1
|
López-Argüello S, Montaner M, Sayed ARM, Oliver A, Bulitta JB, Moya B. Penicillin-Binding Protein 5/6 Acting as a Decoy Target in Pseudomonas aeruginosa Identified by Whole-Cell Receptor Binding and Quantitative Systems Pharmacology. Antimicrob Agents Chemother 2023; 67:e0160322. [PMID: 37199612 PMCID: PMC10269149 DOI: 10.1128/aac.01603-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/23/2023] [Indexed: 05/19/2023] Open
Abstract
The β-lactam antibiotics have been successfully used for decades to combat susceptible Pseudomonas aeruginosa, which has a notoriously difficult to penetrate outer membrane (OM). However, there is a dearth of data on target site penetration and covalent binding of penicillin-binding proteins (PBP) for β-lactams and β-lactamase inhibitors in intact bacteria. We aimed to determine the time course of PBP binding in intact and lysed cells and estimate the target site penetration and PBP access for 15 compounds in P. aeruginosa PAO1. All β-lactams (at 2 × MIC) considerably bound PBPs 1 to 4 in lysed bacteria. However, PBP binding in intact bacteria was substantially attenuated for slow but not for rapid penetrating β-lactams. Imipenem yielded 1.5 ± 0.11 log10 killing at 1h compared to <0.5 log10 killing for all other drugs. Relative to imipenem, the rate of net influx and PBP access was ~ 2-fold slower for doripenem and meropenem, 7.6-fold for avibactam, 14-fold for ceftazidime, 45-fold for cefepime, 50-fold for sulbactam, 72-fold for ertapenem, ~ 249-fold for piperacillin and aztreonam, 358-fold for tazobactam, ~547-fold for carbenicillin and ticarcillin, and 1,019-fold for cefoxitin. At 2 × MIC, the extent of PBP5/6 binding was highly correlated (r2 = 0.96) with the rate of net influx and PBP access, suggesting that PBP5/6 acted as a decoy target that should be avoided by slowly penetrating, future β-lactams. This first comprehensive assessment of the time course of PBP binding in intact and lysed P. aeruginosa explained why only imipenem killed rapidly. The developed novel covalent binding assay in intact bacteria accounts for all expressed resistance mechanisms.
Collapse
Affiliation(s)
- Silvia López-Argüello
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Maria Montaner
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Alaa RM. Sayed
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
- Department of Chemistry, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Jürgen B. Bulitta
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Bartolome Moya
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| |
Collapse
|
2
|
Montaner M, Lopez-Argüello S, Oliver A, Moya B. PBP Target Profiling by β-Lactam and β-Lactamase Inhibitors in Intact Pseudomonas aeruginosa: Effects of the Intrinsic and Acquired Resistance Determinants on the Periplasmic Drug Availability. Microbiol Spectr 2023; 11:e0303822. [PMID: 36475840 PMCID: PMC9927461 DOI: 10.1128/spectrum.03038-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
The lack of effective treatment options against Pseudomonas aeruginosa is one of the main contributors to the silent pandemic. Many antibiotics are ineffective against resistant isolates due to poor target site penetration, efflux, or β-lactamase hydrolysis. Critical insights to design optimized antimicrobial therapies and support translational drug development are needed. In the present work, we analyzed the periplasmic drug uptake and binding to PBPs of 11 structurally different β-lactams and 4 β-lactamase inhibitors (BLIs) in P. aeruginosa PAO1. The contribution of the most prevalent β-lactam resistance mechanisms to MIC and periplasmic target attainment was also assessed. Bacterial cultures (6.5 log10 CFU/mL) were exposed to 1/2× PAO1 MIC of each antibiotic for 30 min. Unbound PBPs were labeled with Bocillin FL and analyzed using a FluorImager. Imipenem extensively inactivated all targets. Cephalosporins preferentially targeted PBP1a and PBP3. Aztreonam and amdinocillin bound exclusively to PBP3 and to PBP2 and PBP4, respectively. Penicillins bound