1
|
Yu Z, Wang Q, Pinilla-Redondo R, Madsen JS, Clasen KAD, Ananbeh H, Olesen AK, Gong Z, Yang N, Dechesne A, Smets B, Nesme J, Sørensen SJ. Horizontal transmission of a multidrug-resistant IncN plasmid isolated from urban wastewater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115971. [PMID: 38237397 DOI: 10.1016/j.ecoenv.2024.115971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/05/2024]
Abstract
Wastewater treatment plants (WWTPs) are considered reservoirs of antibiotic resistance genes (ARGs). Given that plasmid-mediated horizontal gene transfer plays a critical role in disseminating ARGs in the environment, it is important to inspect the transfer potential of transmissible plasmids to have a better understanding of whether these mobile ARGs can be hosted by opportunistic pathogens and should be included in One Health's considerations. In this study, we used a fluorescent-reporter-gene based exogenous isolation approach to capture extended-spectrum beta-lactamases encoding mobile determinants from sewer microbiome samples that enter an urban water system (UWS) in Denmark. After screening and sequencing, we isolated a ∼73 Kbp IncN plasmid (pDK_DARWIN) that harboured and expressed multiple ARGs. Using a dual fluorescent reporter gene system, we showed that this plasmid can transfer into resident urban water communities. We demonstrated the transfer of pDK_DARWIN to microbiome members of both the sewer (in the upstream UWS compartment) and wastewater treatment (in the downstream UWS compartment) microbiomes. Sequence similarity search across curated plasmid repositories revealed that pDK_DARWIN derives from an IncN backbone harboured by environmental and nosocomial Enterobacterial isolates. Furthermore, we searched for pDK_DARWIN sequence matches in UWS metagenomes from three countries, revealing that this plasmid can be detected in all of them, with a higher relative abundance in hospital sewers compared to residential sewers. Overall, this study demonstrates that this IncN plasmid is prevalent across Europe and an efficient vector capable of disseminating multiple ARGs in the urban water systems.
Collapse
Affiliation(s)
- Zhuofeng Yu
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Qinqin Wang
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Jonas Stenløkke Madsen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Kamille Anna Dam Clasen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Hanadi Ananbeh
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Asmus Kalckar Olesen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Zhuang Gong
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Nan Yang
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Arnaud Dechesne
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, DK-2800 Kgs, Lyngby, Denmark
| | - Barth Smets
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, DK-2800 Kgs, Lyngby, Denmark
| | - Joseph Nesme
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| | - Søren Johannes Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
2
|
Bai H, He LY, Wu DL, Gao FZ, Zhang M, Zou HY, Yao MS, Ying GG. Spread of airborne antibiotic resistance from animal farms to the environment: Dispersal pattern and exposure risk. ENVIRONMENT INTERNATIONAL 2022; 158:106927. [PMID: 34673316 DOI: 10.1016/j.envint.2021.106927] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/16/2021] [Accepted: 10/06/2021] [Indexed: 05/05/2023]
Abstract
Animal farms have been considered as the critical reservoir of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB). Spread of antibiotic resistance from animal farms to the surrounding environments via aerosols has become a growing concern. Here we investigated the dispersal pattern and exposure risk of airborne ARGs (especially in zoonotic pathogens) in the environment of chicken and dairy farms. Aerosol, dust and animal feces samples were collected from the livestock houses and surrounding environments (upwind and downwind areas) for assessing ARG profiles. Antibiotic resistance phenotype and genotype of airborne Staphylococcus spp. was especially analyzed to reveal the exposure risk of airborne ARGs. Results showed that airborne ARGs were detected from upwind (50 m/100 m) and downwind (50 m/100 m/150 m) air environment, wherein at least 30% of bacterial taxa dispersed from the animal houses. Moreover, atmospheric dispersion modeling showed that airborne ARGs can disperse from the animal houses to a distance of 10 km along the wind direction. Clinically important pathogens were identified in airborne culturable bacteria. Genus of Staphylococcus, Sphingomonas and Acinetobacter were potential bacterial host of airborne ARGs. Airborne Staphylococcus spp. were isolated from the environment of chicken farm (n = 148) and dairy farm (n = 87). It is notable that all isolates from chicken-related environment were multidrug-resistance (>3 clinical-relevant antibiotics), with more than 80% of them carrying methicillin resistance gene (mecA) and associated ARGs and MGEs. Presence of numerous ARGs and diverse pathogens in dust from animal houses and the downwind residential areas indicated the accumulation of animal feces origin ARGs in bioaerosols. Employees and local residents in the chick farming environment are exposed to chicken originated ARGs and multidrug resistant Staphylococcus spp. via inhalation. This study highlights the potential exposure risks of airborne ARGs and antibiotic resistant pathogens to human health.
Collapse
Affiliation(s)
- Hong Bai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Dai-Ling Wu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China; Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Min Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hai-Yan Zou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Mao-Sheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
3
|
Caméléna F, Morel F, Merimèche M, Decousser JW, Jacquier H, Clermont O, Darty M, Mainardis M, Cambau E, Tenaillon O, Denamur E, Berçot B. Genomic characterization of 16S rRNA methyltransferase-producing Escherichia coli isolates from the Parisian area, France. J Antimicrob Chemother 2021; 75:1726-1735. [PMID: 32300786 DOI: 10.1093/jac/dkaa105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/15/2020] [Accepted: 02/27/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The resistance to all aminoglycosides (AGs) conferred by 16S rRNA methyltransferase enzymes (16S-RMTases) is a major public health concern. OBJECTIVES To characterize the resistance genotype, its genetic environment and plasmid support, and the phylogenetic relatedness of 16S-RMTase-producing Escherichia coli from France. METHODS We screened 137 E. coli isolates resistant to all clinically relevant AGs from nine Parisian hospitals for 16S-RMTases. WGS was performed on clinical isolates with high-level AG resistance (MIC ≥256 mg/L) and their transformants. RESULTS Thirty of the 137 AG-resistant E. coli produced 16S-RMTases: 11 ArmA, 18 RmtB and 1 RmtC. The 16S-RMTase producers were also resistant to third-generation cephalosporins (90% due to a blaCTX-M gene), co-trimoxazole, fluoroquinolones and carbapenems (blaNDM and blaVIM genes) in 97%, 83%, 70% and 10% of cases, respectively. Phylogenomic diversity was high in ArmA producers, with 10 different STs, but a similar genetic environment, with the Tn1548 transposon carried by a plasmid closely related to pCTX-M-3 in 6/11 isolates. Conversely, RmtB producers belonged to 12 STs, the most frequent being ST405 and ST complex (STc) 10 (four and four isolates, respectively). The rmtB gene was carried by IncF plasmids in 10 isolates and was found in different genetic environments. The rmtC gene was carried by the pNDM-US plasmid. CONCLUSIONS ArmA and RmtB are the predominant 16S-RMTases in France, but their spread follows two different patterns: (i) dissemination of a conserved genetic support carrying armA in E. coli with high levels of genomic diversity; and (ii) various genetic environments surrounding rmtB in clonally related E. coli.
