1
|
Bajrai LH, Khateb AM, Alawi MM, Felemban HR, Sindi AA, Dwivedi VD, Azhar EI. Glycosylated Flavonoid Compounds as Potent CYP121 Inhibitors of Mycobacterium tuberculosis. Biomolecules 2022; 12:1356. [PMID: 36291570 PMCID: PMC9599785 DOI: 10.3390/biom12101356] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 07/30/2023] Open
Abstract
Due to the concerning rise in the number of multiple- and prolonged-drug-resistant (MDR and XDR) Mycobacterium tuberculosis (Mtb) strains, unprecedented demand has been created to design and develop novel therapeutic drugs with higher efficacy and safety. In this study, with a focused view on implementing an in silico drug design pipeline, a diverse set of glycosylated flavonoids were screened against the Mtb cytochrome-P450 enzyme 121 (CYP121), which is established as an approved drug target for the treatment of Mtb infection. A total of 148 glycosylated flavonoids were screened using structure-based virtual screening against the crystallized ligand, i.e., the L44 inhibitor, binding pocket in the Mtb CYP121 protein. Following this, only the top six compounds with the highest binding scores (kcal/mol) were considered for further intermolecular interaction and dynamic stability using 100 ns classical molecular dynamics simulation. These results suggested a considerable number of hydrogen and hydrophobic interactions and thermodynamic stability in comparison to the reference complex, i.e., the CYP121-L44 inhibitor. Furthermore, binding free energy via the MMGBSA method conducted on the last 10 ns interval of MD simulation trajectories revealed the substantial affinity of glycosylated compounds with Mtb CYP121 protein against reference complex. Notably, both the docked poses and residual energy decomposition via the MMGBSA method demonstrated the essential role of active residues in the interactions with glycosylated compounds by comparison with the reference complex. Collectively, this study demonstrates the viability of these screened glycosylated flavonoids as potential inhibitors of Mtb CYP121 for further experimental validation to develop a therapy for the treatment of drug-resistant Mtb strains.
Collapse
Affiliation(s)
- Leena Hussein Bajrai
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Aiah M. Khateb
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Taibah University, Madinah 42353, Saudi Arabia
| | - Maha M. Alawi
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Infection Control & Environmental Health Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hashim R. Felemban
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Medical Laboratory Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Anees A. Sindi
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Department of Anesthesia and Critical Care, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Vivek Dhar Dwivedi
- Bioinformatics Research Division, Quanta Calculus Pvt. Ltd., Greater Noida 201310, India
- Institute of Advanced Materials, IAAM, 59053 Ulrika, Sweden
| | - Esam Ibraheem Azhar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Medical Laboratory Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| |
Collapse
|
2
|
Drug Discovery for Mycobacterium tuberculosis Using Structure-Based Computer-Aided Drug Design Approach. Int J Mol Sci 2021; 22:ijms222413259. [PMID: 34948055 PMCID: PMC8703488 DOI: 10.3390/ijms222413259] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022] Open
Abstract
Developing new, more effective antibiotics against resistant Mycobacterium tuberculosis that inhibit its essential proteins is an appealing strategy for combating the global tuberculosis (TB) epidemic. Finding a compound that can target a particular cavity in a protein and interrupt its enzymatic activity is the crucial objective of drug design and discovery. Such a compound is then subjected to different tests, including clinical trials, to study its effectiveness against the pathogen in the host. In recent times, new techniques, which involve computational and analytical methods, enhanced the chances of drug development, as opposed to traditional drug design methods, which are laborious and time-consuming. The computational techniques in drug design have been improved with a new generation of software used to develop and optimize active compounds that can be used in future chemotherapeutic development to combat global tuberculosis resistance. This review provides an overview of the evolution of tuberculosis resistance, existing drug management, and the design of new anti-tuberculosis drugs developed based on the contributions of computational techniques. Also, we show an appraisal of available software and databases on computational drug design with an insight into the application of this software and databases in the development of anti-tubercular drugs. The review features a perspective involving machine learning, artificial intelligence, quantum computing, and CRISPR combination with available computational techniques as a prospective pathway to design new anti-tubercular drugs to combat resistant tuberculosis.
Collapse
|
3
|
Cummings JE, Slayden KW, Slayden RA. TPR1, a novel rifampicin derivative, demonstrates efficacy alone and in combination with doxycycline against the NIAID Category A priority pathogen Francisella tularensis. JAC Antimicrob Resist 2021; 3:dlab058. [PMID: 34223120 PMCID: PMC8210291 DOI: 10.1093/jacamr/dlab058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
Background Francisella tularensis is a highly virulent and contagious Gram-negative intracellular bacterium that causes the disease tularaemia in mammals and is classified as a Category A priority pathogen. Methods We utilized a systematic analysis of antibacterial potency, extent of dissemination by analysis of bacterial burden in a secondary vital organ, and survival rates to assess the efficacy of a novel rifampicin derivative, TPR1. The efficacy of TPR1 was evaluated alone and in combination with the standard of care drug, doxycycline, against type A F. tularensis Schu S4 using a lethal pulmonary model of infection in mice. Results TPR1 has an MIC value range of 0.125–4 mg/L against reference laboratory strain Schu S4 and a panel of clinical strains. TPR1 alone reduced the bacterial burden in the lungs and spleen at 40 mg/kg and 80 mg/kg, and no antagonism was observed when co-administered with doxycycline. Dosing at 40 mg/kg doxycycline reduced the bacterial burden by 1 log10 cfu in the lungs and 4 log10 cfu in the spleen in comparison to untreated controls. Co-administration of TPR1 and doxycycline demonstrated efficacy upon treatment withdrawal after 4 days of treatment, and 100% survival. Conclusions Significantly, TPR1 demonstrated efficacy when delivered alone and in combination with doxycycline, which provides compelling evidence of a superior treatment strategy that would normally rely on a single chemotherapeutic for efficacy. In addition, this work substantiates the use of rifampicin derivatives as a platform for the development of novel treatments to other bacterial agents in addition to tularaemia.
