28
|
Giraud E, Baucheron S, Virlogeux-Payant I, Nishino K, Cloeckaert A. Effects of Natural Mutations in the ramRA Locus on Invasiveness of Epidemic Fluoroquinolone-Resistant Salmonella enterica Serovar Typhimurium Isolates. J Infect Dis 2012; 207:794-802. [DOI: 10.1093/infdis/jis755] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Identification of the enzyme responsible for N-acetylation of norfloxacin by Microbacterium sp. Strain 4N2-2. Appl Environ Microbiol 2012; 79:314-21. [PMID: 23104417 DOI: 10.1128/aem.02347-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Microbacterium sp. 4N2-2, isolated from a wastewater treatment plant, converts the antibacterial fluoroquinolone norfloxacin to N-acetylnorfloxacin and three other metabolites. Because N-acetylation results in loss of antibacterial activity, identification of the enzyme responsible is important for understanding fluoroquinolone resistance. The enzyme was identified as glutamine synthetase (GS); N-acetylnorfloxacin was produced only under conditions associated with GS expression. The GS gene (glnA) was cloned, and the protein (53 kDa) was heterologously expressed and isolated. Optimal conditions and biochemical properties (K(m) and V(max)) of purified GS were characterized; the purified enzyme was inhibited by Mn(2+), Mg(2+), ATP, and ADP. The contribution of GS to norfloxacin resistance was shown by using a norfloxacin-sensitive Escherichia coli strain carrying glnA derived from Microbacterium sp. 4N2-2. The GS of Microbacterium sp. 4N2-2 was shown to act as an N-acetyltransferase for norfloxacin, which produced low-level norfloxacin resistance. Structural and docking analysis identified potential binding sites for norfloxacin at the ADP binding site and for acetyl coenzyme A (acetyl-CoA) at a cleft in GS. The results suggest that environmental bacteria whose enzymes modify fluoroquinolones may be able to survive in the presence of low fluoroquinolone concentrations.
Collapse
|
30
|
He X, Ahn J. Survival and virulence properties of multiple antibiotic-resistant Salmonella Typhimurium under simulated gastrointestinal conditions. Int J Food Sci Technol 2011. [DOI: 10.1111/j.1365-2621.2011.02732.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Usui M, Asai T, Sato S. Low expression of AcrB in the deoxycholate-sensitive strains of Salmonella enterica subspecies enterica serovar Pullorum. Microbiol Immunol 2011; 55:366-8. [DOI: 10.1111/j.1348-0421.2011.00321.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Di Pasqua R, Mamone G, Ferranti P, Ercolini D, Mauriello G. Changes in the proteome of Salmonella enterica serovar Thompson as stress adaptation to sublethal concentrations of thymol. Proteomics 2010; 10:1040-9. [PMID: 20049861 DOI: 10.1002/pmic.200900568] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Thymol is a natural biocide and component of some essential oils from herbs. Its inhibitory effect on the growth of different microorganisms is well documented. The precise targets of the antibacterial action of thymol is not yet been fully established, the action seems to take place in different ways. The strain Salmonella enterica serovar Thompson MCV1 was grown in the presence of a sublethal concentration (0.01%) of thymol. The proteins extracted from treated and untreated cells were subjected to 2-D PAGE, followed by in-gel spot digestion and subsequent MALDI-TOF analysis. The analysis of gels showed many proteins that were either upregulated or downregulated by the presence of thymol, with significant changes in proteins belonging to different functional classes. In particular, the thioredoxin-1 was not expressed in the treated cells, indicating that its absence could be a consequence of the stress caused by the presence of thymol. On the other hand, different chaperon proteins were upregulated or de novo synthesis such as GroEL and DnaK, key proteins in the protection mechanism toward thermal stress. Outer membrane proteins were upregulated in treated cells; indeed the bacterial envelope stress response is trigged by the accumulation of misfolded outer membrane proteins. Moreover, the thymol seems to impair the citrate metabolic pathway, as well as many enzymes involved in the synthesis of ATP. Definitely, thymol plays a role in altering very different pathways of cell metabolism.