preferentially to PBP1a, PBP1b, and PBP3. BLIs displayed poor PBP occupancy. Inactivation of oprD elicited a notable reduction of imipenem target attainment, and it was to a lesser extent in the other carbapenems. Improved PBP occupancy was observed for the main targets of the widely used antipseudomonal penicillins, cephalosporins, meropenem, aztreonam, and amdinocillin upon oprM inactivation, in line with MIC changes. AmpC constitutive hyperexpression caused a substantial PBP occupancy reduction for the penicillins, cephalosporins, and aztreonam. Data obtained in this work will support the rational design of optimized β-lactam-based combination therapies against resistant P. aeruginosa infections. IMPORTANCE The growing problem of antibiotic resistance in Gram-negative pathogens is linked to three key aspects, (i) the progressive worldwide epidemic spread of multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) Gram-negative strains, (ii) a decrease in the number of effective new antibiotics against multiresistant isolates, and (iii) the lack of mechanistically informed combinations and dosing strategies. Our combined efforts should focus not only on the development of new antimicrobial agents but the adequate administration of these in combination with other agents currently available in the clinic. Our work determined the effectiveness of these compounds in the clinically relevant bacteria Pseudomonas aeruginosa at the molecular level, assessing the net influx rate and their ability to access their targets and achieve bacterial killing without generating resistance. The data generated in this work will be helpful for translational drug development.
Collapse
Affiliation(s)
- Maria Montaner
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Silvia Lopez-Argüello
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER in Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Bartolome Moya
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER in Infectious Diseases (CIBERINFEC), Madrid, Spain
| |
Collapse
|
3
|
Nguyen PTN, Le NV, Dinh HMN, Nguyen BQP, Nguyen TVA. Lung penetration and pneumococcal target binding of antibiotics in lower respiratory tract infection. Curr Med Res Opin 2022; 38:2085-2095. [PMID: 36189961 DOI: 10.1080/03007995.2022.2131304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To achieve the therapeutic effects, antibiotics must penetrate rapidly into infection sites and bind to targets. This study reviewed updated knowledge on the ability of antibiotics to penetrate into the lung, their physicochemical properties influencing the pulmonary penetration and their ability to bind to targets on pneumococci. METHODS A search strategy was developed using PubMED, Web of Science, and ChEMBL. Data on serum protein binding, drug concentration, target binding ability, drug transporters, lung penetration, physicochemical properties of antibiotics in low respiratory tract infection (LRTI) were collected. RESULTS It was seen that infection site-to-serum concentration ratios of most antibiotics are >1 at different time points except for ceftriaxone, clindamycin and vancomycin. Most agents have proper physicochemical properties that facilitate antibiotic penetration. In antimicrobial-resistant Streptococcus pneumoniae, the binding affinity of antibiotics to targets mostly decreases compared to that in susceptible strains. The data on binding affinity of linezolid, clindamycin and vancomycin were insufficient. The higher drug concentration at the infection sites compared to that in the blood can be associated with inflammation conditions. Little evidence showed the effect of drug transporters on the clinical efficacy of antibiotics against LRTI. CONCLUSIONS Data on antibiotic penetration into the lung in LRTI patients and binding affinity of antibiotics for pneumococcal targets are still limited. Further studies are required to clarify the associations of the lung penetration and target binding ability of antibitotics with therapeutic efficacy to help propose the right antibiotics for LRTI.
