1
|
Roujansky A, Diop S, Pasqueron J, Aparicio M, Cook F, Kallel H, Mounier R. Pathophysiology and Prevention of Ventriculostomy-Related Infections: A Review. Neurosurgery 2024:00006123-990000000-01342. [PMID: 39264162 DOI: 10.1227/neu.0000000000003181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024] Open
Abstract
This qualitative review aims to summarize current knowledge on ventriculostomy-related infection (VRI) pathophysiology and its prevention. VRI generally occurs at day 10, mainly because of Gram-positive cocci, after a cerebrospinal fluid leak. Skin microbiota and biofilm seem to play a major role in VRI pathogenesis. Colonization of external ventricular drain by biofilm is universal and occurs quickly after catheter insertion. However, pathogens from the skin are more often associated with VRI than commensal bacteria. A review of proposed preventive measures shows that none has proven to be fully efficient. Periprocedural and prolonged systemic prophylactic antimicrobials have not shown to prevent VRIs and may promote the emergence of more resistant or pathogenic strains. Antimicrobial and silver-impregnated external ventricular drains, although promising, have not demonstrated preventive effects and may modify bacterial ecology. These results are consistent with the proposed pathophysiology. Finally, we will present a few propositions for future research that may help in improving our knowledge and thus better prevent VRIs. Until then, given the available data, limiting the duration of ventricular drainage may be the most attainable option to prevent VRIs.
Collapse
Affiliation(s)
- Ariane Roujansky
- Réanimation polyvalente, Centre Hospitalier de Cayenne, Cayenne, French Guiana
- Tropical Biome et immunopathologie CNRS UMR-9017, Inserm U 1019, Université de Guyane, Cayenne, French Guiana
| | - Sylvain Diop
- Département d'Anesthésie et réanimation, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Jean Pasqueron
- Service d'anesthésie-réanimation chirurgicale, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Henri Mondor, Créteil, France
| | - Maxime Aparicio
- Department of Anaesthesiology and Critical Care, Georges Pompidou European Hospital, Paris, France
| | - Fabrice Cook
- Service d'anesthésie-réanimation, Centre Hospitalier du Sud Francilien, Corbeil-Essonnes, France
| | - Hatem Kallel
- Réanimation polyvalente, Centre Hospitalier de Cayenne, Cayenne, French Guiana
- Tropical Biome et immunopathologie CNRS UMR-9017, Inserm U 1019, Université de Guyane, Cayenne, French Guiana
| | - Roman Mounier
- Department of Anaesthesiology and Critical Care, Georges Pompidou European Hospital, Paris, France
- Université Paris Cité, Paris, France
- INSERM U955, équipe 15, institut Mondor de la recherche biomédicale, Université Paris-Est-Créteil, Créteil, France
| |
Collapse
|
2
|
Prevention of Ventriculostomy Related Infection: Effectiveness of Impregnated Biomaterial. Int J Mol Sci 2023; 24:ijms24054819. [PMID: 36902247 PMCID: PMC10003160 DOI: 10.3390/ijms24054819] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
External ventricular drain(EVD) exposes the patient to infectious complications which are associated with significant morbidity and economic burden. Biomaterials impregnated with various antimicrobial agents have been developed to decrease the rate of bacterial colonization and subsequent infection. While promising, antibiotics and silver-impregnated EVD showed conflicting clinical results. The aim of the present review is to discuss the challenges associated with the development of antimicrobial EVD catheters and their effectiveness from the bench to the bedside.
Collapse
|
3
|
Mallucci CL, Jenkinson MD, Conroy EJ, Hartley JC, Brown M, Moitt T, Dalton J, Kearns T, Griffiths MJ, Culeddu G, Solomon T, Hughes D, Gamble C. Silver-impregnated, antibiotic-impregnated or non-impregnated ventriculoperitoneal shunts to prevent shunt infection: the BASICS three-arm RCT. Health Technol Assess 2021; 24:1-114. [PMID: 32238262 DOI: 10.3310/hta24170] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Insertion of a ventriculoperitoneal shunt to treat hydrocephalus is one of the most common neurosurgical procedures worldwide. Shunt infection affects up to 15% of patients, resulting in long hospital stays, multiple surgeries and reduced cognition and quality of life. OBJECTIVES The aim of this trial was to determine whether or not antibiotic-impregnated ventriculoperitoneal shunts (hereafter referred to as antibiotic shunts) (e.g. impregnated with rifampicin and clindamycin) or silver-impregnated ventriculoperitoneal shunts (hereafter referred to as silver shunts) reduce infection compared with standard ventriculoperitoneal shunts (hereafter referred to as standard shunts). DESIGN This was a three-arm, superiority, multicentre, parallel-group randomised controlled trial. Patients and a central primary outcome review panel, but not surgeons or operating staff, were blinded to the type of ventriculoperitoneal shunt inserted. SETTING The trial was set in 21 neurosurgical wards across the UK and the Republic of Ireland. PARTICIPANTS Participants were patients with hydrocephalus of any aetiology who were undergoing insertion of their first ventriculoperitoneal shunt. INTERVENTIONS Participants were allocated 1 : 1 : 1 by pressure-sealed envelope to receive a standard non-impregnated, silver-impregnated or antibiotic-impregnated ventriculoperitoneal shunt at the time of insertion. Ventriculoperitoneal shunts are medical devices, and were used in accordance with the manufacturer's instructions for their intended purpose. MAIN OUTCOME MEASURES The primary outcome was time to ventriculoperitoneal shunt failure due to infection. Secondary outcomes were time to failure for any cause, reason for failure (infection, mechanical), types