Collapse
Affiliation(s)
- Rosangela Di Pasqua
- Department of Food Science, Division of Microbiology, University of Naples Federico II, Portici (Na), Italy
| | | | | | | | | |
Collapse
|
33
|
Jung CM, Heinze TM, Strakosha R, Elkins CA, Sutherland JB. Acetylation of fluoroquinolone antimicrobial agents by an Escherichia coli strain isolated from a municipal wastewater treatment plant. J Appl Microbiol 2010; 106:564-71. [PMID: 19200322 DOI: 10.1111/j.1365-2672.2008.04026.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To isolate environmental bacteria capable of transforming fluoroquinolones to inactive molecules. METHODS AND RESULTS Bacteria were isolated from the aerobic liquor of a wastewater treatment plant on a medium containing norfloxacin (100 mg l(-1)). Twenty-two isolates were highly resistant (minimal inhibitory concentration: 6.25-200 microg ml(-1)) to five fluoroquinolones and six of them were positive by PCR amplification for the aminoglycoside resistance gene aac(6')-Ib. Of these, only Escherichia coli strain LR09 had the ciprofloxacin-acetylating variant gene aac(6')-Ib-cr; HPLC and mass spectrometry showed that this strain transformed both ciprofloxacin and norfloxacin by N-acetylation. This bacterium also had mutations in the quinolone-resistance determining regions of the gyrA and parC genes. CONCLUSIONS An E. coli isolate from wastewater, which possessed at least two distinct fluoroquinolone resistance mechanisms, inactivated ciprofloxacin and norfloxacin by N-acetylation. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report of N-acetylation of fluoroquinolones by an aac(6')-Ib-cr-containing bacterium from an environmental source.
Collapse
Affiliation(s)
- C M Jung
- Division of Microbiology, National Centre for Toxicological Research, US FDA, Jefferson, AR, USA
| | | | | | | | | |
Collapse
|
34
|
RamA, a member of the AraC/XylS family, influences both virulence and efflux in Salmonella enterica serovar Typhimurium. J Bacteriol 2010; 192:1607-16. [PMID: 20081028 DOI: 10.1128/jb.01517-09] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptomes of Salmonella enterica serovar Typhimurium SL1344 lacking a functional ramA or ramR or with plasmid-mediated high-level overexpression of ramA were compared to those of the wild-type parental strain. Inactivation of ramA led to increased expression of 14 SPI-1 genes and decreased expression of three SPI-2 genes, and it altered expression of ribosomal biosynthetic genes and several amino acid biosynthetic pathways. Furthermore, disruption of ramA led to decreased survival within RAW 264.7 mouse macrophages and attenuation within the BALB/c ByJ mouse model. Highly overexpressed ramA led to increased expression of genes encoding multidrug resistance (MDR) efflux pumps, including acrAB, acrEF, and tolC. Decreased expression of 34 Salmonella pathogenicity island (SPI) 1 and 2 genes, decreased SipC production, decreased adhesion to and survival within macrophages, and decreased colonization of Caenorhabditis elegans were also seen. Disruption of ramR led to the increased expression of ramA, acrAB, and tolC, but not to the same level as when ramA was overexpressed on a plasmid. Inactivation of ramR had a more limited effect on pathogenicity gene expression. In silico analysis of a suggested RamA-binding consensus sequence identified target genes, including ramR, acrA, tolC, sipABC, and ssrA. This study demonstrates that the regulation of a mechanism of MDR and expression of virulence genes show considerable overlap, and we postulate that such a mechanism is dependent on transcriptional activator concentration and promoter sensitivity. However, we have no evidence to support the hypothesis that increased MDR via RamA regulation of AcrAB-TolC gives rise to a hypervirulent strain.
Collapse
|
35
|
Exploiting the role of TolC in pathogenicity: identification of a bacteriophage for eradication of Salmonella serovars from poultry. Appl Environ Microbiol 2010; 76:1704-6. [PMID: 20080996 DOI: 10.1128/aem.02681-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a screening procedure, three bacteriophages, ST27, ST29, and ST35, were identified with selective activity for Salmonella enterica serovar Typhimurium (SL1344) but not SL1344 tolC::aph. Overproduction of TolC led to a lower efficiency of plating (EOP), further suggesting that TolC was the target receptor. Activity against other serovars of Salmonella was observed but not against other species of Enterobacteriaceae. This study provides proof of principle that bacteriophages can be active against the outer membrane protein of tripartite resistance-nodulation-division (RND) efflux pumps and so could be used to reduce the numbers of Salmonella cells in animals reared for food production.