Collapse
Affiliation(s)
| | - Nho Van Le
- Danang University of Medical Technology and Pharmacy, Da Nang, Vietnam
| | | | | | - Thi Van Anh Nguyen
- Department of Life Sciences, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| |
Collapse
|
4
|
Optimizing Antimicrobial Drug Dosing in Critically Ill Patients. Microorganisms 2021; 9:microorganisms9071401. [PMID: 34203510 PMCID: PMC8305961 DOI: 10.3390/microorganisms9071401] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
A fundamental step in the successful management of sepsis and septic shock is early empiric antimicrobial therapy. However, for this to be effective, several decisions must be addressed simultaneously: (1) antimicrobial choices should be adequate, covering the most probable pathogens; (2) they should be administered in the appropriate dose, (3) by the correct route, and (4) using the correct mode of administration to achieve successful concentration at the infection site. In critically ill patients, antimicrobial dosing is a common challenge and a frequent source of errors, since these patients present deranged pharmacokinetics, namely increased volume of distribution and altered drug clearance, which either increased or decreased. Moreover, the clinical condition of these patients changes markedly over time, either improving or deteriorating. The consequent impact on drug pharmacokinetics further complicates the selection of correct drug schedules and dosing during the course of therapy. In recent years, the knowledge of pharmacokinetics and pharmacodynamics, drug dosing, therapeutic drug monitoring, and antimicrobial resistance in the critically ill patients has greatly improved, fostering strategies to optimize therapeutic efficacy and to reduce toxicity and adverse events. Nonetheless, delivering adequate and appropriate antimicrobial therapy is still a challenge, since pathogen resistance continues to rise, and new therapeutic agents remain scarce. We aim to review the available literature to assess the challenges, impact, and tools to optimize individualization of antimicrobial dosing to maximize exposure and effectiveness in critically ill patients.
Collapse
|
5
|
Eosinophilic pneumonia caused by cefepime: A case report and review. IDCases 2021; 25:e01166. [PMID: 34094864 PMCID: PMC8167208 DOI: 10.1016/j.idcr.2021.e01166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 02/03/2023] Open
Abstract
Eosinophilic pneumonia (EP) is a diagnosis supported by increased blood eosinophils & infiltrates on chest radiographs. We highlight the first known case of EP caused by cefepime in a patient treated for pneumonia. Cefepime is commonly used for a variety of infections in hospitals and EP may be an underreported adverse event.
Eosinophilic pneumonia (EP) is characterized by accumulation of eosinophils in the lungs and has been associated with several medications, including antimicrobials. Cefepime is a commonly used broad-spectrum antimicrobial agent for the treatment of nosocomial infections but to date has not been associated with EP. We report the first documented case of EP secondary to cefepime for the treatment of pneumonia. The patient’s peripheral eosinophilia and leukocytosis resolved promptly after discontinuation of cefepime and initiation of steroid treatment.
Collapse
|
6
|
Kollef MH, Micek ST. Limitations of Registration Trials for Nosocomial Pneumonia. Clin Infect Dis 2020; 73:e4549-e4551. [PMID: 32785576 DOI: 10.1093/cid/ciaa926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marin H Kollef
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Scott T Micek
- Department of Pharmacy Practice, St Louis College of Pharmacy, St Louis, Missouri, USA
| |
Collapse
|
7
|
Palwe S, Khobragade K, Kharat AS. Preserving the Dwindling β-lactams-Based Empiric Therapy Options for Gram-Negative Infections in Challenging Resistance Scenario: Lessons Learned and Way Forward. Microb Drug Resist 2019; 26:637-651. [PMID: 31851576 DOI: 10.1089/mdr.2019.0195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Appropriate empiric therapy reduces mortality and morbidity associated with serious Gram-negative infections. β-lactams (BLs) owing to their safety, efficacy, and coverage spectrum are the most preferred agents for empiric use. Inappropriate use of older penicillins and cephalosporins led to selection and spread of resistant clones. As a result, these valuable agents have lost their reliability compelling clinicians to often use erstwhile last-line therapies such as carbapenems. Excessive carbapenems use imposed collateral damage by selecting difficult-to-treat carbapenem-resistant organisms. Lack of empiric therapeutic options amenable for use in infections caused by contemporary pathogens was realized by the pharmaceutical industry leading to intensive efforts in discovering novel antibiotics. These efforts led to the approval of newer β-lactams and β-lactamase inhibitor (BL-BLI) combination. This review elaborates the past trends in empirical use of BLs and ensuing patterns of resistance emergence in Gram-negatives. Furthermore, a critical appraisal of newer BL-BLIs has been presented to identify the appropriate clinical situations for their use to ensure clinical efficacy coupled with minimal resistance selection. These learning have been derived from past trends of clinical usage of older empiric therapies so that the therapeutic utility of newer agents is preserved for long in light of dwindling global antibiotics pipeline.