Collapse
Affiliation(s)
- François Caméléna
- AP-HP, Service de Microbiologie, Hôpital Saint-Louis, Paris, France.,Université de Paris, INSERM, IAME, Paris, France
| | - Florence Morel
- Université de Paris, INSERM, IAME, Paris, France.,AP-HP, Service de Bactériologie-Virologie, Hôpital Lariboisière, Paris, France
| | - Manel Merimèche
- AP-HP, Service de Microbiologie, Hôpital Saint-Louis, Paris, France.,Université de Paris, INSERM, IAME, Paris, France
| | - Jean-Winoc Decousser
- Université de Paris, INSERM, IAME, Paris, France.,AP-HP, Service de Bactériologie et d'Hygiène Hospitalière, Hôpital Henri Mondor, Créteil, France
| | - Hervé Jacquier
- Université de Paris, INSERM, IAME, Paris, France.,AP-HP, Service de Bactériologie-Virologie, Hôpital Lariboisière, Paris, France
| | | | - Mélanie Darty
- AP-HP, Service de Bactériologie et d'Hygiène Hospitalière, Hôpital Henri Mondor, Créteil, France
| | - Mary Mainardis
- AP-HP, Service de Microbiologie, Hôpital Saint-Louis, Paris, France
| | - Emmanuelle Cambau
- Université de Paris, INSERM, IAME, Paris, France.,AP-HP, Service de Bactériologie-Virologie, Hôpital Lariboisière, Paris, France
| | | | - Erick Denamur
- Université de Paris, INSERM, IAME, Paris, France.,AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, Paris, France
| | - Béatrice Berçot
- AP-HP, Service de Microbiologie, Hôpital Saint-Louis, Paris, France.,Université de Paris, INSERM, IAME, Paris, France
| | | |
Collapse
|
4
|
Wang J, Wang ZY, Wang Y, Sun F, Li W, Wu H, Shen PC, Pan ZM, Jiao X. Emergence of 16S rRNA Methylase Gene rmtB in Salmonella Enterica Serovar London and Evolution of RmtB-Producing Plasmid Mediated by IS 26. Front Microbiol 2021; 11:604278. [PMID: 33519749 PMCID: PMC7843705 DOI: 10.3389/fmicb.2020.604278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/08/2020] [Indexed: 11/23/2022] Open
Abstract
This study aimed to characterize 16S rRNA methylase genes among Salmonella and to elucidate the structure and evolution of rmtB-carrying plasmids. One hundred fifty-eight Salmonella isolates from one pig slaughterhouse were detected as containing 16S rRNA methylase genes; two (1.27%) Salmonella London isolates from slaughtered pigs were identified to carry rmtB. They were resistant to gentamicin, amikacin, streptomycin, ampicillin, tetracycline, florfenicol, ciprofloxacin, and sulfamethoxazole/trimethoprim. The complete sequences of RmtB-producing isolates were obtained by PacBio single-molecule real-time sequencing. The isolate HA1-SP5 harbored plasmids pYUHAP5-1 and pYUHAP5-2. pYUHAP5-1 belonged to the IncFIBK plasmid and showed high similarity to multiple IncFIBK plasmids from Salmonella London in China. The rmtB-carrying plasmid pYUHAP5-2 contained a typical IncN-type backbone; the variable region comprising several resistance genes and an IncX1 plasmid segment was inserted in the resolvase gene resP and bounded by IS26. The sole plasmid in HA3-IN1 designated as pYUHAP1 was a cointegrate of plasmids from pYUHAP5-1-like and pYUHAP5-2-like, possibly mediated by IS26 via homologous recombination or conservative transposition. The structure differences between pYUHAP1 and its corresponding part of pYUHAP5-1 and pYUHAP5-2 may result from insertion, deletion, or recombination events mediated by mobile elements (IS26, ISCR1, and ISKpn43). This is the first report of rmtB in Salmonella London. IncN plasmids are efficient vectors for rmtB distribution and are capable of evolving by reorganization and cointegration. Our results further highlight the important role of mobile elements, particularly IS26, in the dissemination of resistance genes and plasmid evolution.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zhen-Yu Wang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yan Wang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Fan Sun
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Wei Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Han Wu
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Peng-Cheng Shen
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zhi-Ming Pan
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Cheng C, Ying Y, Zhou D, Zhu L, Lu J, Li A, Bao Q, Zhu M. RamA, a transcriptional regulator conferring florfenicol resistance in Leclercia adecarboxylata R25. Folia Microbiol (Praha) 2020; 65:1051-1060. [PMID: 32857336 PMCID: PMC7716942 DOI: 10.1007/s12223-020-00816-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
Due to the inappropriate use of florfenicol in agricultural practice, florfenicol resistance has become increasingly serious. In this work, we studied the novel florfenicol resistance mechanism of an animal-derived Leclercia adecarboxylata strain R25 with high-level florfenicol resistance. A random genomic DNA library was constructed to screen the novel florfenicol resistance gene. Gene cloning, gene knockout, and complementation combined with the minimum inhibitory concentration (MIC) detection were conducted to determine the function of the resistance-related gene. Sequencing and bioinformatics methods were applied to analyze the structure of the resistance gene-related sequences. Finally, we obtained a regulatory gene of an RND (resistance-nodulation-cell division) system, ramA, that confers resistance to florfenicol and other antibiotics. The ramA-deleted variant (LA-R25ΔramA) decreased the level of resistance against florfenicol and several other antibiotics, while a ramA-complemented strain (pUCP24-prom-ramA/LA-R25ΔramA) restored the drug resistance. The whole-genome sequencing revealed that there were five RND efflux pump genes (mdtABC, acrAB, acrD, acrEF, and acrAB-like) encoded over the chromosome, and ramA located upstream of the acrAB-like genes. The results of this work suggest that ramA confers resistance to florfenicol and other structurally unrelated antibiotics, presumably by regulating the RND efflux pump genes in L. adecarboxylata R25.