Collapse
Affiliation(s)
- Jason E Cummings
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Keaton W Slayden
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Richard A Slayden
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
4
|
Johnson ME, Fung LWM. Structural approaches to pathway-specific antimicrobial agents. Transl Res 2020; 220:114-121. [PMID: 32105648 PMCID: PMC7293926 DOI: 10.1016/j.trsl.2020.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
Abstract
This perspective provides an overview of the evolution of antibiotic discovery from a largely phenotypic-based effort, through an intensive structure-based design focus, to a more holistic approach today. The current focus on antibiotic development incorporates assay and discovery conditions that replicate the host environment as much as feasible. They also incorporate several strategies, including target identification and validation within the whole cell environment, a variety of target deconvolution methods, and continued refinement of structure-based design approaches.
Collapse
Affiliation(s)
- Michael E Johnson
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois.
| | - Leslie W-M Fung
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
5
|
Neckles C, Eltschkner S, Cummings JE, Hirschbeck M, Daryaee F, Bommineni GR, Zhang Z, Spagnuolo L, Yu W, Davoodi S, Slayden RA, Kisker C, Tonge PJ. Rationalizing the Binding Kinetics for the Inhibition of the Burkholderia pseudomallei FabI1 Enoyl-ACP Reductase. Biochemistry 2017; 56:1865-1878. [PMID: 28225601 DOI: 10.1021/acs.biochem.6b01048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is growing awareness of the link between drug-target residence time and in vivo drug activity, and there are increasing efforts to determine the molecular factors that control the lifetime of a drug-target complex. Rational alterations in the drug-target residence time require knowledge of both the ground and transition states on the inhibition reaction coordinate, and we have determined the structure-kinetic relationship for 22 ethyl- or hexyl-substituted diphenyl ethers that are slow-binding inhibitors of bpFabI1, the enoyl-ACP reductase FabI1 from Burkholderia pseudomallei. Analysis of enzyme inhibition using a two-dimensional kinetic map demonstrates that the ethyl and hexyl diphenyl ethers fall into two distinct clusters. Modifications to the ethyl diphenyl ether B ring result in changes to both on and off rates, where residence times of up to ∼700 min (∼11 h) are achieved by either ground state stabilization (PT444) or transition state destabilization (slower on rate) (PT404). By contrast, modifications to the hexyl diphenyl ether B ring result in residence times of 300 min (∼5 h) through changes in only ground state stabilization (PT119). Structural analysis of nine enzyme:inhibitor complexes reveals that the variation in structure-kinetic relationships can be rationalized by structural rearrangements of bpFabI1 and subtle changes to the orientation of the inhibitor in the binding pocket. Finally, we demonstrate that three compounds with residence times on bpFabI1 from 118 min (∼2 h) to 670 min (∼11 h) have in vivo efficacy in an acute B. pseudomallei murine infection model using the virulent B. pseudomallei strain Bp400.