Collapse
|
36
|
Abstract
Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome, although they can also be plasmid-encoded. A previous article in this journal provided a comprehensive review regarding efflux-mediated drug resistance in bacteria. In the past 5 years, significant progress has been achieved in further understanding of drug resistance-related efflux transporters and this review focuses on the latest studies in this field since 2003. This has been demonstrated in multiple aspects that include but are not limited to: further molecular and biochemical characterization of the known drug efflux pumps and identification of novel drug efflux pumps; structural elucidation of the transport mechanisms of drug transporters; regulatory mechanisms of drug efflux pumps; determining the role of the drug efflux pumps in other functions such as stress responses, virulence and cell communication; and development of efflux pump inhibitors. Overall, the multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario K1A OK9, Canada
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| |
Collapse
|
37
|
Al-Karablieh N, Weingart H, Ullrich MS. The outer membrane protein TolC is required for phytoalexin resistance and virulence of the fire blight pathogen Erwinia amylovora. Microb Biotechnol 2009; 2:465-75. [PMID: 21255278 PMCID: PMC3815907 DOI: 10.1111/j.1751-7915.2009.00095.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 01/15/2009] [Accepted: 01/19/2009] [Indexed: 11/29/2022] Open
Abstract
Erwinia amylovora causes fire blight on several plant species such as apple and pear, which produce diverse phytoalexins as defence mechanisms. An evolutionary successful pathogen thus must develop resistance mechanisms towards these toxic compounds. The E. amylovora outer membrane protein, TolC, might mediate phytoalexin resistance through its interaction with the multidrug efflux pump, AcrAB. To prove this, a tolC mutant and an acrB/tolC double mutant were constructed. The minimal inhibitory concentrations of diverse antimicrobials and phytoalexins were determined for these mutants and compared with that of a previously generated acrB mutant. The tolC and arcB/tolC mutants were considerably more susceptible than the wild type but showed similar levels as the acrB mutant. The results clearly indicated that neither TolC nor AcrAB significantly interacted with other transport systems during the efflux of the tested toxic compounds. Survival and virulence assays on inoculated apple plants showed that pathogenicity and the ability of E. amylovora to colonize plant tissue were equally impaired by mutations of tolC and acrB/tolC. Our results allowed the conclusion that TolC plays an important role as a virulence and fitness factor of E. amylovora by mediating resistance towards phytoalexins through its exclusive interaction with AcrAB.
Collapse
Affiliation(s)
- Nehaya Al-Karablieh
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | | | |
Collapse
|
38
|
The global consequence of disruption of the AcrAB-TolC efflux pump in Salmonella enterica includes reduced expression of SPI-1 and other attributes required to infect the host. J Bacteriol 2009; 191:4276-85. [PMID: 19411325 DOI: 10.1128/jb.00363-09] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The mechanisms by which RND pumps contribute to pathogenicity are currently not understood. Using the AcrAB-TolC system as a paradigm multidrug-resistant efflux pump and Salmonella enterica serovar Typhimurium as a model pathogen, we have demonstrated that AcrA, AcrB, and TolC are each required for efficient adhesion to and invasion of epithelial cells and macrophages by Salmonella in vitro. In addition, AcrB and TolC are necessary for Salmonella to colonize poultry. Mutants lacking acrA, acrB, or tolC showed differential expression of major operons and proteins involved in pathogenesis. These included chemotaxis and motility genes, including cheWY and flgLMK and 14 Salmonella pathogenicity island (SPI)-1-encoded type III secretion system genes, including sopE, and associated effector proteins. Reverse transcription-PCR confirmed these data for identical mutants in two other S. Typhimurium backgrounds. Western blotting showed reduced production of SipA, SipB, and SipC. The absence of AcrB or TolC also caused widespread repression of chemotaxis and motility genes in these mutants, and for acrB::aph, this was associated with decreased motility. For mutants lacking a functional acrA or acrB gene, the nap and nir operons were repressed, and both mutants grew poorly in anaerobic conditions. All phenotypes were restored to that of the wild type by trans-complementation with the wild-type allele of the respective inactivated gene. These data explain how mutants lacking a component of AcrAB-TolC are attenuated and that this phenotype is a result of decreased expression of numerous genes encoding proteins involved in pathogenicity. The link between antibiotic resistance and pathogenicity establishes the AcrAB-TolC system as fundamental to the biology of Salmonella.