of ventriculoperitoneal shunt infection, rate of infection after first clean (non-infected) revision and health economics. Outcomes were analysed by intention to treat. RESULTS Between 26 June 2013 and 9 October 2017, 1605 patients from neonate to 91 years of age were randomised to the trial: n = 36 to the standard shunt, n = 538 to the antibiotic shunt and n = 531 to the silver shunt. Patients who did not receive a ventriculoperitoneal shunt (n = 4) or who had an infection at the time of insertion (n = 7) were not assessed for the primary outcome. Infection occurred in 6.0% (n = 32/533) of those who received the standard shunt, in 2.2% (n = 12/535) of those who received the antibiotic shunt and in 5.9% (n = 31/526) of those who received the silver shunt. Compared with the standard shunt, antibiotic shunts were associated with a lower rate of infection (cause-specific hazard ratio 0.38, 97.5% confidence interval 0.18 to 0.80) and a decreased probability of infection (subdistribution hazard ratio 0.38, 97.5% confidence interval 0.18 to 0.80). Silver shunts were not associated with a lower rate of infection than standard shunts (cause-specific hazard ratio 0.99, 97.5% confidence interval 0.56 to 1.74). The ventriculoperitoneal shunt failure rate attributable to any cause was 25.0% overall and did not differ between arms. Antibiotic shunts save £135,753 per infection avoided. There were no serious adverse events. LIMITATIONS It was not possible to blind treating neurosurgeons to the ventriculoperitoneal shunt type. The return rate for patient-reported outcomes was low. Limitations to the economic evaluation included failure to obtain Hospital Episode Statistics data from NHS Digital, as per protocol. Reliance on patient-level information and costing systems data mitigated these limitations. CONCLUSIONS Antibiotic shunts have a reduced infection rate compared with standard shunts, whereas silver shunts do not. Antibiotic shunts are cost-saving. FUTURE WORK A sample collection has been established that will enable the study of surrogate markers of ventriculoperitoneal shunt infection in cerebrospinal fluid or blood using molecular techniques. A post hoc analysis to study factors related to shunt failure will be performed as part of a future study. An impact analysis to assess change in practice is planned. TRIAL REGISTRATION Current Controlled Trials ISRCTN49474281. FUNDING This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 24, No. 17. See the NIHR Journals Library website for further project information.
Collapse
Affiliation(s)
- Conor L Mallucci
- Department of Paediatric Neurosurgery, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Michael D Jenkinson
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK.,Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Elizabeth J Conroy
- Liverpool Clinical Trials Centre, University of Liverpool, Liverpool, UK
| | - John C Hartley
- Department of Microbiology, Great Ormond Street Hospital for Children, London, UK
| | - Michaela Brown
- Liverpool Clinical Trials Centre, University of Liverpool, Liverpool, UK
| | - Tracy Moitt
- Liverpool Clinical Trials Centre, University of Liverpool, Liverpool, UK
| | - Joanne Dalton
- Liverpool Clinical Trials Centre, University of Liverpool, Liverpool, UK
| | - Tom Kearns
- Liverpool Clinical Trials Centre, University of Liverpool, Liverpool, UK
| | - Michael J Griffiths
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Department of Paediatric Neurology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Giovanna Culeddu
- Centre for Health Economics and Medicines Evaluation, Bangor University, Bangor, UK
| | - Tom Solomon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Dyfrig Hughes
- Centre for Health Economics and Medicines Evaluation, Bangor University, Bangor, UK
| | - Carrol Gamble
- Liverpool Clinical Trials Centre, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
4
|
Betts HD, Whitehead C, Harris HH. Silver in biology and medicine: opportunities for metallomics researchers. Metallomics 2020; 13:6029133. [PMID: 33570135 DOI: 10.1093/mtomcs/mfaa001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/06/2020] [Indexed: 12/13/2022]
Abstract
The antibacterial properties of silver have been known for centuries and the threat of antibiotic-resistant bacteria has led to renewed focus on the noble metal. Silver is now commonly included in a range of household and medical items to imbue them with bactericidal properties. Despite this, the chemical fate of the metal in biological systems is poorly understood. Silver(I) is a soft metal with high affinity for soft donor atoms and displays much similarity to the chemistry of Cu(I). In bacteria, interaction of silver with the cell wall/membrane, DNA, and proteins and enzymes can lead to cell death. Additionally, the intracellular generation of reactive oxygen species by silver is posited to be a significant antimicrobial action. While the antibacterial action of silver is well known, bacteria found in silver mines display resistance against it through use of a protein ensemble thought to have been specifically developed for the metal, highlighting the need for judicious use. In mammals, ∼10-20% of ingested silver is retained by the body and thought to predominantly localize in the liver or kidneys. Chronic exposure can result in argyria, a condition characterized by blue staining of the skin, resulting from subdermal deposition of silver [as Ag(0)/sulfides], but more insidious side effects, such as inclusions in the brain, seizures, liver/kidney damage, and immunosuppression, have also been reported. Here, we hope to highlight the current understanding of the biological chemistry of silver and the necessity for continued study of these systems to fill existing gaps in knowledge.