Collapse
Affiliation(s)
- Snehal Palwe
- Department of Environmental Science, SB College of Science, Aurangabad, India
| | - Kshama Khobragade
- Department of Environmental Science, SB College of Science, Aurangabad, India
| | - Arun S Kharat
- Laboratory of Microbiology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
8
|
Abstract
The acute respiratory distress syndrome (ARDS) is a common cause of respiratory failure in critically ill patients and is defined by the acute onset of noncardiogenic pulmonary oedema, hypoxaemia and the need for mechanical ventilation. ARDS occurs most often in the setting of pneumonia, sepsis, aspiration of gastric contents or severe trauma and is present in ~10% of all patients in intensive care units worldwide. Despite some improvements, mortality remains high at 30-40% in most studies. Pathological specimens from patients with ARDS frequently reveal diffuse alveolar damage, and laboratory studies have demonstrated both alveolar epithelial and lung endothelial injury, resulting in accumulation of protein-rich inflammatory oedematous fluid in the alveolar space. Diagnosis is based on consensus syndromic criteria, with modifications for under-resourced settings and in paediatric patients. Treatment focuses on lung-protective ventilation; no specific pharmacotherapies have been identified. Long-term outcomes of patients with ARDS are increasingly recognized as important research targets, as many patients survive ARDS only to have ongoing functional and/or psychological sequelae. Future directions include efforts to facilitate earlier recognition of ARDS, identifying responsive subsets of patients and ongoing efforts to understand fundamental mechanisms of lung injury to design specific treatments.
Collapse
|
9
|
Abstract
Background The most widely used measure of potency of antimicrobial drugs is Minimum Inhibitory Concentration (MIC). MIC is usually determined under standardised conditions in broths formulated to optimise bacterial growth on a species-by-species basis. This ensures comparability of data between laboratories. However, differences in values of MIC may arise between broths of differing chemical composition and for some drug classes major differences occur between broths and biological fluids such as serum and inflammatory exudate. Such differences must be taken into account, when breakpoint PK/PD indices are derived and used to predict dosages for clinical use. There is therefore interest in comparing MIC values in several broths and, in particular, in comparing broth values with those generated in serum. For the pig pneumonia pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida, MICs were determined for three drugs, florfenicol, oxytetracycline and marbofloxacin, in five broths [Mueller Hinton Broth (MHB), cation-adjusted Mueller Hinton Broth (CAMHB), Columbia Broth supplemented with NAD (CB), Brain Heart Infusion Broth (BHI) and Tryptic Soy Broth (TSB)] and in pig serum. Results For each drug, similar MIC values were obtained in all broths, with one exception, marbofloxacin having similar MICs for three broths and 4–5-fold higher MICs for two broths. In contrast, for both organisms, quantitative differences between broth and pig serum MICs were obtained after correction of MICs for drug binding to serum protein (fu serum MIC). Potency was greater (fu serum MIC lower) in serum than in broths for marbofloxacin and florfenicol for both organisms. For oxytetracycline fu serum:broth MIC ratios were 6.30:1 (P. multocida) and 0.35:1 (A. pleuropneumoniae), so that potency of this drug was reduced for the former species and increased for the latter species. The chemical composition of pig serum and broths was compared; major matrix differences in 14 constituents did not account for MIC differences. Bacterial growth rates were compared in broths and pig serum in the absence of drugs; it was concluded that broth/serum MIC differences might be due to differing growth rates in some but not all instances. Conclusions For all organisms and all drugs investigated in this study, it is suggested that broth MICs should be adjusted by an appropriate scaling factor when used to determine pharmacokinetic/pharmacodynamic breakpoints for dosage prediction.