Collapse
Affiliation(s)
- Carla Neckles
- Institute for Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States
| | - Sandra Eltschkner
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg , D-97080 Würzburg, Germany
| | - Jason E Cummings
- Rocky Mountain Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research and Department of Microbiology, Immunology and Pathology, Colorado State University , Fort Collins, Colorado 80523-0922, United States
| | - Maria Hirschbeck
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg , D-97080 Würzburg, Germany
| | - Fereidoon Daryaee
- Institute for Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States
| | - Gopal R Bommineni
- Institute for Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States
| | - Zhuo Zhang
- Institute for Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States
| | - Lauren Spagnuolo
- Institute for Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States
| | - Weixuan Yu
- Institute for Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States
| | - Shabnam Davoodi
- Institute for Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States
| | - Richard A Slayden
- Rocky Mountain Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research and Department of Microbiology, Immunology and Pathology, Colorado State University , Fort Collins, Colorado 80523-0922, United States
| | - Caroline Kisker
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg , D-97080 Würzburg, Germany
| | - Peter J Tonge
- Institute for Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States
| |
Collapse
|
6
|
Cummings JE, Slayden RA. Transient In Vivo Resistance Mechanisms of Burkholderia pseudomallei to Ceftazidime and Molecular Markers for Monitoring Treatment Response. PLoS Negl Trop Dis 2017; 11:e0005209. [PMID: 28081127 PMCID: PMC5230754 DOI: 10.1371/journal.pntd.0005209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/25/2016] [Indexed: 12/26/2022] Open
Abstract
Much is known about the mode of action of drugs and resistance mechanisms under laboratory growth conditions, but research on the bacterial transcriptional response to drug pressure in vivo or efficacious mode of action and transient resistance mechanisms of clinically employed drugs is limited. Accordingly, to assess active alternative metabolism and transient resistance mechanisms, and identify molecular markers of treatment response, the in vivo transcriptional response of Burkholderia pseudomallei 1026b to treatment with ceftazidime in infected lungs was compared to the in vitro bacterial response in the presence of drug. There were 1,688 transcriptionally active bacterial genes identified that were unique to in vivo treated conditions. Of the in vivo transcriptionally active bacterial genes, 591 (9.4% coding capacity) genes were differentially expressed by ceftazidime treatment. In contrast, only 186 genes (2.7% coding capacity) were differentially responsive to ceftazidime treatment under in vitro culturing conditions. Within the genes identified were alternative PBP proteins that may compensate for target inactivation and transient resistance mechanisms, such as β-lactamses that may influence the potency of ceftazidime. This disparate observation is consistent with the thought that the host environment significantly alters the bacterial metabolic response to drug exposure compared to the response observed under in vitro growth. Notably, this study revealed 184 bacterial genes and ORFs that were unique to in vivo ceftazidime treatment and thus provide candidate molecular markers for treatment response. This is the first report of the unique transcriptional response of B. pseudomallei from host tissues in an animal model of infection and elucidates the in vivo metabolic vulnerabilities, which is important in terms of defining the efficacious mode of action and transient resistance mechanisms of a frontline meliodosis chemotherapeutic, and biomarkers for monitoring treatment outcome. The mode of action and resistance mechanisms for many clinically used drugs are elucidated under defined artificial laboratory growth conditions, and do not necessarily represent the efficacious mode of action or predict the transient resistance mechanisms that are active during infection. Here, we report the unique transcriptional response of B. pseudomallei from host tissues and demonstrate the efficacious mode of action and transient resistance mechanisms of the frontline meliodosis chemotherapeutic, ceftazidime.
Collapse
Affiliation(s)
- Jason E. Cummings
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Richard A. Slayden
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
7
|
Knudson SE, Cummings JE, Bommineni GR, Pan P, Tonge PJ, Slayden RA. Formulation studies of InhA inhibitors and combination therapy to improve efficacy against Mycobacterium tuberculosis. Tuberculosis (Edinb) 2016; 101:8-14. [PMID: 27865404 DOI: 10.1016/j.tube.2016.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 11/28/2022]
Abstract
Previously, structure-based drug design was used to develop substituted diphenyl ethers with potency against the Mycobacterium tuberculosis (Mtb) enoyl-ACP reductase (InhA), however, the highly lipophilic centroid compound, SB-PT004, lacked sufficient efficacy in the acute murine Mtb infection model. A next generation series of compounds were designed with improved specificity, potency against InhA, and reduced cytotoxicity in vitro, but these compounds also had limited solubility. Accordingly, solubility and pharmacokinetics studies were performed to develop formulations for this class and other experimental drug candidates with high logP values often encountered in drug discovery. Lead diphenyl ethers were formulated in co-solvent and Self-Dispersing Lipid Formulations (SDLFs) and evaluated in a rapid murine Mtb infection model that assesses dissemination to and bacterial burden in the spleen. In vitro synergy studies were performed with the lead diphenyl ether compounds, SB-PT070 and SB-PT091, and rifampin (RIF), which demonstrated an additive effect, and that guided the in vivo studies. Combinatorial therapy in vivo studies with these compounds delivered in our Self-Micro Emulsifying Drug Delivery System (SMEDDS) resulted in an additional 1.4 log10 CFU reduction in the spleen of animals co-treated with SB-PT091 and RIF and an additional 1.7 log10 reduction in the spleen with animals treated with both SB-PT070 and RIF.
Collapse
Affiliation(s)
- Susan E Knudson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jason E Cummings
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Gopal R Bommineni
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Pan Pan
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Peter J Tonge
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Richard A Slayden
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
8
|
Wang H, Liu L, Lu Y, Pan P, Hooker JM, Fowler JS, Tonge PJ. Radiolabelling and positron emission tomography of PT70, a time-dependent inhibitor of InhA, the Mycobacterium tuberculosis enoyl-ACP reductase. Bioorg Med Chem Lett 2015; 25:4782-4786. [PMID: 26227776 DOI: 10.1016/j.bmcl.2015.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 11/26/2022]
Abstract
PT70 is a diaryl ether inhibitor of InhA, the enoyl-ACP reductase in the Mycobacterium tuberculosis fatty acid biosynthesis pathway. It has a residence time of 24 min on the target, and also shows antibacterial activity in a mouse model of tuberculosis infection. Due to the interest in studying target tissue pharmacokinetics of PT70, we developed a method to radiolabel PT70 with carbon-11 and have studied its pharmacokinetics in mice and baboons using positron emission tomography.