Collapse
Affiliation(s)
- Cong Cheng
- Vocational and Technical College, Lishui University, Lishui, 323000, China
| | - Yuanyuan Ying
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Taizhou, 317000, Zhejiang, China
| | - Danying Zhou
- School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Licheng Zhu
- Vocational and Technical College, Lishui University, Lishui, 323000, China
| | - Junwan Lu
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Taizhou, 317000, Zhejiang, China
| | - Aifang Li
- The Fifth Affiliated Hospital, Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Qiyu Bao
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Taizhou, 317000, Zhejiang, China
| | - Mei Zhu
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, 310013, Zhejiang, China.
| |
Collapse
|
6
|
Shrestha S, Tada T, Sherchan JB, Uchida H, Hishinuma T, Oshiro S, Morioka S, Kattel H, Kirikae T, Sherchand JB. Highly multidrug-resistant Morganella morganii clinical isolates from Nepal co-producing NDM-type metallo-β-lactamases and the 16S rRNA methylase ArmA. J Med Microbiol 2020; 69:572-575. [PMID: 32100711 DOI: 10.1099/jmm.0.001160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Morganella morganii can harbour extended-spectrum β-lactamases and carbapenemases, resulting in increased resistance to multiple antibiotics and a high mortality rate. This study describes the emergence of highly multidrug-resistant clinical isolates of M. morganii from Nepal co-producing NDM-type metallo-β-lactamases, including NDM-1 and NDM-5, and the 16S rRNA methylase ArmA. This is the first report of M. morganii clinical isolates from Nepal co-producing NDM-1/-5 and ArmA. It is important to establish infection control systems and effective treatments against multidrug-resistant M. morganii.
Collapse
Affiliation(s)
- Shovita Shrestha
- Department of Microbiology, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Tatsuya Tada
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jatan B Sherchan
- Department of Medical Microbiology, Kathmandu University School of Medical Sciences, Dhulikhel, Nepal
| | - Hiroki Uchida
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomomi Hishinuma
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Oshiro
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | | - Hari Kattel
- Department of Microbiology, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Teruo Kirikae
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jeevan B Sherchand
- Department of Microbiology, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| |
Collapse
|
7
|
Florfenicol Resistance in Enterobacteriaceae and Whole-Genome Sequence Analysis of Florfenicol-Resistant Leclercia adecarboxylata Strain R25. Int J Genomics 2019; 2019:9828504. [PMID: 31662959 PMCID: PMC6791223 DOI: 10.1155/2019/9828504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/30/2019] [Indexed: 12/23/2022] Open
Abstract
Due to inappropriate use, florfenicol resistance is becoming increasingly serious among animal respiratory tract and gut bacteria. To detect the florfenicol resistance mechanism among Enterobacteriaceae bacteria, 292 isolates from animal feces were examined. The agar dilution method was conducted to determine the minimum inhibitory concentration (MIC) for florfenicol, and polymerase chain reaction (PCR) was performed to detect florfenicol resistance genes. To further explore the molecular mechanism of florfenicol resistance, the whole-genome Leclercia adecarboxylata R25 was sequenced. Of the strains tested, 61.6% (180/292) were resistant to florfenicol, 64.4% (188/292) were positive for floR, and 1.0% (3/292) for cfr. The whole-genome sequence analysis of L. adecarboxylata R25 revealed that the floR gene is carried by a transposon and located on a plasmid (pLA-64). Seven other resistance genes are also encoded on pLA-64, all of which were found to be related to mobile genetic elements. The sequences sharing the greatest similarities to pLA-64 are the plasmids p02085-tetA of Citrobacter freundii and p234 and p388, both from Enterobacter cloacae. The resistance gene-related mobile genetic elements also share homologous sequences from different species or genera of bacteria. These findings indicate that floR mainly contributes to the high rate of florfenicol resistance among Enterobacteriaceae. The resistance gene-related mobile genetic elements encoded by pLA-64 may be transferred among bacteria of different species or genera, resulting in resistance dissemination.
Collapse
|
8
|
Zhao G, Luo Z, Wang Y, Liu J, Wu D, Zhang L, Yang X. Draft genome sequencing and annotation of a low-virulence Morganella morganii strain CQ-M7, a multidrug-resistant isolate from the giant salamander in China. J Glob Antimicrob Resist 2019; 20:248-252. [PMID: 31449965 DOI: 10.1016/j.jgar.2019.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/13/2019] [Accepted: 08/17/2019] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES A multidrug-resistant Morganella morganii strain (CQ-M7), isolated from the kidney of a diseased Chinese giant salamander in China, was examined with whole genome sequencing to better understand drug tolerance and its pathogenicity. METHODS The draft genome of the investigated strain was assembled using HGA assembler and annotated using Rapid Annotations Subsystems Technology (RAST) server. The contigs were annotated by the appropriate bioinformatics tools available on the National Center for Biotechnology Information (NCBI) website. Antibiotic resistance genes were detected by PCR. Pathogenicity of the isolate was performed on 30 healthy Chinese giant salamanders with different infection dosages. RESULTS The CQ-M7 strain showed resistance to multiple antimicrobials, especially to aminoglycoside and β-lactam antibiotics. Seventeen drug-resistance genes were detected, which were related to β-lactams, aminoglycosides, fluoroquinolones, tetracyclines, peptide antibiotic, and fosfomycin resistance. Sequence analysis showed the assembled genome size to be 4 966 326bp with 51.16% of GC content, containing 4587 protein-coding genes, 71 pseudogenes, five rRNAs, 80 tRNAs, and five noncoding RNAs. The genome sequence was deposited in GenBank under accession number RQIJ00000000. Artificial infection results indicated that the CQ-M7 strain was a low-virulence strain for the Chinese giant salamander. CONCLUSION It is believed that this is the first draft genome of Chinese giant salamander original Morganella morganii strain harbouring multiple antibiotic resistance genes in China. The reported genome sequence could provide insights into antibiotic resistance mechanisms and control strategies of Morganella morganii.