Collapse
Affiliation(s)
- Lucy Dorey
- The Royal Veterinary College, Hawkshead Campus, Herts, AL97TA, Hatfield, UK.
| | - Peter Lees
- The Royal Veterinary College, Hawkshead Campus, Herts, AL97TA, Hatfield, UK
| |
Collapse
|
10
|
Taboada M, Melnick D, Iaconis JP, Sun F, Zhong NS, File TM, Llorens L, Friedland HD, Wilson D. Ceftaroline fosamil versus ceftriaxone for the treatment of community-acquired pneumonia: individual patient data meta-analysis of randomized controlled trials. J Antimicrob Chemother 2016; 71:862-70. [PMID: 26702925 DOI: 10.1093/jac/dkv415] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/05/2015] [Indexed: 12/16/2023] Open
Abstract
BACKGROUND We conducted a meta-analysis of clinical trials of adults hospitalized with pneumonia outcomes research team (PORT) risk class 3-4 community-acquired pneumonia (CAP) receiving ceftaroline fosamil versus ceftriaxone. METHODS Three Phase III trials (clinicaltrials.gov registration numbers NCT00621504, NCT00509106 and NCT01371838) including 1916 hospitalized patients with CAP randomized 1:1 to empirical ceftaroline fosamil (600 mg every 12 h) or ceftriaxone (1-2 g every 24 h) for 5-7 days were included in the meta-analysis. Primary outcome was clinical response at the test-of-cure visit (8-15 days after end of treatment) in the PORT risk class 3-4 modified ITT (MITT) and clinically evaluable (CE) populations. Data were tested for heterogeneity (χ(2) test) and, if not significant, results were pooled and OR and 95% CI constructed. A logistic regression analysis assessed factors impacting cure rate and treatment interactions. RESULTS Clinical cure rates in each trial consistently favoured ceftaroline fosamil versus ceftriaxone, with no evidence of heterogeneity. In the meta-analysis, ceftaroline fosamil was superior to ceftriaxone in the MITT (OR: 1.66; 95% CI 1.34, 2.06; P < 0.001) and CE (OR: 1.65; 95% CI 1.26, 2.16; P < 0.001) populations. Results were consistent across various patient- and disease-related factors including patients' age and PORT score. Prior antimicrobial use within 96 h of starting study treatment was associated with diminished differences in cure rates between treatments. CONCLUSIONS Ceftaroline fosamil was superior to ceftriaxone for empirical treatment of adults hospitalized with CAP. Receipt of prior antimicrobial therapy appeared to diminish the observed treatment effect.
Collapse
Affiliation(s)
- Maria Taboada
- AstraZeneca Research & Development, Biometrics & Information Sciences, Parklands, Alderley Park, Macclesfield, SK10 4TG, UK
| | - David Melnick
- AstraZeneca, 1800 Concord Pike, Wilmington, DE 19803, USA
| | | | - Fang Sun
- AstraZeneca China, 1168 Nan Jing Xi Road, Shanghai, 200041, P.R. China
| | - Nan Shan Zhong
- State Key Laboratory of Respiratory Diseases, 1st Affiliate Hospital of Respiratory Disease, Guangzhou Medical University, 151 Yan Jiang Road, Guangzhou, 501120, P.R. China
| | - Thomas M File
- Northeast Ohio Medical University, Rootstown, OH 44272, USA Summa Health System, Akron, OH 44304, USA
| | - Lily Llorens
- Cerexa Inc., 2100 Franklin St, Oakland, CA 94612, USA
| | | | - David Wilson
- AstraZeneca Research & Development, Biometrics & Information Sciences, Parklands, Alderley Park, Macclesfield, SK10 4TG, UK
| |
Collapse
|
11
|
Foster DM, Martin LG, Papich MG. Comparison of Active Drug Concentrations in the Pulmonary Epithelial Lining Fluid and Interstitial Fluid of Calves Injected with Enrofloxacin, Florfenicol, Ceftiofur, or Tulathromycin. PLoS One 2016; 11:e0149100. [PMID: 26872361 PMCID: PMC4752255 DOI: 10.1371/journal.pone.0149100] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/27/2016] [Indexed: 11/18/2022] Open
Abstract