Collapse
Affiliation(s)
- Hui Wang
- Institute for Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Li Liu
- Institute for Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Yang Lu
- Institute for Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Pan Pan
- Institute for Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Jacob M Hooker
- Biological, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, United States
| | - Joanna S Fowler
- Biological, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, United States
| | - Peter J Tonge
- Institute for Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States.
| |
Collapse
|
9
|
Mehboob S, Song J, Hevener KE, Su PC, Boci T, Brubaker L, Truong L, Mistry T, Deng J, Cook JL, Santarsiero BD, Ghosh AK, Johnson ME. Structural and biological evaluation of a novel series of benzimidazole inhibitors of Francisella tularensis enoyl-ACP reductase (FabI). Bioorg Med Chem Lett 2015; 25:1292-6. [PMID: 25677657 PMCID: PMC4348352 DOI: 10.1016/j.bmcl.2015.01.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 12/13/2022]
Abstract
Francisella tularensis, the causative agent of tularemia, presents a significant biological threat and is a Category A priority pathogen due to its potential for weaponization. The bacterial FASII pathway is a viable target for the development of novel antibacterial agents treating Gram-negative infections. Here we report the advancement of a promising series of benzimidazole FabI (enoyl-ACP reductase) inhibitors to a second-generation using a systematic, structure-guided lead optimization strategy, and the determination of several co-crystal structures that confirm the binding mode of designed inhibitors. These compounds display an improved low nanomolar enzymatic activity as well as promising low microgram/mL antibacterial activity against both F. tularensis and Staphylococcus aureus and its methicillin-resistant strain (MRSA). The improvements in activity accompanying structural modifications lead to a better understanding of the relationship between the chemical structure and biological activity that encompasses both enzymatic and whole-cell activity.
Collapse
Affiliation(s)
- Shahila Mehboob
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607, United States; Novalex Therapeutics, 2242 W. Harrison, Chicago, IL 60612, United States.
| | - Jinhua Song
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States; Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Kirk E Hevener
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Pin-Chih Su
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Teuta Boci
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Libby Brubaker
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Lena Truong
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Tina Mistry
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Jiangping Deng
- Division of Infectious Diseases, Loyola University Chicago, Maywood, IL 60153, United States; Edward Hines Jr. VA Hospital, Hines, IL 60141, United States
| | - James L Cook
- Division of Infectious Diseases, Loyola University Chicago, Maywood, IL 60153, United States; Edward Hines Jr. VA Hospital, Hines, IL 60141, United States
| | - Bernard D Santarsiero
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Arun K Ghosh
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States; Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Michael E Johnson
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607, United States; Novalex Therapeutics, 2242 W. Harrison, Chicago, IL 60612, United States.
| |
Collapse
|
10
|
Perryman AL, Yu W, Wang X, Ekins S, Forli S, Li SG, Freundlich JS, Tonge PJ, Olson AJ. A virtual screen discovers novel, fragment-sized inhibitors of Mycobacterium tuberculosis InhA. J Chem Inf Model 2015; 55:645-59. [PMID: 25636146 DOI: 10.1021/ci500672v] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Isoniazid (INH) is usually administered to treat latent Mycobacterium tuberculosis (Mtb) infections and is used in combination therapy to treat active tuberculosis (TB). Unfortunately, resistance to this drug is hampering its clinical effectiveness. INH is a prodrug that must be activated by Mtb catalase-peroxidase (KatG) before it can inhibit InhA (Mtb enoyl-acyl-carrier-protein reductase). Isoniazid-resistant cases of TB found in clinical settings usually involve mutations in or deletion of katG, which abrogate INH activation. Compounds that inhibit InhA without requiring prior activation by KatG would not be affected by this resistance mechanism and hence would display continued potency against these drug-resistant isolates of Mtb. Virtual screening experiments versus InhA in the GO Fight Against Malaria (GO FAM) project were designed to discover new scaffolds that display base-stacking interactions with the NAD cofactor. GO FAM experiments included targets from other pathogens, including Mtb, when they had structural similarity to a malaria target. Eight of the 16 soluble compounds identified by docking against InhA plus visual inspection were modest inhibitors and did not require prior activation by KatG. The best two inhibitors discovered are both fragment-sized compounds and displayed Ki values of 54 and 59 μM, respectively. Importantly, the novel inhibitors discovered have low structural similarity to known InhA inhibitors and thus help expand the number of chemotypes on which future medicinal chemistry efforts can be focused. These new fragment hits could eventually help advance the fight against INH-resistant Mtb strains, which pose a significant global health threat.