Collapse
Affiliation(s)
- Guangwei Zhao
- College of Animal Science, Southwest University, No. 160, Xueyuan Road, Chongqing, 402460, PR China; Chongqing Sanjiezhongxin Bioengineering Co, Ltd, No.3 Southern Section of Yingbin Avenue, Chongqing, 402460, PR China
| | - Zeli Luo
- College of Animal Science, Southwest University, No. 160, Xueyuan Road, Chongqing, 402460, PR China
| | - Yan Wang
- Shanghai Customs, No.1208, Minsuring Road, Shanghai Pudong District, Shanghai, 200135, PR China
| | - Jia Liu
- College of Animal Science, Southwest University, No. 160, Xueyuan Road, Chongqing, 402460, PR China
| | - Di Wu
- College of Animal Science, Southwest University, No. 160, Xueyuan Road, Chongqing, 402460, PR China
| | - Liwu Zhang
- Chongqing Sanjiezhongxin Bioengineering Co, Ltd, No.3 Southern Section of Yingbin Avenue, Chongqing, 402460, PR China
| | - Xiaowei Yang
- College of Animal Science, Southwest University, No. 160, Xueyuan Road, Chongqing, 402460, PR China; Chongqing Sanjiezhongxin Bioengineering Co, Ltd, No.3 Southern Section of Yingbin Avenue, Chongqing, 402460, PR China.
| |
Collapse
|
9
|
Affiliation(s)
- H Matsuura
- Department of General Internal Medicine, Kurashiki Central Hospital, 1-1-1, Miwa, Kurashiki-city, Okayama, Japan
- Department of General Internal Medicine, Mitoyo General Hospital, 708, Himehama, Toyohama-cho, Kanonji-city, Kagawa, Japan
| | - S Sugiyama
- Department of General Internal Medicine, Mitoyo General Hospital, 708, Himehama, Toyohama-cho, Kanonji-city, Kagawa, Japan
| |
Collapse
|
10
|
Madec JY, Haenni M. Antimicrobial resistance plasmid reservoir in food and food-producing animals. Plasmid 2018; 99:72-81. [PMID: 30194944 DOI: 10.1016/j.plasmid.2018.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/24/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance (AMR) plasmids have been recognized as important vectors for efficient spread of AMR phenotypes. The food reservoir includes both food-producing animals and food products, and a huge diversity of AMR plasmids have been reported in this sector. Based on molecular typing methods and/or whole genome sequencing approaches, certain AMR genes/plasmids combinations were found more frequently in food compared to other settings. However, the food source of a definite AMR plasmid is highly complex to confirm due to cross-sectorial transfers and international spread of AMR plasmids. For risk assessment purposes related to human health, AMR plasmids found in food and bearing genes conferring resistances to critically important antibiotics in human medicine - such as to extended-spectrum cephalosporins, carbapenems or colistin - have been under specific scrutiny these last years. Those plasmids are often multidrug resistant and their dissemination can be driven by the selective pressure exerted by any of the antibiotics concerned. Also, AMR plasmids carry numerous other genes conferring vital properties to the bacterial cell and are recurrently subjected to evolutionary steps such as hybrid plasmids, making the epidemiology of AMR plasmids in food a moving picture.
Collapse
Affiliation(s)
- Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, Anses Laboratoire de Lyon - Université de Lyon, Lyon, France
| | - Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, Anses Laboratoire de Lyon - Université de Lyon, Lyon, France.
| |
Collapse
|
11
|
Screening and Characterization of Multidrug-Resistant Gram-Negative Bacteria from a Remote African Area, São Tomé and Príncipe. Antimicrob Agents Chemother 2018; 62:AAC.01021-18. [PMID: 29941640 DOI: 10.1128/aac.01021-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/21/2018] [Indexed: 01/22/2023] Open
Abstract
The occurrence of resistance to last-resort antibiotics was evaluated among Enterobacteriaceae isolates recovered from hospitalized children in a remote African archipelago, São Tomé and Príncipe, where there is limited access to those antibiotics. Fifty patients were screened for colonization by carbapenem-, pan-aminoglycoside-, or polymyxin-resistant Enterobacteriaceae A total of 36 isolates (including 30 Escherichia coli and 4 Klebsiella pneumoniae) were recovered from 23 patients, including 26 isolates harboring the blaOXA-181 carbapenemase gene, a single isolate harboring the 16S rRNA methylase gene rmtB encoding pan-resistance to aminoglycosides, and 8 isolates coharboring both genes. A single isolate possessed the plasmid-borne colistin resistance gene mcr-1 A high clonal relationship was found for OXA-181-producing E. coli (4 clones), and conversely, three of the four OXA-181-producing K. pneumoniae isolates were clonally unrelated. This study overall showed a high prevalence of resistance to last-resort antibiotics in this country, where no epidemiological data were previously available.
Collapse
|
12
|
Evolution and Comparative Genomics of F33:A-:B- Plasmids Carrying blaCTX-M-55 or blaCTX-M-65 in Escherichia coli and Klebsiella pneumoniae Isolated from Animals, Food Products, and Humans in China. mSphere 2018; 3:3/4/e00137-18. [PMID: 30021873 PMCID: PMC6052338 DOI: 10.1128/msphere.00137-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Worldwide spread of antibiotic resistance genes among Enterobacteriaceae isolates is of great concern. F33:A−:B− plasmids are important vectors of resistance genes, such as blaCTX-M-55/-65, blaNDM-1, fosA3, and rmtB, among E. coli isolates from various sources in China. We determined and compared the complete sequences of 17 F33:A−:B− plasmids from various sources. These plasmids appear to have evolved from the same ancestor by mobile element-mediated rearrangement, acquisition, and/or loss of resistance modules and similar IncN1, IncI1, and/or IncX1 plasmid backbone segments. Our findings highlight the evolutionary potential of F33:A−:B− plasmids as efficient vectors to capture and diffuse clinically relevant resistance genes. To understand the underlying evolution process of F33:A−:B− plasmids among Enterobacteriaceae isolates of various origins in China, the complete sequences of 17 blaCTX-M-harboring F33:A−:B− plasmids obtained from Escherichia coli and Klebsiella pneumoniae isolates from different sources (animals, animal-derived food, and human clinics) in China were determined. F33:A−:B− plasmids shared similar plasmid backbones comprising replication, leading, and conjugative transfer regions and differed by the numbers of repeats in yddA and traD and by the presence of group II intron, except that pHNAH9 lacked a large segment of the leading and transfer regions. The variable regions of F33:A−B− plasmids were distinct and were inserted downstream of the addiction system pemI/pemK, identified as the integration hot spot among F33:A−B− plasmids. The variable region contained resistance genes and mobile elements or contained segments from other types of plasmids, such as IncI1, IncN1, and IncX1. Three plasmids encoding CTX-M-65 were very similar to our previously described pHN7A8 plasmid. Four CTX-M-55-producing plasmids contained multidrug resistance regions related to that of F2:A−B− plasmid pHK23a from Hong Kong. Five plasmids with IncN and/or IncX replication regions and IncI1-backbone fragments had variable regions related to those of pE80 and p42-2. The remaining five plasmids with IncN replicons and an IncI1 segment also possessed closely related variable regions. The diversity in variable regions was presumably associated with rearrangements, insertions, and/or deletions mediated by mobile elements, such as IS26 and IS1294. IMPORTANCE Worldwide spread of antibiotic resistance genes among Enterobacteriaceae isolates is of great concern. F33:A−:B− plasmids are important vectors of resistance genes, such as blaCTX-M-55/-65, blaNDM-1, fosA3, and rmtB, among E. coli isolates from various sources in China. We determined and compared the complete sequences of 17 F33:A−:B− plasmids from various sources. These plasmids appear to have evolved from the same ancestor by mobile element-mediated rearrangement, acquisition, and/or loss of resistance modules and similar IncN1, IncI1, and/or IncX1 plasmid backbone segments. Our findings highlight the evolutionary potential of F33:A−:B− plasmids as efficient vectors to capture and diffuse clinically relevant resistance genes.