Collapse
|
39
|
Genetic exchange of multidrug efflux pumps among two enterobacterial species with distinctive ecological Niches. Int J Mol Sci 2009; 10:629-645. [PMID: 19333425 PMCID: PMC2660657 DOI: 10.3390/ijms10020629] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/14/2009] [Accepted: 02/17/2009] [Indexed: 12/02/2022] Open
Abstract
AcrAB-TolC is the major multidrug efflux system in Enterobacteriaceae recognizing structurally unrelated molecules including antibiotics, dyes, and detergents. Additionally, in Escherichia coli it mediates resistance to bile salts. In the plant pathogen Erwinia amylovora AcrAB-TolC is required for virulence and phytoalexin resistance. Exchange analysis of AcrAB-TolC was conducted by complementing mutants of both species defective in acrB or tolC with alleles from either species. The acrB and tolC mutants exhibited increased susceptibility profiles for 24 different antibiotics. All mutants were complemented with acrAB or tolC, respectively, regardless of the taxonomic origin of the alleles. Importantly, complementation of E. amylovora mutants with respective E. coli genes restored virulence on apple plants. It was concluded that AcrAB and TolC of both species could interact and that these interactions did not yield in altered functions despite the divergent ecological niches, to which E. coli and E. amylovora have adopted.
Collapse
|
40
|
Preisler A, Heisig P. The role of intra- and extragenic compensatory mutations in the suppression of fluoroquinolone resistance in a Salmonella Typhimurium gyrA mutant (D87G). J Antimicrob Chemother 2008; 63:290-4. [DOI: 10.1093/jac/dkn480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
RamA confers multidrug resistance in Salmonella enterica via increased expression of acrB, which is inhibited by chlorpromazine. Antimicrob Agents Chemother 2008; 52:3604-11. [PMID: 18694955 DOI: 10.1128/aac.00661-08] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Salmonella enterica serovar Typhimurium SL1344, in which efflux pump genes (acrB, acrD, acrF, tolC) or regulatory genes thereof (marA, soxS, ramA) were inactivated, was grown in the presence of 240 antimicrobial and nonantimicrobial agents in the Biolog Phenotype MicroArray. Mutants lacking tolC, acrB, and ramA grew significantly worse than other mutants in the presence of 48 agents (some of which have not previously been identified as substrates of AcrAB-TolC) and particularly poorly in the presence of phenothiazines, which are human antipsychotics. MIC testing revealed that the phenothiazine chlorpromazine had antimicrobial activity and synergized with common antibiotics against different Salmonella serovars and SL1344. Chlorpromazine increased the intracellular accumulation of ethidium bromide, which was ablated in mutants lacking acrB, suggesting an interaction with AcrB. High-level but not low-level overexpression of ramA increased the expression of acrB; conferred resistance to chloramphenicol, tetracycline, nalidixic acid, and triclosan and organic solvent tolerance; and increased the amount of ethidium bromide accumulated. Chlorpromazine induced the modest overproduction of ramA but repressed acrB. These data suggest that phenothiazines are not efflux pump inhibitors but influence gene expression, including that of acrB, which confers the synergy with antimicrobials observed.
Collapse
|
42
|
Zhang A, Rosner JL, Martin RG. Transcriptional activation by MarA, SoxS and Rob of two tolC promoters using one binding site: a complex promoter configuration for tolC in Escherichia coli. Mol Microbiol 2008; 69:1450-5. [PMID: 18673442 DOI: 10.1111/j.1365-2958.2008.06371.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SUMMARY The Escherichia coli tolC encodes a major outer membrane protein with multiple functions in export (e.g. diverse xenobiotics, haemolysin) and as an attachment site for phage and colicins. tolC is regulated in part by MarA, SoxS and Rob, three paralogous transcriptional activators which bind a sequence called the marbox and which activate multiple antibiotic and superoxide resistance functions. Two previously identified tolC promoters, p1 and p2, are not regulated by MarA, SoxS or Rob but p2 is activated by EvgAS and PhoPQ which also regulate other functions. Using transcriptional fusions and primer extension assays, we show here that tolC has two additional strong overlapping promoters, p3 and p4, which are downstream of p1, p2 and the marbox and are activated by MarA, SoxS and Rob. p3 and p4 are configured so that a single marbox suffices to activate transcription from both promoters. At the p3 promoter, the marbox is separated by 20 bp from the -10 hexamer for RNA polymerase but at the p4 promoter, the same marbox is separated by 30 bp from the -10 hexamer. The multiple tolC promoters may allow the cell to respond to diverse environments by co-ordinating tolC transcription with other appropriate functions.