Collapse
Affiliation(s)
- Alexander L Perryman
- †Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | | | | | - Sean Ekins
- ⊥Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina, North Carolina 27526, United States.,#Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, California 94010, United States
| | - Stefano Forli
- †Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | | | | | | | - Arthur J Olson
- †Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
11
|
Wang H, Lu Y, Liu L, Kim SW, Hooker JM, Fowler JS, Tonge PJ. Radiosynthesis and biological evaluation of a novel enoyl-ACP reductase inhibitor for Staphylococcus aureus. Eur J Med Chem 2014; 88:66-73. [PMID: 25217335 DOI: 10.1016/j.ejmech.2014.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/27/2014] [Accepted: 09/03/2014] [Indexed: 11/18/2022]
Abstract
The pharmacokinetics (PK) and pharmacodynamics (PD) of PT119, a potent Staphylococcus aureus enoyl-ACP reductase (saFabI) inhibitor with a Ki value of 0.01 nM and a residence time of 750 min on the enzyme target, has been evaluated in mice. PT119 was found to have promising antibacterial activity in two different S. aureus infection models: it caused a 3 log reduction in the CFU's in a mouse thigh muscle infection model and increased the survival rate from 0% to 50% in a mouse systemic infection model. PT119 was then radiolabeled with carbon-11 to evaluate its biodistribution and PK in both healthy and S. aureus infected mice using positron emission tomography (PET). The biodistribution of [11C]PT119 and/or its labeled metabolites did not differ significantly between the healthy group and the infected group, and PT119 was found to distribute equally between serum and tissue during the ∼1 h of analysis permitted by the carbon-11 half life. This approach provides important data for PK/PD modeling and is the first step in identifying radiotracers that can non-invasively image bacterial infection in vivo.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yang Lu
- Institute of Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Li Liu
- Institute of Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Sung Won Kim
- Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jacob M Hooker
- Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Joanna S Fowler
- Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Peter J Tonge
- Institute of Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
12
|
Substituted diphenyl ethers as a novel chemotherapeutic platform against Burkholderia pseudomallei. Antimicrob Agents Chemother 2013; 58:1646-51. [PMID: 24379198 DOI: 10.1128/aac.02296-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Identification of a novel class of anti-Burkholderia compounds is key in addressing antimicrobial resistance to current therapies as well as naturally occurring resistance. The FabI enoyl-ACP reductase in Burkholderia is an underexploited target that presents an opportunity for development of a new class of inhibitors. A library of substituted diphenyl ethers was used to identify FabI1-specific inhibitors for assessment in Burkholderia pseudomallei ex vivo and murine efficacy models. Active FabI1 inhibitors were identified in a two-stage format consisting of percent inhibition screening and MIC determination by the broth microdilution method. Each compound was evaluated against the B. pseudomallei 1026b (efflux-proficient) and Bp400 (efflux-compromised) strains. In vitro screening identified candidate substituted diphenyl ethers that exhibited MICs of less than 1 μg/ml, and enzyme kinetic assays were used to assess potency and specificity against the FabI1 enzyme. These compounds demonstrated activity in a Burkholderia ex vivo efficacy model, and two demonstrated efficacy in an acute B. pseudomallei mouse infection model. This work establishes substituted diphenyl ethers as a suitable platform for development of novel anti-Burkholderia compounds that can be used for treatment of melioidosis.
Collapse
|
13
|
The Burkholderia pseudomallei enoyl-acyl carrier protein reductase FabI1 is essential for in vivo growth and is the target of a novel chemotherapeutic with efficacy. Antimicrob Agents Chemother 2013; 58:931-5. [PMID: 24277048 DOI: 10.1128/aac.00176-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial fatty acid biosynthesis pathway is a validated target for the development of novel chemotherapeutics. However, since Burkholderia pseudomallei carries genes that encode both FabI and FabV enoyl-acyl carrier protein (ACP) reductase homologues, the enoyl-ACP reductase that is essential for in vivo growth needs to be defined so that the correct drug target can be chosen for development. Accordingly, ΔfabI1, ΔfabI2, and ΔfabV knockout strains were constructed and tested in a mouse model of infection. Mice infected with a ΔfabI1 strain did not show signs of morbidity, mortality, or dissemination after 30 days of infection compared to the wild-type and ΔfabI2 and ΔfabV mutant strains that had times to mortality of 60 to 84 h. Although signs of morbidity and mortality of ΔfabI2 and ΔfabV strains were not significantly different from those of the wild-type strain, a slight delay was observed. A FabI1-specific inhibitor was used to confirm that inhibition of FabI1 results in reduced bacterial burden and efficacy in an acute B. pseudomallei murine model of infection. This work establishes that FabI1 is required for growth of Burkholderia pseudomallei in vivo and is a potential molecular target for drug development.
Collapse
|
14
|
Hu X, Compton JR, Abdulhameed MDM, Marchand CL, Robertson KL, Leary DH, Jadhav A, Hershfield JR, Wallqvist A, Friedlander AM, Legler PM. 3-substituted indole inhibitors against Francisella tularensis FabI identified by structure-based virtual screening. J Med Chem 2013; 56:5275-87. [PMID: 23815100 DOI: 10.1021/jm4001242] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we describe novel inhibitors against Francisella tularensis SchuS4 FabI identified from structure-based in silico screening with integrated molecular dynamics simulations to account for induced fit of a flexible loop crucial for inhibitor binding. Two 3-substituted indoles, 54 and 57, preferentially bound the NAD(+) form of the enzyme and inhibited growth of F. tularensis SchuS4 at concentrations near that of their measured Ki. While 57 was species-specific, 54 showed a broader spectrum of growth inhibition against F. tularensis , Bacillus anthracis , and Staphylococcus aureus . Binding interaction analysis in conjunction with site-directed mutagenesis revealed key residues and elements that contribute to inhibitor binding and species specificity. Mutation of Arg-96, a poorly conserved residue opposite the loop, was unexpectedly found to enhance inhibitor binding in the R96G and R96M variants. This residue may affect the stability and closure of the flexible loop to enhance inhibitor (or substrate) binding.