Collapse
Affiliation(s)
- Harley D Betts
- Department of Chemistry, The University of Adelaide, North Terrace, SA 5005, Australia
| | - Carole Whitehead
- Department of Chemistry, The University of Adelaide, North Terrace, SA 5005, Australia
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, North Terrace, SA 5005, Australia
| |
Collapse
|
5
|
Surveillance of external ventricular drainage-associated meningitis and ventriculitis in German intensive care units. Infect Control Hosp Epidemiol 2020; 41:452-457. [PMID: 31918776 DOI: 10.1017/ice.2019.367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In light of the infection risk associated with external ventricular drainage (EVD), we decided to establish the surveillance of EVD-associated meningitis/ventriculitis in German intensive care units (ICUs) in the framework of the German national nosocomial infection surveillance system (KISS). Here, we present the current reference data and subsequent risk-factor analysis for EVD-associated meningitis/ventriculitis rates. METHODS The surveillance method corresponds with the surveillance methods for device-associated infections recommended by the National Healthcare Safety Network (NHSN). All ICUs participating for at least 1 month from 2008 to 2016 in the module ICU-KISS were included in the reference dataset and the multivariate analysis. RESULTS Current reference data (2008-2016) are based on input from 157 ICUs. The mean EVD-associated meningitis/ventriculitis rate per 1,000 EVD days was 3.96, with little variation between neurosurgical, surgical, interdisciplinary (hospitals with >400 beds), and neurological ICUs. In total, 893 EVD-associated meningitis/ventriculitis cases and 225,351 EVD days were included in the risk-factor analysis. After multivariate analysis, 2 factors remained significant: (1) stay in an ICU labeled other than neurosurgical, surgical, interdisciplinary (>400 beds), and neurological as a protective factor and (2) EVD utilization rate above the 75th quantile as a risk factor for acquisition of EVD-associated meningitis/ventriculitis. CONCLUSIONS EVD-associated meningitis and ventriculitis are frequent complications of care in intensive care patients at risk. A long hospital stay and/or the presence of the EVD puts the patient at high risk for pathogen acquisition with subsequent infection.
Collapse
|
6
|
Cortese YJ, Wagner VE, Tierney M, Devine D, Fogarty A. Review of Catheter-Associated Urinary Tract Infections and In Vitro Urinary Tract Models. JOURNAL OF HEALTHCARE ENGINEERING 2018; 2018:2986742. [PMID: 30405898 PMCID: PMC6204192 DOI: 10.1155/2018/2986742] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/01/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022]
Abstract
Catheter-associated urinary tract infections (CAUTIs) are one of the most common nosocomial infections and can lead to numerous medical complications from the mild catheter encrustation and bladder stones to the severe septicaemia, endotoxic shock, and pyelonephritis. Catheters are one of the most commonly used medical devices in the world and can be characterised as either indwelling (ID) or intermittent catheters (IC). The primary challenges in the use of IDs are biofilm formation and encrustation. ICs are increasingly seen as a solution to the complications caused by IDs as ICs pose no risk of biofilm formation due to their short time in the body and a lower risk of bladder stone formation. Research on IDs has focused on the use of antimicrobial and antibiofilm compounds, while research on ICs has focused on preventing bacteria entering the urinary tract or coming into contact with the catheter. There is an urgent need for in vitro urinary tract models to facilitate faster research and development for CAUTI prevention. There are currently three urinary tract models that test IDs; however, there is only a single very limited model for testing ICs. There is currently no standardised urinary tract model to test the efficacies of ICs.
Collapse
Affiliation(s)
- Yvonne J. Cortese
- Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | | | | | - Declan Devine
- Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - Andrew Fogarty
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland
| |
Collapse
|
7
|
Jamjoom AAB, Joannides AJ, Poon MTC, Chari A, Zaben M, Abdulla MAH, Roach J, Glancz LJ, Solth A, Duddy J, Brennan PM, Bayston R, Bulters DO, Mallucci CL, Jenkinson MD, Gray WP, Kandasamy J, Hutchinson PJ, Kolias AG, Ahmed AI. Prospective, multicentre study of external ventricular drainage-related infections in the UK and Ireland. J Neurol Neurosurg Psychiatry 2018; 89:120-126. [PMID: 29070645 PMCID: PMC5800336 DOI: 10.1136/jnnp-2017-316415] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/16/2017] [Accepted: 10/09/2017] [Indexed: 11/14/2022]
Abstract
OBJECTIVES External ventricular drain (EVD) insertion is a common neurosurgical procedure. EVD-related infection (ERI) is a major complication that can lead to morbidity and mortality. In this study, we aimed to establish a national ERI rate in the UK and Ireland and determine key factors influencing the infection risk. METHODS A prospective multicentre cohort study of EVD insertions in 21 neurosurgical units was performed over 6 months. The primary outcome measure was 30-day ERI. A Cox regression model was used for multivariate analysis to calculate HR. RESULTS A total of 495 EVD catheters were inserted into 452 patients with EVDs remaining in situ for 4700 days (median 8 days; IQR 4-13). Of the catheters inserted, 188 (38%) were antibiotic-impregnated, 161 (32.5%) were plain and 146 (29.5%) were silver-bearing. A total of 46 ERIs occurred giving an infection risk of 9.3%. Cox regression analysis demonstrated that factors independently associated with increased infection risk included duration of EVD placement for ≥8 days (HR=2.47 (1.12-5.45); p=0.03), regular sampling (daily sampling (HR=4.73 (1.28-17.42), p=0.02) and alternate day sampling (HR=5.28 (2.25-12.38); p<0.01). There was no association between catheter type or tunnelling distance and ERI. CONCLUSIONS In the UK and Ireland, the ERI rate was 9.3% during the study period. The study demonstrated that EVDs left in situ for ≥8 days and those sampled more frequently were associated with a higher risk of infection. Importantly, the study showed no significant difference in ERI risk between different catheter types.