Collapse
Affiliation(s)
- Aixia Zhang
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-0560, USA
| | | | | |
Collapse
|
43
|
Indole derivatives as efflux pump inhibitors for TolC protein in a clinical drug-resistant Escherichia coli isolated from a pig farm. Int J Antimicrob Agents 2008; 31:497-8. [DOI: 10.1016/j.ijantimicag.2008.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2008] [Accepted: 01/07/2008] [Indexed: 11/23/2022]
|
44
|
Webber MA, Randall LP, Cooles S, Woodward MJ, Piddock LJV. Triclosan resistance in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother 2008; 62:83-91. [DOI: 10.1093/jac/dkn137] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
45
|
Regulation of multidrug efflux systems involved in multidrug and metal resistance of Salmonella enterica serovar Typhimurium. J Bacteriol 2007; 189:9066-75. [PMID: 17933888 DOI: 10.1128/jb.01045-07] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Multidrug-resistant strains of Salmonella are now encountered frequently, and the rates of multidrug resistance have increased considerably in recent years. Here, we report that the two-component regulatory system BaeSR increases multidrug and metal resistance in Salmonella through the induction of drug efflux systems. Screening of random fragments of genomic DNA for the ability to increase beta-lactam resistance in Salmonella enterica led to the isolation of a plasmid containing baeR, which codes for the response regulator of BaeSR. When overexpressed, baeR significantly increased the resistance of the delta acrB strain to oxacillin, cloxacillin, and nafcillin. baeR overexpression conferred resistance to novobiocin and deoxycholate, as well as to beta-lactams in Salmonella. The increase in drug resistance caused by baeR overexpression was completely suppressed by deletion of the multifunctional outer membrane channel gene tolC. TolC interacts with different drug efflux systems. Among the nine drug efflux systems in Salmonella, quantitative real-time PCR analysis showed that BaeR induced the expression of acrD and mdtABC. Double deletion of these two genes completely suppressed BaeR-mediated multidrug resistance, whereas single deletion of either gene did not. The promoter regions of acrD and mdtABC harbor binding sites for the response regulator BaeR, which activates acrD and mdtABC transcription in response to indole, copper, and zinc. In addition to their role in multidrug resistance, we found that BaeSR, AcrD, and MdtABC contribute to copper and zinc resistance in Salmonella. Our results indicate that the BaeSR system increases multidrug and metal resistance in Salmonella by inducing the AcrD and MdtABC drug efflux systems. We found a previously uncharacterized physiological role for the AcrD and MdtABC multidrug efflux systems in metal resistance.
Collapse
|
46
|
Crosby JA, Kachlany SC. TdeA, a TolC-like protein required for toxin and drug export in Aggregatibacter (Actinobacillus) actinomycetemcomitans. Gene 2006; 388:83-92. [PMID: 17116373 PMCID: PMC1831674 DOI: 10.1016/j.gene.2006.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 10/04/2006] [Accepted: 10/04/2006] [Indexed: 10/24/2022]
Abstract
Aggregatibacter actinomycetemcomitans is an oral bacterium that causes localized aggressive periodontitis (LAP) and extra-oral infections such as sub-acute infective endocarditis. As part of its array of virulence factors, A. actinomycetemcomitans produces leukotoxin (LtxA), a member of the RTX family of toxins. LtxA kills human leukocytes and we have recently shown that the toxin is required for beta-hemolysis by A. actinomycetemcomitans on solid medium. In other RTX toxin-producing bacteria, an outer membrane channel-forming protein, TolC, is required for toxin secretion and drug export. We have identified an ORF in A. actinomycetemcomitans that encodes a putative protein having predicted structural properties similar to TolC. Inactivation of this ORF resulted in a mutant that was no longer beta-hemolytic and did not secrete LtxA. This mutant was significantly more sensitive to antimicrobial agents compared to the wild type strain and was unable to export the antimicrobial agent berberine. Thus, this ORF was named tdeA for "toxin and drug export". Examination of the DNA sequence surrounding tdeA revealed two upstream ORFs that encode proteins similar to the drug efflux proteins, MacA and MacB. Inactivation of macB in A. actinomycetemcomitans did not alter the drug sensitivity profile or the hemolytic activity of the mutant. The genes macA, macB and tdeA are organized as an operon and are constitutively expressed as a single transcript. These results show that A. actinomycetemcomitans indeed requires a TolC-like protein for LtxA secretion and that this protein, TdeA, also functions as part of a drug efflux system.