Collapse
Affiliation(s)
- Xin Hu
- Center of Bio/Molecular Science and Engineering, Naval Research Laboratories , Washington, D.C. 20375, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The search for small molecules with activity against Mycobacterium tuberculosis increasingly uses -high-throughput screening and computational methods. Previously, we have analyzed recent studies in which computational tools were used for cheminformatics. We have now updated this analysis to illustrate how they may assist in finding desirable leads for tuberculosis drug discovery. We provide our thoughts on strategies for drug discovery efforts for neglected diseases.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations in Chemistry, Fuquay Varina, NC, USA
| | | |
Collapse
|
16
|
The Francisella tularensis FabI enoyl-acyl carrier protein reductase gene is essential to bacterial viability and is expressed during infection. J Bacteriol 2012; 195:351-8. [PMID: 23144254 DOI: 10.1128/jb.01957-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Francisella tularensis is classified as a category A priority pathogen and causes fatal disseminated disease in humans upon inhalation of less than 50 bacteria. Although drugs are available for treatment, they are not ideal because of toxicity and route of delivery, and in some cases patients relapse upon withdrawal. We have an ongoing program to develop novel FAS-II FabI enoyl-ACP reductase enzyme inhibitors for Francisella and other select agents. To establish F. tularensis FabI (FtFabI) as a clinically relevant drug target, we demonstrated that fatty acid biosynthesis and FabI activity are essential for growth even in the presence of exogenous long-chain lipids and that FtfabI is not transcriptionally altered in the presence of exogenous long-chain lipids. Inhibition of FtFabI or fatty acid synthesis results in loss of viability that is not rescued by exogenous long-chain lipid supplementation. Importantly, whole-genome transcriptional profiling of F. tularensis with DNA microarrays from infected tissues revealed that FtfabI and de novo fatty acid biosynthetic genes are transcriptionally active during infection. This is the first demonstration that the FabI enoyl-ACP-reductase enzyme encoded by F. tularensis is essential and not bypassed by exogenous fatty acids and that de novo fatty acid biosynthetic components encoded in F. tularensis are transcriptionally active during infection in the mouse model of tularemia.
Collapse
|
17
|
Gerusz V, Denis A, Faivre F, Bonvin Y, Oxoby M, Briet S, LeFralliec G, Oliveira C, Desroy N, Raymond C, Peltier L, Moreau F, Escaich S, Vongsouthi V, Floquet S, Drocourt E, Walton A, Prouvensier L, Saccomani M, Durant L, Genevard JM, Sam-Sambo V, Soulama-Mouze C. From triclosan toward the clinic: discovery of nonbiocidal, potent FabI inhibitors for the treatment of resistant bacteria. J Med Chem 2012; 55:9914-28. [PMID: 23092194 DOI: 10.1021/jm301113w] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this paper, we present some elements of our optimization program to decouple triclosan's specific FabI effect from its nonspecific cytotoxic component. The implementation of this strategy delivered highly specific, potent, and nonbiocidal new FabI inhibitors. We also disclose some preclinical data of one of their representatives, 83, a novel antibacterial compound active against resistant staphylococci and some clinically relevant Gram negative bacteria that is currently undergoing clinical trials.
Collapse
Affiliation(s)
- Vincent Gerusz
- Medicinal Chemistry and ‡Biology, Mutabilis, 102 Avenue Gaston Roussel, 93230 Romainville, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Molins CR, Delorey MJ, Young JW, Yockey BM, Belisle JT, Schriefer ME, Petersen JM. Use of temperature for standardizing the progression of Francisella tularensis in mice. PLoS One 2012; 7:e45310. [PMID: 23028924 PMCID: PMC3454384 DOI: 10.1371/journal.pone.0045310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/21/2012] [Indexed: 11/19/2022] Open
Abstract
The study of infectious agents, their pathogenesis, the host response and the evaluation of newly developed countermeasures often requires the use of a living system. Murine models are frequently used to undertake such investigations with the caveat that non-biased measurements to assess the progression of infection are underutilized. Instead, murine models predominantly rely on symptomology exhibited by the animal to evaluate the state of the animal's health and to determine when euthanasia should be performed. In this study, we used subcutaneous temperature as a non-subjective measurement to follow and compare infection in mice inoculated with Francisella tularensis, a Gram-negative pathogen that produces an acute and fatal illness in mice. A reproducible temperature pattern defined by three temperature phases (normal, febrile and hypothermic) was identified in all mice infected with F. tularensis, regardless of the infecting strain. More importantly and for the first time a non-subjective, ethical, and easily determined surrogate endpoint for death based on a temperature, termed drop point, was identified and validated with statistical models. In comparative survival curve analyses for F. tularensis strains with differing virulence, the drop point temperature yielded the same results as those obtained using observed time to death. Incorporation of temperature measurements to evaluate F. tularensis was standardized based on statistical models to provide a new level of robustness for comparative analyses in mice. These findings should be generally applicable to other pathogens that produce acute febrile disease in animal models and offers an important tool for understanding and following the infection process.