Collapse
Affiliation(s)
- Aimun A B Jamjoom
- Department of Clinical Neuroscience, Western General Hospital, Edinburgh, UK
| | - Alexis J Joannides
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge and Addenbrooke's Hospital, Cambridge, UK
| | | | - Aswin Chari
- Department of Neurosurgery, Royal London Hospital, London, UK
| | - Malik Zaben
- Department of Neurosurgery, University Hospital of Wales, Cardiff, UK
| | - Mutwakil A H Abdulla
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge and Addenbrooke's Hospital, Cambridge, UK
- Department of Neurosurgery, University Hospital of Wales, Cardiff, UK
| | - Joy Roach
- Wessex Neurological Centre, University Hospitals Southampton, Southampton, UK
| | | | - Anna Solth
- Department of Neurosurgery, Royal Victoria Infirmary, Newcastle, UK
| | - John Duddy
- Department of Neurosurgery, Beaumont Hospital, Dublin, Ireland
| | - Paul M Brennan
- Department of Clinical Neuroscience, Western General Hospital, Edinburgh, UK
| | - Roger Bayston
- Division of Rheumatology, Orthopaedics and Dermatology, The University of Nottingham, Nottingham, UK
| | - Diederik O Bulters
- Department of Neurosurgery, Alder Hey Children's NHS Trust, Liverpool, UK
| | - Conor L Mallucci
- Department of Neurosurgery, Alder Hey Children's NHS Trust, Liverpool, UK
| | - Michael D Jenkinson
- Department of Neurosurgery, The Walton Centre, Liverpool, UK
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - William P Gray
- Department of Neurosurgery, University Hospital of Wales, Cardiff, UK
| | - Jothy Kandasamy
- Department of Clinical Neuroscience, Western General Hospital, Edinburgh, UK
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge and Addenbrooke's Hospital, Cambridge, UK
| | - Angelos G Kolias
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge and Addenbrooke's Hospital, Cambridge, UK
| | - Aminul I Ahmed
- Wessex Neurological Centre, University Hospitals Southampton, Southampton, UK
| |
Collapse
|
8
|
Choi YJ, Lim JK, Park JJ, Huh H, Kim DJ, Gong CH, Yoon SZ. Chlorhexidine and silver sulfadiazine coating on central venous catheters is not sufficient for protection against catheter-related infection: Simulation-based laboratory research with clinical validation. J Int Med Res 2017; 45:1042-1053. [PMID: 28534703 PMCID: PMC5536400 DOI: 10.1177/0300060517708944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objective The efficacy of chlorhexidine- and silver sulfadiazine-coated central venous catheters (CSS-CVC) against catheter-related infection remains controversial. We hypothesized that the loss of silver nanoparticles may reduce the antibacterial efficacy of CSS-CVCs and that this loss could be due to the frictional force between the surface of the CVC and the bloodstream. The objective of this study was to investigate whether the antimicrobial effect of CSS-CVCs decreases with increasing exposure time in a bloodstream model and quantitatively assay the antimicrobial effect of CSS-CVCs compared with polyurethane and antiseptic-impregnated CVCs. Methods Each CVC was subjected to 120 hours of saline flow and analyzed at intervals over 24 hours. The analyses included energy-dispersive X-ray spectroscopy, scanning electron microscopy, and optical density after a Staphylococcus aureus incubation test. Results The weight percentage of silver in the CSS-CVCs significantly decreased to 56.18% (44.10% ± 3.32%) with 48-hour catheterization and to 18.88% (14.82% ± 1.33%) with 120-hour catheterization compared with the initial weight percentage (78.50% ± 6.32%). In the S. aureus incubation test, the antibacterial function of CSS-CVCs was lost after 48 hours [3 (N/D) of OD]. Similar results were observed in a pilot clinical study using 18 CSS-CVCs. Conclusions We found that the efficacy of CSS-CVCs decreased over time and that the antibacterial function was lost after 48 hours of simulated wear-out. Therefore, antibiotic-impregnated CVCs may be a better option when longer (>48 hours) indwelling is needed.
Collapse
Affiliation(s)
- Yoon Ji Choi
- 1 Department of Anesthesia and Pain Medicine, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Jae Kwan Lim
- 2 Dental Life Science Research Institute, Seoul National University Dental Hospital, Seoul, Republic of Korea
| | - Jeong Jun Park
- 3 Department of Anesthesiology and Pain Medicine, Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyub Huh
- 3 Department of Anesthesiology and Pain Medicine, Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dong-Joo Kim
- 4 Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Chang-Hoon Gong
- 5 Medical Device Innovation Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Seung Zhoo Yoon
- 3 Department of Anesthesiology and Pain Medicine, Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
9
|
Sardella E, Palumbo F, Camporeale G, Favia P. Non-Equilibrium Plasma Processing for the Preparation of Antibacterial Surfaces. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E515. [PMID: 28773637 PMCID: PMC5456949 DOI: 10.3390/ma9070515] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/12/2016] [Accepted: 06/20/2016] [Indexed: 12/19/2022]
Abstract
Non-equilibrium plasmas offer several strategies for developing antibacterial surfaces that are able to repel and/or to kill bacteria. Due to the variety of devices, implants, and materials in general, as well as of bacteria and applications, plasma assisted antibacterial strategies need to be tailored to each specific surface. Nano-composite coatings containing inorganic (metals and metal oxides) or organic (drugs and biomolecules) compounds can be deposited in one step, and used as drug delivery systems. On the other hand, functional coatings can be plasma-deposited and used to bind antibacterial molecules, for synthesizing surfaces with long lasting antibacterial activity. In addition, non-fouling coatings can be produced to inhibit the adhesion of bacteria and reduce the formation of biofilm. This paper reviews plasma-based strategies aimed to reduce bacterial attachment and proliferation on biomedical materials and devices, but also onto materials used in other fields. Most of the activities described have been developed in the lab of the authors.