Collapse
|
13
|
Bueno I, Williams-Nguyen J, Hwang H, Sargeant JM, Nault AJ, Singer RS. Systematic Review: Impact of point sources on antibiotic-resistant bacteria in the natural environment. Zoonoses Public Health 2018; 65:e162-e184. [PMID: 29205899 DOI: 10.1111/zph.12426] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Indexed: 11/02/2023]
Abstract
Point sources such as wastewater treatment plants and agricultural facilities may have a role in the dissemination of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARG). To analyse the evidence for increases in ARB in the natural environment associated with these point sources of ARB and ARG, we conducted a systematic review. We evaluated 5,247 records retrieved through database searches, including both studies that ascertained ARG and ARB outcomes. All studies were subjected to a screening process to assess relevance to the question and methodology to address our review question. A risk of bias assessment was conducted upon the final pool of studies included in the review. This article summarizes the evidence only for those studies with ARB outcomes (n = 47). Thirty-five studies were at high (n = 11) or at unclear (n = 24) risk of bias in the estimation of source effects due to lack of information and/or failure to control for confounders. Statistical analysis was used in ten studies, of which one assessed the effect of multiple sources using modelling approaches; none reported effect measures. Most studies reported higher ARB prevalence or concentration downstream/near the source. However, this evidence was primarily descriptive and it could not be concluded that there is a clear impact of point sources on increases in ARB in the environment. To quantify increases in ARB in the environment due to specific point sources, there is a need for studies that stress study design, control of biases and analytical tools to provide effect measure estimates.
Collapse
Affiliation(s)
- I Bueno
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - J Williams-Nguyen
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - H Hwang
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - J M Sargeant
- Department of Population Medicine and Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - A J Nault
- Veterinary Medical Library, University of Minnesota, St. Paul, MN, USA
| | - R S Singer
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
14
|
Xia J, Fang LX, Cheng K, Xu GH, Wang XR, Liao XP, Liu YH, Sun J. Clonal Spread of 16S rRNA Methyltransferase-Producing Klebsiella pneumoniae ST37 with High Prevalence of ESBLs from Companion Animals in China. Front Microbiol 2017; 8:529. [PMID: 28446899 PMCID: PMC5389360 DOI: 10.3389/fmicb.2017.00529] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/14/2017] [Indexed: 11/23/2022] Open
Abstract
We screened 30 Klebsiella pneumoniae isolates from dogs and cats at a single animal hospital in Guangdong Province, China. Among them, 12 K. pneumoniae strains possessed high-level resistance to amikacin and gentamicin and these were screened for 16S rRNA methyltransferase (16S-RMTase) genes. And then the genes positive isolates were detected for ESBLs (extended spectrum β-lactamases) and analyzed by pulsed-field gel electrophoresis, multilocus sequence typing, PCR-based replicon typing and plasmid analysis. The genetic profiles of rmtB were also determined by PCR mapping. The twelve 16S-RMTase gene-positive isolates were rmtB (11/30) and armA (2/30) with one isolate carrying both genes. Extended spectrum β-lactamases genes were represented by blaCTX-M-55 (9/12), blaCTX-M-27 (2/12) and blaCTX-M-14 (1/12). The twelve 16S-RMTase containing strains were grouped into five clonal patterns and ST37 was the most prevalent sequence type. Ten rmtB-bearing plasmids conjugated successfully and all belonged to IncN and IncF (F33:A-:B-) incompatibility groups. Nine of the transconjugants carried a 97 kb plasmid and the other harbored both ∼60 and ∼200 kb plasmids. rmtB and blaCTX-M-55 were present on the same plasmid and indicated the co-transfer of these two genes, with the rmtB gene showing highly relevant relationships with IS26 and Tn3. Our findings suggested a high prevalence of 16S-RMTase genes in K. pneumonia ST37 from dogs and cats. Additional studies are needed to trace the evolutionary path of this type of resistance among the K. pneumonia isolates, and to determine whether they have been transferred to humans.
Collapse
Affiliation(s)
- Jing Xia
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural UniversityGuangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural UniversityGuangzhou, China
| | - Liang-Xing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural UniversityGuangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural UniversityGuangzhou, China
| | - Ke Cheng
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural UniversityGuangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural UniversityGuangzhou, China
| | - Guo-Hao Xu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural UniversityGuangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural UniversityGuangzhou, China
| | - Xi-Ran Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural UniversityGuangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural UniversityGuangzhou, China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural UniversityGuangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural UniversityGuangzhou, China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural UniversityGuangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural UniversityGuangzhou, China.,Jiangsu Co-Innovation Centre for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural UniversityGuangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural UniversityGuangzhou, China
| |
Collapse
|
15
|
Schwarz S, Enne VI, van Duijkeren E. 40 years of veterinary papers inJAC– what have we learnt? J Antimicrob Chemother 2016; 71:2681-90. [DOI: 10.1093/jac/dkw363] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
16
|
Liu H, Zhu J, Hu Q, Rao X. Morganella morganii, a non-negligent opportunistic pathogen. Int J Infect Dis 2016; 50:10-7. [PMID: 27421818 DOI: 10.1016/j.ijid.2016.07.006] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/31/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022] Open
Abstract
Morganella morganii belongs to the tribe Proteeae of the Enterobacteriaceae family. This species is considered as an unusual opportunistic pathogen that mainly causes post-operative wound and urinary tract infections. However, certain clinical M. morganii isolates present resistance to multiple antibiotics by carrying various resistant genes (such as blaNDM-1, and qnrD1), thereby posing a serious challenge for clinical infection control. Moreover, virulence evolution makes M. morganii an important pathogen. Accumulated data have demonstrated that M. morganii can cause various infections, such as sepsis, abscess, purple urine bag syndrome, chorioamnionitis, and cellulitis. This bacterium often results in a high mortality rate in patients with some infections. M. morganii is considered as a non-negligent opportunistic pathogen because of the increased levels of resistance and virulence. In this review, we summarized the epidemiology of M. morganii, particularly on its resistance profile and resistant genes, as well as the disease spectrum and risk factors for its infection.