Collapse
Affiliation(s)
| | - Scott C. Kachlany
- *Correspondence to: Scott C. Kachlany, Department of Oral Biology, University of Medicine and Dentistry of NJ, 185 S. Orange Avenue, Medical Science Building C-636, Newark, NJ 07103, 973.972.3057 (office) 973.972.0045 (fax)
| |
Collapse
|
47
|
Abstract
It is well established that multidrug-resistance efflux pumps encoded by bacteria can confer clinically relevant resistance to antibiotics. It is now understood that these efflux pumps also have a physiological role(s). They can confer resistance to natural substances produced by the host, including bile, hormones and host-defence molecules. In addition, some efflux pumps of the resistance nodulation division (RND) family have been shown to have a role in the colonization and the persistence of bacteria in the host. Here, I present the accumulating evidence that multidrug-resistance efflux pumps have roles in bacterial pathogenicity and propose that these pumps therefore have greater clinical relevance than is usually attributed to them.
Collapse
Affiliation(s)
- Laura J V Piddock
- Antimicrobial Agents Research Group, Division of Immunity and Infection, The Medical School, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
48
|
Qin JH, Sheng YY, Zhang ZM, Shi YZ, He P, Hu BY, Yang Y, Liu SG, Zhao GP, Guo XK. Genome-wide transcriptional analysis of temperature shift in L. interrogans serovar lai strain 56601. BMC Microbiol 2006; 6:51. [PMID: 16762078 PMCID: PMC1534042 DOI: 10.1186/1471-2180-6-51] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 06/09/2006] [Indexed: 12/04/2022] Open
Abstract
Background Leptospira interrogans is an important mammalian pathogen. Transmission from an environmental source requires adaptation to a range of new environmental conditions in the organs and tissues of the infected host. Several studies have shown that a shift in culture temperature from 28°C to 37°C, similar to that encountered during infection of a host from an environmental source, is associated with differential synthesis of several proteins of the outer membrane, periplasm and cytoplasm. The whole genome of the Leptospira interrogans serogroup Icterohaemorrhagiae serovar lai type strain #56601 was sequenced in 2003 and microarrays were constructed to compare differential transcription of the whole genome at 37°C and 28°C. Results DNA microarray analyses were used to investigate the influence of temperature on global gene expression in L. interrogans grown to mid-exponential phase at 28°C and 37°C. Expression of 106 genes differed significantly at the two temperatures. The differentially expressed genes belonged to nine functional categories: Cell wall/membrane biogenesis genes, hemolysin genes, heat shock proteins genes, intracellular trafficking and secretion genes, two-component system and transcriptional regulator genes, information storage and processing genes, chemotaxis and flagellar genes, metabolism genes and genes with no known homologue. Real-time reverse transcription-PCR assays confirmed the microarray data. Conclusion Microarray analyses demonstrated that L. interrogans responds globally to temperature alteration. The data delineate the spectrum of temperature-regulated gene expression in an important human pathogen and provide many new insights into its pathogenesis.