Collapse
Affiliation(s)
- Eloisa Sardella
- Istituto di Nanotecnologia, Consiglio Nazionale delle Ricerche, Via Orabona 4, 70126 Bari, Italy.
| | - Fabio Palumbo
- Istituto di Nanotecnologia, Consiglio Nazionale delle Ricerche, Via Orabona 4, 70126 Bari, Italy.
| | - Giuseppe Camporeale
- Dipartimento di Chimica Università degli Studi di Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy.
| | - Pietro Favia
- Istituto di Nanotecnologia, Consiglio Nazionale delle Ricerche, Via Orabona 4, 70126 Bari, Italy.
- Dipartimento di Chimica Università degli Studi di Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy.
| |
Collapse
|
10
|
Cerebrospinal Fluid Infection Associated with Silver-Impregnated External Ventricular Drain Catheters. World Neurosurg 2016; 89:505-9. [DOI: 10.1016/j.wneu.2016.01.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 12/30/2015] [Accepted: 01/04/2016] [Indexed: 11/21/2022]
|
11
|
Atkinson RA, Fikrey L, Vail A, Patel HC. Silver-impregnated external-ventricular-drain-related cerebrospinal fluid infections: a meta-analysis. J Hosp Infect 2015; 92:263-72. [PMID: 26601606 DOI: 10.1016/j.jhin.2015.09.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/16/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) infection is the primary complication associated with placement of an external ventricular drain (EVD). The use of silver-impregnated EVD catheters has become commonplace in many neurosurgical centres. AIM To assess the effect of silver-impregnated EVD catheter usage on catheter-related CSF infections. METHODS A meta-analysis was performed by systematically searching Medline, Embase and the Cochrane Library. All randomized controlled trials (RCTs) and non-RCTs comparing silver-impregnated and plain EVD catheters were identified and analysed. FINDINGS Six non-RCTs were included. The crude infection rate was 10.8% for plain catheters and 8.9% for silver-impregnated catheters [pooled odds ratio (OR) 0.71, 95% confidence interval (CI) 0.46-1.08; P = 0.11]. In a microbiological spectrum analysis, silver-impregnated catheters demonstrated a significantly lower rate of CSF infections caused by Gram-positive organisms (2.0% vs 6.7% in the silver-impregnated and plain catheter groups, respectively; pooled OR 0.27, 95% CI 0.11-0.63; P = 0.002). CONCLUSION The antimicrobial effects of silver-impregnated EVD catheters may be selective, and may need to be evaluated further in a prospective, controlled manner.
Collapse
Affiliation(s)
- R A Atkinson
- Greater Manchester Neurosciences Centre, Salford Royal NHS Foundation Trust, Manchester Academic Health Sciences Centre, Salford, UK; Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - L Fikrey
- Leiden University Medical Centre, Leiden, The Netherlands
| | - A Vail
- Centre for Biostatistics, The University of Manchester, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, UK
| | - H C Patel
- Greater Manchester Neurosciences Centre, Salford Royal NHS Foundation Trust, Manchester Academic Health Sciences Centre, Salford, UK; Vascular and Stroke Centre, Institute of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, UK.
| |
Collapse
|
12
|
Butler KS, Peeler DJ, Casey BJ, Dair BJ, Elespuru RK. Silver nanoparticles: correlating nanoparticle size and cellular uptake with genotoxicity. Mutagenesis 2015; 30:577-91. [PMID: 25964273 DOI: 10.1093/mutage/gev020] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The focus of this research was to develop a better understanding of the pertinent physico-chemical properties of silver nanoparticles (AgNPs) that affect genotoxicity, specifically how cellular uptake influences a genotoxic cell response. The genotoxicity of AgNPs was assessed for three potential mechanisms: mutagenicity, clastogenicity and DNA strand-break-based DNA damage. Mutagenicity (reverse mutation assay) was assessed in five bacterial strains of Salmonella typhimurium and Echerichia coli, including TA102 that is sensitive to oxidative DNA damage. AgNPs of all sizes tested (10, 20, 50 and 100nm), along with silver nitrate (AgNO3), were negative for mutagenicity in bacteria. No AgNPs could be identified within the bacteria cells using transmission electron microscopy (TEM), indicating these bacteria lack the ability to actively uptake AgNPs 10nm or larger. Clastogenicity (flow cytometry-based micronucleus assay) and intermediate DNA damage (DNA strand breaks as measured in the Comet assay) were assessed in two mammalian white blood cell lines: Jurkat Clone E6-1 and THP-1. It was observed that micronucleus and Comet assay end points were inversely correlated with AgNP size, with smaller NPs inducing a more genotoxic response. TEM results indicated that AgNPs were confined within intracellular vesicles of mammalian cells and did not penetrate the nucleus. The genotoxicity test results and the effect of AgNO3 controls suggest that silver ions may be the primary, and perhaps only, cause of genotoxicity. Furthermore, since AgNO3 was not mutagenic in the gram-negative bacterial Ames strains tested, the lack of bacterial uptake of the AgNPs may not be the major reason for the lack of genotoxicity observed.