Collapse
Affiliation(s)
- Hui Liu
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Junmin Zhu
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Qiwen Hu
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
17
|
Xia J, Sun J, Cheng K, Li L, Fang LX, Zou MT, Liao XP, Liu YH. Persistent spread of the rmtB 16S rRNA methyltransferase gene among Escherichia coli isolates from diseased food-producing animals in China. Vet Microbiol 2016; 188:41-6. [PMID: 27139028 DOI: 10.1016/j.vetmic.2016.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 11/29/2022]
Abstract
A total of 963 non-duplicate Escherichia coli strains isolated from food-producing animals between 2002 and 2012 were screened for the presence of the 16S rRNA methyltransferase genes. Among the positive isolates, resistance determinants to extended spectrum β-lactamases, plasmid-mediated quinolone resistance genes as well as floR and fosA/A3/C2 were detected using PCR analysis. These isolates were further subjected to antimicrobial susceptibility testing, molecular typing, PCR-based plasmid replicon typing and plasmid analysis. Of the 963 E. coli isolates, 173 (18.0%), 3 (0.3%) and 2 (0.2%) were rmtB-, armA- and rmtE-positive strains, respectively. All the 16S rRNA methyltransferase gene-positive isolates were multidrug resistant and over 90% of them carried one or more type of resistance gene. IncF (especially IncFII) and non-typeable plasmids played the main role in the dissemination of rmtB, followed by the IncN plasmids. Plasmids that harbored rmtB ranged in size from 20kb to 340kb EcoRI-RFLP testing of the 109 rmtB-positive plasmids from different years and different origins suggested that horizontal (among diverse animals) and vertical transfer of IncF, non-typeable and IncN-type plasmids were responsible for the spread of rmtB gene. In summary, our findings highlight that rmtB was the most prevalent 16S rRNA methyltransferase gene, which present persistent spread in food-producing animals in China and a diverse group of plasmids was responsible for rmtB dissemination.
Collapse
Affiliation(s)
- Jing Xia
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Ke Cheng
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Liang Li
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Liang-Xing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Meng-Ting Zou
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Jiangsu Co-Innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China.
| |
Collapse
|
18
|
Yang QE, Sun J, Li L, Deng H, Liu BT, Fang LX, Liao XP, Liu YH. IncF plasmid diversity in multi-drug resistant Escherichia coli strains from animals in China. Front Microbiol 2015; 6:964. [PMID: 26441898 PMCID: PMC4585273 DOI: 10.3389/fmicb.2015.00964] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 08/31/2015] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to characterize a collection of 103 multidrug resistance IncF plasmids recovered from Escherichia coli of food producing and companion animals between 2003 and 2012. A total of 103 incF plasmids were characterized using an established PCR-based IncF replicon sequence typing (RST) system to identify FII, FIA, and FIB (FAB) groups. Plasmids were also analyzed using-restriction fragment length polymorphism (RFLP). Antibiotic Resistance determinants bla CTX-M , plasmid-mediated quinolone resistance (PMQR) genes and rmtB and plasmid addiction systems (PAS) were identified by PCR screening. A total of 20 different RSTs from 103 IncF plasmids were identified. The groups F2 and F33 with the RST formulae A-: B- were the most frequently encountered types (63.1%). The antibiotic resistance genes (ARGs) bla CTX-M , rmtB, and oqxB were carried by 82, 37, and 34 IncF plasmids, respectively. Most of these plasmids carried more than one resistance gene (59.2%, 61/103). The IncF plasmids also had a high frequency of addiction systems (mean 2.54) and two antisense RNA-regulated systems (hok-sok and srnBC) and a protein antitoxin-regulated system (pemKI) were the most prevalent. Not surprisingly, RFLP profiles among the IncF plasmids were diverse even though some shared identical IncF-RSTs. This is the first extensive study of IncF plasmid-positive E. coli isolates from animals in China. Our results demonstrate that IncF is the most prevalent plasmid family in E. coli plasmids and they commonly carry multiple resistance determinants that render them resistant to different antibiotic classes simultaneously. IncF plasmids also harbor addiction systems, promoting their stability and maintenance in the bacterial host, under changing environmental conditions.
Collapse
Affiliation(s)
- Qiu-E Yang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Jian Sun
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Liang Li
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Hui Deng
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Bao-Tao Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Liang-Xing Fang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Xiao-Ping Liao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Ya-Hong Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University Guangzhou, China ; Jiangsu Co-Innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses Yangzhou, China
| |
Collapse
|
19
|
Garneau-Tsodikova S, Labby KJ. Mechanisms of Resistance to Aminoglycoside Antibiotics: Overview and Perspectives. MEDCHEMCOMM 2015; 7:11-27. [PMID: 26877861 DOI: 10.1039/c5md00344j] [Citation(s) in RCA: 290] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aminoglycoside (AG) antibiotics are used to treat many Gram-negative and some Gram-positive infections and, importantly, multidrug-resistant tuberculosis. Among various bacterial species, resistance to AGs arises through a variety of intrinsic and acquired mechanisms. The bacterial cell wall serves as a natural barrier for small molecules such as AGs and may be further fortified via acquired mutations. Efflux pumps work to expel AGs from bacterial cells, and modifications here too may cause further resistance to AGs. Mutations in the ribosomal target of AGs, while rare, also contribute to resistance. Of growing clinical prominence is resistance caused by ribosome methyltransferases. By far the most widespread mechanism of resistance to AGs is the inactivation of these antibiotics by AG-modifying enzymes. We provide here an overview of these mechanisms by which bacteria become resistant to AGs and discuss their prevalence and potential for clinical relevance.