Collapse
Affiliation(s)
- Jin-Hong Qin
- School of Life Science/Chemical Engineering, Sichuan University, Chengdu 610041, PR China
- Department of Microbiology and Parasitology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Yue-Ying Sheng
- Department of Microbiology and Parasitology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Zhi-Ming Zhang
- National Engineering Center for Biochip at Shanghai, 151 Libing Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Yao-Zhou Shi
- National Engineering Center for Biochip at Shanghai, 151 Libing Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Ping He
- Department of Microbiology and Parasitology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Bao-Yu Hu
- Department of Microbiology and Parasitology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Yang Yang
- Department of Microbiology and Parasitology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Shi-Gui Liu
- School of Life Science/Chemical Engineering, Sichuan University, Chengdu 610041, PR China
| | - Guo-Ping Zhao
- National Engineering Center for Biochip at Shanghai, 151 Libing Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Xiao-Kui Guo
- Department of Microbiology and Parasitology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| |
Collapse
|
49
|
Piddock LJV. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 2006; 19:382-402. [PMID: 16614254 PMCID: PMC1471989 DOI: 10.1128/cmr.19.2.382-402.2006] [Citation(s) in RCA: 758] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efflux pump genes and proteins are present in both antibiotic-susceptible and antibiotic-resistant bacteria. Pumps may be specific for one substrate or may transport a range of structurally dissimilar compounds (including antibiotics of multiple classes); such pumps can be associated with multiple drug (antibiotic) resistance (MDR). However, the clinical relevance of efflux-mediated resistance is species, drug, and infection dependent. This review focuses on chromosomally encoded pumps in bacteria that cause infections in humans. Recent structural data provide valuable insights into the mechanisms of drug transport. MDR efflux pumps contribute to antibiotic resistance in bacteria in several ways: (i) inherent resistance to an entire class of agents, (ii) inherent resistance to specific agents, and (iii) resistance conferred by overexpression of an efflux pump. Enhanced efflux can be mediated by mutations in (i) the local repressor gene, (ii) a global regulatory gene, (iii) the promoter region of the transporter gene, or (iv) insertion elements upstream of the transporter gene. Some data suggest that resistance nodulation division systems are important in pathogenicity and/or survival in a particular ecological niche. Inhibitors of various efflux pump systems have been described; typically these are plant alkaloids, but as yet no product has been marketed.
Collapse
Affiliation(s)
- Laura J V Piddock
- Antimicrobial Agents Research Group, Division of Immunity and Infection, The Medical School, University of Birmingham, Birmingham, United Kingdom, B15 2TT.
| |
Collapse
|
50
|
Lomovskaya O, Bostian KA. Practical applications and feasibility of efflux pump inhibitors in the clinic--a vision for applied use. Biochem Pharmacol 2006; 71:910-8. [PMID: 16427026 DOI: 10.1016/j.bcp.2005.12.008] [Citation(s) in RCA: 293] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 12/05/2005] [Accepted: 12/08/2005] [Indexed: 11/25/2022]
Abstract
The world of antibiotic drug discovery and development is driven by the necessity to overcome antibiotic resistance in common Gram-positive and Gram-negative pathogens. However, the lack of Gram-negative activity among both recently approved antibiotics and compounds in the developmental pipeline is a general trend despite the fact that the plethora of covered drug targets are well-conserved across the bacterial kingdom. Such intrinsic resistance in Gram-negative bacteria is largely attributed to the activity of multidrug resistance (MDR) efflux pumps. Moreover, these pumps also play a significant role in acquired clinical resistance. Together, these considerations make efflux pumps attractive targets for inhibition in that the resultant efflux pump inhibitor (EPI)/antibiotic combination drug should exhibit increased potency, enhanced spectrum of activity and reduced propensity for acquired resistance. To date, at least one class of broad-spectrum EPI has been extensively characterized. While these efforts indicated a significant potential for developing small molecule inhibitors against efflux pumps, they did not result in a clinically useful compound. Stemming from the continued clinical pressure for novel approaches to combat drug resistant bacterial infections, second-generation programs have been initiated and show early promise to significantly improve the clinical usefulness of currently available and future antibiotics against otherwise recalcitrant Gram-negative infections. It is also apparent that some changes in regulatory decision-making regarding resistance would be very helpful in order to facilitate approval of agents aiming to reverse resistance and prevent its further development.
Collapse
Affiliation(s)
- Olga Lomovskaya
- Mpex Pharmaceuticals Inc., 3030 Bunker Hill Street, San Diego, CA 92109, USA
| | | |
Collapse
|