Collapse
Affiliation(s)
- Kimberly S Butler
- U.S. Food and Drug Administration, Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, 10933 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - David J Peeler
- U.S. Food and Drug Administration, Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, 10933 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Brendan J Casey
- U.S. Food and Drug Administration, Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, 10933 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Benita J Dair
- U.S. Food and Drug Administration, Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, 10933 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Rosalie K Elespuru
- U.S. Food and Drug Administration, Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, 10933 New Hampshire Avenue, Silver Spring, MD 20993, USA
| |
Collapse
|
13
|
Mulley G, Jenkins ATA, Waterfield NR. Inactivation of the antibacterial and cytotoxic properties of silver ions by biologically relevant compounds. PLoS One 2014; 9:e94409. [PMID: 24728271 PMCID: PMC3984151 DOI: 10.1371/journal.pone.0094409] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 03/16/2014] [Indexed: 12/25/2022] Open
Abstract
There has been a recent surge in the use of silver as an antimicrobial agent in a wide range of domestic and clinical products, intended to prevent or treat bacterial infections and reduce bacterial colonization of surfaces. It has been reported that the antibacterial and cytotoxic properties of silver are affected by the assay conditions, particularly the type of growth media used in vitro. The toxicity of Ag+ to bacterial cells is comparable to that of human cells. We demonstrate that biologically relevant compounds such as glutathione, cysteine and human blood components significantly reduce the toxicity of silver ions to clinically relevant pathogenic bacteria and primary human dermal fibroblasts (skin cells). Bacteria are able to grow normally in the presence of silver nitrate at >20-fold the minimum inhibitory concentration (MIC) if Ag+ and thiols are added in a 1∶1 ratio because the reaction of Ag+ with extracellular thiols prevents silver ions from interacting with cells. Extracellular thiols and human serum also significantly reduce the antimicrobial activity of silver wound dressings Aquacel-Ag (Convatec) and Acticoat (Smith & Nephew) to Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli in vitro. These results have important implications for the deployment of silver as an antimicrobial agent in environments exposed to biological tissue or secretions. Significant amounts of money and effort have been directed at the development of silver-coated medical devices (e.g. dressings, catheters, implants). We believe our findings are essential for the effective design and testing of antimicrobial silver coatings.
Collapse
Affiliation(s)
- Geraldine Mulley
- School of Biological Sciences, University of Reading, Reading, United Kingdom
- * E-mail:
| | - A. Tobias A. Jenkins
- Department of Chemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Nicholas R. Waterfield
- Division of Microbiology and Infection, Warwick Medical School, Warwick University, Coventry, United Kingdom
| |
Collapse
|
14
|
Kalinowska-Lis U, Felczak A, Chęcińska L, Lisowska K, Ochocki J. Synthesis, characterization and antimicrobial activity of silver(I) complexes of hydroxymethyl derivatives of pyridine and benzimidazole. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2013.10.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Kalinowska-Lis U, Szewczyk EM, Chęcińska L, Wojciechowski JM, Wolf WM, Ochocki J. Synthesis, Characterization, and Antimicrobial Activity of Silver(I) and Copper(II) Complexes of Phosphate Derivatives of Pyridine And Benzimidazole. ChemMedChem 2013; 9:169-76. [DOI: 10.1002/cmdc.201300333] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/13/2013] [Indexed: 11/09/2022]
|
16
|
Eckhardt S, Brunetto PS, Gagnon J, Priebe M, Giese B, Fromm KM. Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chem Rev 2013; 113:4708-54. [PMID: 23488929 DOI: 10.1021/cr300288v] [Citation(s) in RCA: 512] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sonja Eckhardt
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| | | | | | | | | | | |
Collapse
|
17
|
Chernousova S, Epple M. Silber als antibakterielles Agens: Ion, Nanopartikel, Metall. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205923] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl 2012; 52:1636-53. [PMID: 23255416 DOI: 10.1002/anie.201205923] [Citation(s) in RCA: 1292] [Impact Index Per Article: 107.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 08/22/2012] [Indexed: 12/12/2022]
Abstract
The antibacterial action of silver is utilized in numerous consumer products and medical devices. Metallic silver, silver salts, and also silver nanoparticles are used for this purpose. The state of research on the effect of silver on bacteria, cells, and higher organisms is summarized. It can be concluded that the therapeutic window for silver is narrower than often assumed. However, the risks for humans and the environment are probably limited.
Collapse
Affiliation(s)
- Svitlana Chernousova
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Universitätsstrasse 5-7, 45117 Essen, Germany
| | | |
Collapse
|
19
|
Kowalczuk D, Ginalska G, Piersiak T, Miazga-Karska M. Prevention of biofilm formation on urinary catheters: Comparison of the sparfloxacin-treated long-term antimicrobial catheters with silver-coated ones. J Biomed Mater Res B Appl Biomater 2012; 100:1874-82. [DOI: 10.1002/jbm.b.32755] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 05/02/2012] [Accepted: 06/07/2012] [Indexed: 01/17/2023]
|
20
|
Paladini F, Pollini M, Talà A, Alifano P, Sannino A. Efficacy of silver treated catheters for haemodialysis in preventing bacterial adhesion. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:1983-1990. [PMID: 22584824 DOI: 10.1007/s10856-012-4674-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 05/03/2012] [Indexed: 05/31/2023]
Abstract
The growing resistance of many strains of bacteria to antibiotics and antiseptics is becoming a serious problem in medicine. Nano-silver is one of the most prominent products in medicine because it exhibits unusual physicochemical properties and a strong biological activity. In this work an innovative silver deposition technology was applied to temporary polyurethane catheters for haemodialysis. The working conditions of catheters were reproduced through laboratory equipment that ensured the flow of deionized water and simulated body fluid inside the lumina at corporeal temperature. The growth and the adhesion of Staphylococcus aureus on the surface of the device were studied through fluorescence microscopy. ICP-AES was adopted to calculate the amount of silver released from the substrate. The stability of the coating during the whole working life of the device was demonstrated through thermo-gravimetric analysis.