Collapse
Affiliation(s)
- Sylvie Garneau-Tsodikova
- University of Kentucky, Department of Pharmaceutical Sciences, 789 South Limestone Street, Lexington, KY, USA. ; Tel: 859-218-1686
| | - Kristin J Labby
- Beloit College, Department of Chemistry, 700 College Street, Beloit, WI, USA. ; Tel: 608-363-2273
| |
Collapse
|
20
|
Characterization of IncI1 sequence type 71 epidemic plasmid lineage responsible for the recent dissemination of CTX-M-65 extended-spectrum β-lactamase in the Bolivian Chaco region. Antimicrob Agents Chemother 2015; 59:5340-7. [PMID: 26100713 DOI: 10.1128/aac.00589-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/10/2015] [Indexed: 11/20/2022] Open
Abstract
During the last decade, a significant diffusion of CTX-M-type extended-spectrum β-lactamases (ESBLs) was observed in commensal Escherichia coli from healthy children in the Bolivian Chaco region, with initial dissemination of CTX-M-2, which was then replaced by CTX-M-15 and CTX-M-65. In this work, we demonstrate that the widespread dissemination of CTX-M-65 observed in this context was related to the polyclonal spreading of an IncI1 sequence type 71 (ST71) epidemic plasmid lineage. The structure of the epidemic plasmid population was characterized by complete sequencing of four representatives and PCR mapping of the remainder (n = 16). Sequence analysis showed identical plasmid backbones (similar to that of the reference IncI1 plasmid, R64) and a multiresistance region (MRR), which underwent local microevolution. The MRR harbored genes responsible for resistance to β-lactams, aminoglycosides, florfenicol, and fosfomycin (with microevolution mainly consisting of deletion events of resistance modules). The bla CTX-M-65 module harbored by the IncI1 ST71 epidemic plasmid was apparently derived from IncN-type plasmids, likely via IS26-mediated mobilization. The plasmid could be transferred by conjugation to several different enterobacterial species (Escherichia coli, Cronobacter sakazakii, Enterobacter cloacae, Klebsiella oxytoca, Klebsiella pneumoniae, and Salmonella enterica) and was stably maintained without selective pressure in these species, with the exception of K. oxytoca and S. enterica. Fitness assays performed in E. coli recipients demonstrated that the presence of the epidemic plasmid was apparently not associated with a significant biological cost.
Collapse
|
21
|
Sun F, Yin Z, Feng J, Qiu Y, Zhang D, Luo W, Yang H, Yang W, Wang J, Chen W, Xia P, Zhou D. Production of plasmid-encoding NDM-1 in clinical Raoultella ornithinolytica and Leclercia adecarboxylata from China. Front Microbiol 2015; 6:458. [PMID: 26052314 PMCID: PMC4439573 DOI: 10.3389/fmicb.2015.00458] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/27/2015] [Indexed: 12/17/2022] Open
Abstract
Raoultella ornithinolytica YNKP001 and Leclercia adecarboxylata P10164, which harbor conjugative plasmids pYNKP001-NDM and pP10164-NDM, respectively, were isolated from two different Chinese patients, and their complete nucleotide sequences were determined. Production of NDM-1 enzyme by these plasmids accounts for the carbapenem resistance of these two strains. This is the first report of bla NDM in L. adecarboxylata and third report of this gene in R. ornithinolytica. pYNKP001-NDM is very similar to the IncN2 NDM-1-encoding plasmids pTR3, pNDM-ECS01, and p271A, whereas pP10164-NDM is similar to the IncFIIY bla NDM-1-carrying plasmid pKOX_NDM1. The bla NDM-1 genes of pYNKP001-NDM and pP10164-NDM are embedded in Tn125-like elements, which represent two distinct truncated versions of the NDM-1-encoding Tn125 prototype observed in pNDM-BJ01. Flanking of these two Tn125-like elements by miniature inverted repeat element (MITE) or its remnant indicates that MITE facilitates transposition and mobilization of bla NDM-1 gene contexts.
Collapse
Affiliation(s)
- Fengjun Sun
- Department of Pharmacy, Southwest Hospital, The Third Military Medical University Chongqing, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Jiao Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China ; Laboratory Animal Center, Academy of Military Medical Sciences Beijing, China
| | - Yefeng Qiu
- Laboratory Animal Center, Academy of Military Medical Sciences Beijing, China
| | - Defu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Wenbo Luo
- Department of Pharmacy, Southwest Hospital, The Third Military Medical University Chongqing, China ; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Jie Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Weijun Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences Beijing, China
| | - Peiyuan Xia
- Department of Pharmacy, Southwest Hospital, The Third Military Medical University Chongqing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| |
Collapse
|
22
|
Safely coupling livestock and crop production systems: how rapidly do antibiotic resistance genes dissipate in soil following a commercial application of swine or dairy manure? Appl Environ Microbiol 2014; 80:3258-65. [PMID: 24632259 DOI: 10.1128/aem.00231-14] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Animal manures recycled onto crop production land carry antibiotic-resistant bacteria. The present study evaluated the fate in soil of selected genes associated with antibiotic resistance or genetic mobility in field plots cropped to vegetables and managed according to normal farming practice. Referenced to unmanured soil, fertilization with swine or dairy manure increased the relative abundance of the gene targets sul1, erm(B), str(B), int1, and IncW repA. Following manure application in the spring of 2012, gene copy number decayed exponentially, reaching background levels by the fall of 2012. In contrast, gene copy number following manure application in the fall of 2012 or spring of 2013 increased significantly in the weeks following application and then declined. In both cases, the relative abundance of gene copy numbers had not returned to background levels by the fall of 2013. Overall, these results suggest that under conditions characteristic of agriculture in a humid continental climate, a 1-year period following a commercial application of raw manure is sufficient to ensure that an additional soil burden of antibiotic resistance genes approaches background. The relative abundance of several gene targets exceeded background during the growing season following a spring application or an application done the previous fall. Results from the present study reinforce the advisability of treating manure prior to use in crop production systems.