Bacterial pneumonia is the most common reason for parenteral antimicrobial administration to beef cattle in the United States. Yet there is little information describing the antimicrobial concentrations at the site of action. The objective of this study was to compare the active drug concentrations in the pulmonary epithelial lining fluid and interstitial fluid of four antimicrobials commonly used in cattle. After injection, plasma, interstitial fluid, and pulmonary epithelial lining fluid concentrations and protein binding were measured to determine the plasma pharmacokinetics of each drug. A cross-over design with six calves per drug was used. Following sample collection and drug analysis, pharmacokinetic calculations were performed. For enrofloxacin and metabolite ciprofloxacin, the interstitial fluid concentration was 52% and 78% of the plasma concentration, while pulmonary fluid concentrations was 24% and 40% of the plasma concentration, respectively. The pulmonary concentrations (enrofloxacin + ciprofloxacin combined) exceeded the MIC90 of 0.06 μg/mL at 48 hours after administration. For florfenicol, the interstitial fluid concentration was almost 98% of the plasma concentration, and the pulmonary concentrations were over 200% of the plasma concentrations, exceeding the breakpoint (≤ 2 μg/mL), and the MIC90 for Mannheimia haemolytica (1.0 μg/mL) for the duration of the study. For ceftiofur, penetration to the interstitial fluid was only 5% of the plasma concentration. Pulmonary epithelial lining fluid concentration represented 40% of the plasma concentration. Airway concentrations exceeded the MIC breakpoint for susceptible respiratory pathogens (≤ 2 μg/mL) for a short time at 48 hours after administration. The plasma and interstitial fluid concentrations of tulathromcyin were lower than the concentrations in pulmonary fluid throughout the study. The bronchial concentrations were higher than the plasma or interstitial concentrations, with over 900% penetration to the airways. Despite high diffusion into the bronchi, the tulathromycin concentrations achieved were lower than the MIC of susceptible bacteria at most time points.
Collapse
Affiliation(s)
- Derek M. Foster
- Department of Population Health and Pathobiology, College of Veterinary Medicine, NC State University, Raleigh, NC, United States of America
- * E-mail:
| | - Luke G. Martin
- Department of Population Health and Pathobiology, College of Veterinary Medicine, NC State University, Raleigh, NC, United States of America
| | - Mark G. Papich
- Department of Molecular and Biomedical Sciences, College of Veterinary Medicine, NC State University, Raleigh, NC, United States of America
| |
Collapse
|
12
|
Impact of poor compliance with levofloxacin and moxifloxacin on respiratory tract infection antimicrobial efficacy: A pharmacokinetic/pharmacodynamic simulation study. Int J Antimicrob Agents 2015; 45:79-83. [DOI: 10.1016/j.ijantimicag.2014.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/17/2014] [Accepted: 08/18/2014] [Indexed: 11/21/2022]
|
13
|
Abstract
Community-acquired pneumonia (CAP) is a serious condition associated with significant morbidity and potential long-term mortality. Although the majority of patients with CAP are treated as outpatients, the greatest proportion of pneumonia-related mortality and healthcare expenditure occurs among the patients who are hospitalized. There has been considerable interest in determining risk factors and severity criteria assessments to assist with site-of-care decisions. For both inpatients and outpatients, the most common pathogens associated with CAP include Streptococcus pneumoniae, Haemophilus influenzae, group A streptococci and Moraxella catarrhalis. Atypical pathogens, Gram-negative bacilli, methicillin-resistant Staphylococcus aureus (MRSA) and viruses are also recognized aetiological agents of CAP. Despite the availability of antimicrobial therapies, the recent emergence of drug-resistant pneumococcal and staphylococcal isolates has limited the effectiveness of currently available agents. Because early and rapid initiation of empirical antimicrobial treatment is critical for achieving a favourable outcome in CAP, newer agents with activity against drug-resistant strains of S. pneumoniae and MRSA are needed for the management of patients with CAP.
Collapse
|