Collapse
Affiliation(s)
- F Paladini
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | | | | | | | | |
Collapse
|
21
|
Keong NCH, Bulters DO, Richards HK, Farrington M, Sparrow OC, Pickard JD, Hutchinson PJ, Kirkpatrick PJ. The SILVER (Silver Impregnated Line Versus EVD Randomized Trial). Neurosurgery 2012; 71:394-403; discussion 403-4. [DOI: 10.1227/neu.0b013e318257bebb] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
BACKGROUND:
Cerebrospinal fluid (CSF) infections associated with external ventricular drain (EVD) placement attract major consequences. Silver impregnation of catheters attempts to reduce infection.
OBJECTIVE:
To assess the efficacy of silver catheters against CSF infection.
METHODS:
We performed a randomized, controlled trial involving 2 neurosurgical centers (June 2005 to September 2009). A total of 356 patients requiring an EVD were assessed for eligibility; 325 patients were enrolled and randomized (167 plain, 158 silver); 278 patients were analyzed (140 plain, 138 silver). The primary outcome measure was CSF infection as defined by organisms seen on Gram stain or isolated by culture. Secondary outcome measures included ventriculoperitoneal (VP) shunting.
RESULTS:
There was a significant difference in infection risk between the 2 study arms: 21.4% (30/140) for plain catheters vs 12.3% (17/138) for silver catheters (P = .0427; 95% confidence interval [CI]: 1.015-3.713). Patients who had an EVD infection had more than double the risk of requiring a VP shunt compared with patients without an EVD infection (45.7% [21/46] vs 19.7% [45/229], respectively, P = .0002; 95% CI: 1.766-6.682). There was also a significant difference in VP shunt risk with infection: plain (55.2%; 16/29) vs the silver arm (29.4%; 5/17); P = .0244 (95% CI: 1.144-11.695). A multivariate analysis demonstrated that infection risk was increased by duration of EVD placement (odds ratio: 1.160), spontaneous intracranial hemorrhage (odds ratio 4.958) and decreased by silver catheters (odds ratio: 0.423).
CONCLUSION:
The study provides Class I evidence that silver-impregnated catheters reduce CSF infection.
Collapse
Affiliation(s)
- Nicole Chwee Har Keong
- Academic Neurosurgery Division, Department of Clinical Neurosciences, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Diederik Olivier Bulters
- Academic Neurosurgery Division, Department of Clinical Neurosciences, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | | | - Mark Farrington
- Health Protection Agency Microbiology Services Laboratory, Cambridge, United Kingdom
| | - Owen C. Sparrow
- Academic Neurosurgery Division, Department of Clinical Neurosciences, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - John D. Pickard
- Academic Neurosurgery Division, Department of Clinical Neurosciences, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Peter J. Hutchinson
- Academic Neurosurgery Division, Department of Clinical Neurosciences, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Peter J. Kirkpatrick
- Academic Neurosurgery Division, Department of Clinical Neurosciences, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
22
|
Stevens NT, Greene CM, O'Gara JP, Bayston R, Sattar MTA, Farrell M, Humphreys H. Ventriculoperitoneal shunt-related infections caused byStaphylococcus epidermidis: pathogenesis and implications for treatment. Br J Neurosurg 2012; 26:792-7. [DOI: 10.3109/02688697.2011.651514] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Evaluation of ceftobiprole activity against a variety of gram-negative pathogens, including Escherichia coli, Haemophilus influenzae (β-lactamase positive and β-lactamase negative), and Klebsiella pneumoniae, in a rabbit meningitis model. Antimicrob Agents Chemother 2011; 56:921-5. [PMID: 22064544 DOI: 10.1128/aac.01537-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ceftobiprole medocaril, a new cephalosporin, is highly active against a broad spectrum of Gram-positive and Gram-negative clinical pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) and penicillin-resistant pneumococci. In this study, we tested ceftobiprole against various Gram-negative pathogens in a rabbit meningitis model and determined its penetration into the cerebrospinal fluid (CSF). In this animal model, ceftobiprole produced an antibacterial activity similar to that of cefepime against an Escherichia coli strain, a Klebsiella pneumoniae strain, and a β-lactamase-negative Haemophilus influenzae strain. Against a β-lactamase-positive H. influenzae strain, ceftobiprole was significantly superior. The penetration of ceftobiprole through inflamed meninges reached about 16% of serum levels compared to about 2% of serum levels through uninflamed meninges.