Collapse
Affiliation(s)
- Claudia R Molins
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United State of America.
| | | | | | | | | | | | | |
Collapse
|
19
|
Mehboob S, Hevener KE, Truong K, Boci T, Santarsiero BD, Johnson ME. Structural and enzymatic analyses reveal the binding mode of a novel series of Francisella tularensis enoyl reductase (FabI) inhibitors. J Med Chem 2012; 55:5933-41. [PMID: 22642319 PMCID: PMC3386789 DOI: 10.1021/jm300489v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Because of structural and mechanistic differences between eukaryotic and prokaryotic fatty acid synthesis enzymes, the bacterial pathway, FAS-II, is an attractive target for the design of antimicrobial agents. We have previously reported the identification of a novel series of benzimidazole compounds with particularly good antibacterial effect against Francisella tularensis, a Category A biowarfare pathogen. Herein we report the crystal structure of the F. tularensis FabI enzyme in complex with our most active benzimidazole compound bound with NADH. The structure reveals that the benzimidazole compounds bind to the substrate site in a unique conformation that is distinct from the binding motif of other known FabI inhibitors. Detailed inhibition kinetics have confirmed that the compounds possess a novel inhibitory mechanism that is unique among known FabI inhibitors. These studies could have a strong impact on future antimicrobial design efforts and may reveal new avenues for the design of FAS-II active antibacterial compounds.
Collapse
Affiliation(s)
- Shahila Mehboob
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 S. Ashland Ave., Chicago, IL 60607-7173 (USA)
| | - Kirk E Hevener
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 S. Ashland Ave., Chicago, IL 60607-7173 (USA)
| | - Kent Truong
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 S. Ashland Ave., Chicago, IL 60607-7173 (USA)
| | - Teuta Boci
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 S. Ashland Ave., Chicago, IL 60607-7173 (USA)
| | - Bernard D Santarsiero
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 S. Ashland Ave., Chicago, IL 60607-7173 (USA)
| | - Michael E Johnson
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 S. Ashland Ave., Chicago, IL 60607-7173 (USA)
| |
Collapse
|
20
|
Skyberg JA, Rollins MF, Holderness JS, Marlenee NL, Schepetkin IA, Goodyear A, Dow SW, Jutila MA, Pascual DW. Nasal Acai polysaccharides potentiate innate immunity to protect against pulmonary Francisella tularensis and Burkholderia pseudomallei Infections. PLoS Pathog 2012; 8:e1002587. [PMID: 22438809 PMCID: PMC3305411 DOI: 10.1371/journal.ppat.1002587] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 01/30/2012] [Indexed: 01/28/2023] Open
Abstract
Pulmonary Francisella tularensis and Burkholderia pseudomallei infections are highly lethal in untreated patients, and current antibiotic regimens are not always effective. Activating the innate immune system provides an alternative means of treating infection and can also complement antibiotic therapies. Several natural agonists were screened for their ability to enhance host resistance to infection, and polysaccharides derived from the Acai berry (Acai PS) were found to have potent abilities as an immunotherapeutic to treat F. tularensis and B. pseudomallei infections. In vitro, Acai PS impaired replication of Francisella in primary human macrophages co-cultured with autologous NK cells via augmentation of NK cell IFN-γ. Furthermore, Acai PS administered nasally before or after infection protected mice against type A F. tularensis aerosol challenge with survival rates up to 80%, and protection was still observed, albeit reduced, when mice were treated two days post-infection. Nasal Acai PS administration augmented intracellular expression of IFN-γ by NK cells in the lungs of F. tularensis-infected mice, and neutralization of IFN-γ ablated the protective effect of Acai PS. Likewise, nasal Acai PS treatment conferred protection against pulmonary infection with B. pseudomallei strain 1026b. Acai PS dramatically reduced the replication of B. pseudomallei in the lung and blocked bacterial dissemination to the spleen and liver. Nasal administration of Acai PS enhanced IFN-γ responses by NK and γδ T cells in the lungs, while neutralization of IFN-γ totally abrogated the protective effect of Acai PS against pulmonary B. pseudomallei infection. Collectively, these results demonstrate Acai PS is a potent innate immune agonist that can resolve F. tularensis and B. pseudomallei infections, suggesting this innate immune agonist has broad-spectrum activity against virulent intracellular pathogens.