Collapse
|
24
|
Tang CY, Chen DZ, Chan KYY, Chu KM, Ng PC, Yue TM. Fabrication of antibacterial silicone composite by an antibacterial agent deposition, solution casting and crosslinking technique. POLYM INT 2011. [DOI: 10.1002/pi.3102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Croes S, Stobberingh EE, Stevens KNJ, Knetsch MLW, Koole LH. Antimicrobial and anti-thrombogenic features combined in hydrophilic surface coatings for skin-penetrating catheters. Synergy of co-embedded silver particles and heparin. ACS APPLIED MATERIALS & INTERFACES 2011; 3:2543-2550. [PMID: 21623638 DOI: 10.1021/am200408f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Percutaneous (skin-penetrating) catheters such as central venous catheters (CVCs), are used ubiquitously in the treatment of critically ill patients, although it is known that the risks for serious complications, particularly bloodstream infection and thromboembolism, are high. Materials science and engineering offer important new perspectives regarding further improvement of CVCs. A promising approach is the use of synthetic biocompatible hydrogel coatings with both silver particles and heparin embedded therein. Such formulations combine the well-known broad-spectrum antimicrobial features of silver with the anticoagulant activity of immobilized heparin. Previous work revealed that heparin augments antimicrobial activity of silver, while maintaining its anticoagulant function. This study set out to investigate the synergy of heparin and silver in more detail. Exit-challenge tests, experiments on bacterial killing and adherence, as well as in vitro challenge tests with three Staphylococcus aureus strains (one reference strain, and two clinical isolates) consistently showed the synergistic effect. In addition, the impact of changing the coating's hydrophilicity, and changing the silver concentration in the coatings, were examined. The experimental results, taken together and combined with data from the literature, point out that synergy of heparin and silver is best explained by binding of Ag(+) ions to heparin within the swollen coating, followed by release of heparin-Ag(+) complexes upon immersion of the coatings in an aqueous environment such as blood. Possible implications of this work regarding the development of improved/safer CVCs are briefly discussed.
Collapse
Affiliation(s)
- Sander Croes
- Department of Medical Microbiology, School for Public Health and Primary Care (CAPHRI), Maastricht University Medical Center, Maastricht, the Netherlands
| | | | | | | | | |
Collapse
|
26
|
Locht LJ, Pedersen MØ, Markholt S, Bibby BM, Larsen A, Penkowa M, Stoltenberg M, Rungby J. Metallic silver fragments cause massive tissue loss in the mouse brain. Basic Clin Pharmacol Toxicol 2011; 109:1-10. [PMID: 21205224 DOI: 10.1111/j.1742-7843.2010.00668.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Silver is a metal with well-known antibacterial effects. This makes silver an attractive coating material for medical devices for use inside the body, e.g. orthopaedic prostheses and catheters used in neurosurgery as it has been found to reduce the high risk of infections. Lately, the use of nano-silver particles in the industry, e.g. woven into fabrics and furniture has increased, and thus the exposure to silver particles in daily life increases. To study the effect of metallic silver particles on nervous tissue, we injected micron-sized silver particles into the mouse brain by stereotactic procedures. After 7, 14 days and 9 months, the silver-exposed animals had considerable brain damage seen as cavity formation and inflammation adjacent to the injected metallic silver particles. The tissue loss involved both cortical and hippocampal structures and resulted in enlargement of the lateral ventricles. Autometallographic silver enhancement showed silver uptake in lysosomes of glia cells and neurons in the ipsilateral cortex and hippocampus alongside a minor uptake on the contralateral side. Silver was also detected in ependymal cells and the choroid plexus. After 9 months, spreading of silver to the kidneys was seen. Cell counts of immunostained sections showed that metallic silver induced a statistically significant inflammatory response, i.e. increased microgliosis (7 days: p < 0.0001; 14 days: p < 0.01; 9 months: p < 0.0001) and TNF-α expression (7 and 14 days: p < 0.0001; 9 months: p = 0.91). Significant astrogliosis (7, 14 days and 9 months: p < 0.0001) and increased metallothionein (MT I + II) expression (7 and 14 days: p < 0.0001; 9 months: p < 0.001) were also seen in silver-exposed brain tissue. We conclude that metallic silver implants release silver ions causing neuroinflammation and a progressive tissue loss in the brain.
Collapse
Affiliation(s)
- Linda Jansons Locht
- Section of Neurobiology, Department of Anatomy, Aarhus University, Aarhus, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Activity of an antimicrobial hydrocephalus shunt catheter against Propionibacterium acnes. Antimicrob Agents Chemother 2010; 54:5082-5. [PMID: 20837763 DOI: 10.1128/aac.00540-10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shunt infection is a major complication affecting approximately 10% of procedures. Propionibacterium acnes, an anaerobic skin bacterium, is increasingly recognized as a shunt pathogen, causing up to 14% of infections. Though susceptible to penicillin and cephalosporins, P. acnes shunt infections are not preventable by means of perioperative prophylaxis, due to poor cerebrospinal fluid penetration. Antimicrobial shunts with activity against staphylococci are available, but their activity against P. acnes is unknown, and the study was designed to determine this. Three methods of evaluation were used in order to determine the emergence of resistance when exposure is to high inocula for long periods, the time taken to kill 100% of the bacteria attached to the shunt, and the duration of activity under constant flow conditions with repeated bacterial challenge. Despite repeated exposure to high bacterial inocula over 70 days, no resistance was seen. The time taken to kill all attached bacteria, 96 h, was twice that taken to kill attached staphylococci. Nevertheless, under constant flow conditions with repeated challenges, the antimicrobial catheters resisted colonization by P. acnes for 56 days. Using tests that were designed to be clinically predictive when done together, the results suggest that the antimicrobial catheters will be able to prevent colonization of hydrocephalus shunts by P. acnes.
Collapse
|