Collapse
Affiliation(s)
- Jerod A Skyberg
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hevener KE, Mehboob S, Su PC, Truong K, Boci T, Deng J, Ghassemi M, Cook JL, Johnson ME. Discovery of a novel and potent class of F. tularensis enoyl-reductase (FabI) inhibitors by molecular shape and electrostatic matching. J Med Chem 2011; 55:268-79. [PMID: 22098466 DOI: 10.1021/jm201168g] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enoyl-acyl carrier protein (ACP) reductase, FabI, is a key enzyme in the bacterial fatty acid biosynthesis pathway (FAS II). FabI is an NADH-dependent oxidoreductase that acts to reduce enoyl-ACP substrates in a final step of the pathway. The absence of this enzyme in humans makes it an attractive target for the development of new antibacterial agents. FabI is known to be unresponsive to structure-based design efforts due to a high degree of induced fit and a mobile flexible loop encompassing the active site. Here we discuss the development, validation, and careful application of a ligand-based virtual screen used for the identification of novel inhibitors of the Francisella tularensis FabI target. In this study, four known classes of FabI inhibitors were used as templates for virtual screens that involved molecular shape and electrostatic matching. The program ROCS was used to search a high-throughput screening library for compounds that matched any of the four molecular shape queries. Matching compounds were further refined using the program EON, which compares and scores compounds by matching electrostatic properties. Using these techniques, 50 compounds were selected, ordered, and tested. The tested compounds possessed novel chemical scaffolds when compared to the input query compounds. Several hits with low micromolar activity were identified and follow-up scaffold-based searches resulted in the identification of a lead series with submicromolar enzyme inhibition, high ligand efficiency, and a novel scaffold. Additionally, one of the most active compounds showed promising whole-cell antibacterial activity against several Gram-positive and Gram-negative species, including the target pathogen. The results of a preliminary structure-activity relationship analysis are presented.
Collapse
Affiliation(s)
- Kirk E Hevener
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, Illinois 60607-7173, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Liu N, Cummings JE, England K, Slayden RA, Tonge PJ. Mechanism and inhibition of the FabI enoyl-ACP reductase from Burkholderia pseudomallei. J Antimicrob Chemother 2011; 66:564-73. [PMID: 21393229 DOI: 10.1093/jac/dkq509] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES As an initial step in developing novel antibacterials against Burkholderia pseudomallei, we have characterized the FabI enoyl-ACP reductase homologues in the type II fatty acid biosynthesis pathway from this organism and performed an initial enzyme inhibition study. METHODS A BLAST analysis identified two FabI enoyl-ACP reductase homologues, bpmFabI-1 and bpmFabI-2, in the B. pseudomallei genome, which were cloned, overexpressed in Escherichia coli and purified. Steady-state kinetics was used to determine the reaction mechanism and the sensitivity of bpmFabI-1 to four diphenyl ether FabI inhibitors. The antibacterial activity of the inhibitors was assessed using a wild-type strain of Burkholderia thailandensis (E264) and an efflux pump mutant (Bt38). RESULTS Consistent with its annotation as an enoyl-ACP reductase, bpmFabI-1 catalysed the NADH-dependent reduction of 2-trans-dodecenoyl-CoA via a sequential Bi Bi mechanism. In contrast, bpmFabI-2 was inactive with all substrates tested and only bpmfabI-1 was transcriptionally active under the growth conditions employed. The sensitivity of bpmFabI-1 to four diphenyl ethers was evaluated and in each case the compounds were slow-onset inhibitors with K(i) values of 0.5-2 nM. In addition, triclosan and PT01 had MIC values of 30 and 70 mg/L for B. pseudomallei as well as a wild-type strain of B. thailandensis (E264), but MIC values of <1 mg/L for the efflux pump mutant Bt38. A reduction in MIC values was also observed for the pump mutant strain with the other diphenyl ethers. CONCLUSIONS Provided that efflux can be circumvented, bpmFabI-1 is a suitable target for drug discovery.
Collapse
Affiliation(s)
- Nina Liu
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | | | | | | | | |
Collapse
|
23
|
Stundick MV, Metz M, Sampath A, Larsen JC. State-of-the-art therapeutic medical countermeasures for bacterial threat agents. Drug Dev Res 2011. [DOI: 10.1002/ddr.20462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
24
|
Genetic identification of unique immunological responses in mice infected with virulent and attenuated Francisella tularensis. Microbes Infect 2010; 13:261-75. [PMID: 21070859 DOI: 10.1016/j.micinf.2010.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 10/27/2010] [Accepted: 10/29/2010] [Indexed: 11/22/2022]
Abstract
Francisella tularensis is a category A select agent based on its infectivity and virulence but disease mechanisms in infection remain poorly understood. Murine pulmonary models of infection were therefore employed to assess and compare dissemination and pathology and to elucidate the host immune response to infection with the highly virulent Type A F. tularensis strain Schu4 versus the less virulent Type B live vaccine strain (LVS). We found that dissemination and pathology in the spleen was significantly greater in mice infected with F. tularensis Schu4 compared to mice infected with F. tularensis LVS. Using gene expression profiling to compare the response to infection with the two F. tularensis strains, we found that there were significant differences in the expression of genes involved in the apoptosis pathway, antigen processing and presentation pathways, and inflammatory response pathways in mice infected with Schu4 when compared to LVS. These transcriptional differences coincided with marked differences in dissemination and severity of organ lesions in mice infected with the Schu4 and LVS strains. Therefore, these findings indicate that altered apoptosis, antigen presentation and production of inflammatory mediators explain the differences in pathogenicity of F. tularensis Schu4 and LVS.
Collapse
|
25
|
Recent Advances in the Inhibition of Bacterial Fatty Acid Biosynthesis. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2010. [DOI: 10.1016/s0065-7743(10)45018-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|