Collapse
|
23
|
Santos MM, Alcântara ACM, Perecmanis S, Campos A, Santana AP. Antimicrobial resistance of bacterial strains isolated from avian cellulitis. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2014. [DOI: 10.1590/s1516-635x2014000100002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - S Perecmanis
- Universidade de Brasília; Faculdade de Agronomia e Medicina Veterinária, Brasil
| | - A Campos
- Ministério da Agricultura, Pecuária e Abastecimento, Brasil
| | - AP Santana
- Faculdade de Agronomia e Medicina Veterinária, Brasil
| |
Collapse
|
24
|
Liao XP, Liu BT, Yang QE, Sun J, Li L, Fang LX, Liu YH. Comparison of plasmids coharboring 16s rrna methylase and extended-spectrum β-lactamase genes among Escherichia coli isolates from pets and poultry. J Food Prot 2013; 76:2018-23. [PMID: 24290675 DOI: 10.4315/0362-028x.jfp-13-200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A total of 247 Escherichia coli isolates (148 from diseased or dead poultry and 99 from diseased pets in the People's Republic of China) were screened for extended-spectrum β-lactamase (ESBL) determinants by PCR and sequencing. Then, 16S rRNA methylase genes were detected among ESBL-producing isolates. Clonal relatedness of the E. coli isolates was examined by pulsed-field gel electrophoresis. Conjugation experiments were performed to investigate the association of 16S rRNA methylases and ESBLs, and plasmid contents were also characterized. Among 247 E. coli isolates, 74 (29.96%) isolates were positive for blaCTX-M genes, 42 from pets (12 from cats and 30 from dogs) and 32 from poultry (12 from chickens and 20 from ducks). The most common CTX-M type in isolates from pets was blaCTX-M-14, whereas blaCTX-M-27 was the most common for poultry. rmtB was dectected in 39 of the 74 blaCTX-M-positive isolates, 18 from pets and 21 from poultry. One strain from a pet was found to harbor blaCTX-M-14, blaCTX-M-15, and rmtB. blaCTX-M and rmtB were found to be colocated on the same transferable plasmid in 16 isolates. These genes were on the same or similar plasmids (eight F2:A-:B- and two IncN) in isolates from ducks, whereas they were colocated on the similar F2:A-:B- or similar F33:A-:B- plasmids in isolates of pets origin. In conclusion, similar F2:A-:B- plasmids and similar F33:A-:B- plasmids are responsible for the dissemination of both rmtB and blaCTX-Mgenes in E. coli isolates from poultry and pets, respectively.
Collapse
Affiliation(s)
- Xiao-Ping Liao
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (SCAU), South China Agricultural University, Guangzhou 510642, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
25
|
Deng YT, Zeng ZL, Tian W, Yang T, Liu JH. Prevalence and characteristics of rmtB and qepA in Escherichia coli isolated from diseased animals in China. Front Microbiol 2013; 4:198. [PMID: 23874331 PMCID: PMC3710952 DOI: 10.3389/fmicb.2013.00198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 06/25/2013] [Indexed: 12/01/2022] Open
Abstract
16S rRNA methylase and QepA, a fluoroquinolone efflux pump, are new mechanisms of resistance against aminoglycosides and fluoroquinolone, respectively. One of 16S rRNA methylase genes, rmtB, was found to be associated with qepA, were both located on the same transposable element. In this study, we intended to determine the current prevalence and characteristics of the 16S rRNA methylase genes and qepA, and to study the association between rmtB and qepA. A total of 892 Escherichia coli isolates were collected from various diseased food-producing animals in China from 2004 to 2008 and screened by PCR for 16S rRNA methylase genes and qepA. About 12.6% (112/892) and 0.1% (1/892) of isolates that were highly resistant to amikacin were positive for rmtB and armA, respectively. The remaining five 16S rRNA methlyase genes were not detected. Thirty-six (4.0%) strains carried qepA. About 32.1% of rmtB-positive strains harbored qepA, which was not detected in rmtB-negative strains. Most strains were clonally unrelated, while identical PFGE profiles of rmtB-positive isolates were found in the same farm indicating clonal transmission. Conjugation experiments showed that rmtB was transferred to the recipients, and qepA also cotransferred with rmtB in some cases. The spread of E. coli of food animal origin harboring both rmtB and qepA suggests that surveillance for antimicrobial resistance of animal origin as well as the study of the mechanisms of resistance should be undertaken.
Collapse
Affiliation(s)
- Yu-Ting Deng
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University Guangzhou, China ; Key Laboratory of Fishery Drug Development, Ministry of Agriculture, P. R. China, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science Guangzhou, China
| | | | | | | | | |
Collapse
|
26
|
Klebsiella pneumoniae sequence type 11 from companion animals bearing ArmA methyltransferase, DHA-1 β-lactamase, and QnrB4. Antimicrob Agents Chemother 2013; 57:4532-4. [PMID: 23752506 DOI: 10.1128/aac.00491-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Seven Klebsiella pneumoniae isolates from dogs and cats in Spain were found to be highly resistant to aminoglycosides, and ArmA methyltransferase was responsible for this phenotype. All isolates were typed by multilocus sequence typing (MLST) as ST11, a human epidemic clone reported worldwide and associated with, among others, OXA-48 and NDM carbapenemases. In the seven strains, armA was borne by an IncR plasmid, pB1025, of 50 kb. The isolates were found to coproduce DHA-1 and SHV-11 β-lactamases, as well as the QnrB4 resistance determinant. This first report of the ArmA methyltransferase in pets illustrates their importance as a reservoir for human multidrug-resistant K. pneumoniae.
Collapse
|
27
|
Pan YS, Liu JH, Hu H, Zhao JF, Yuan L, Wu H, Wang LF, Hu GZ. Novel arrangement of theblaCTX-M-55gene in anEscherichia coliisolate coproducing 16S rRNA methylase. J Basic Microbiol 2013; 53:928-33. [DOI: 10.1002/jobm.201200318] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 07/18/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Yu-Shan Pan
- College of Animal Science and Veterinary Medicine; Henan Agricultural University; Zhengzhou China
| | - Jian-Hua Liu
- College of Animal Science and Veterinary Medicine; Henan Agricultural University; Zhengzhou China
| | - Han Hu
- Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou China
| | - Jin-Feng Zhao
- College of Animal Science and Veterinary Medicine; Henan Agricultural University; Zhengzhou China
| | - Li Yuan
- College of Animal Science and Veterinary Medicine; Henan Agricultural University; Zhengzhou China
| | - Hua Wu
- College of Animal Science and Veterinary Medicine; Henan Agricultural University; Zhengzhou China
| | - Ling-Fei Wang
- College of Animal Science and Veterinary Medicine; Henan Agricultural University; Zhengzhou China
| | - Gong-Zheng Hu
- College of Animal Science and Veterinary Medicine; Henan Agricultural University; Zhengzhou China
| |
Collapse
|
28
|
Hou J, Yang X, Zeng Z, Lv L, Yang T, Lin D, Liu JH. Detection of the plasmid-encoded fosfomycin resistance gene fosA3 in Escherichia coli of food-animal origin. J Antimicrob Chemother 2012. [PMID: 23190765 DOI: 10.1093/jac/dks465] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To investigate the occurrence of plasmid-mediated fosfomycin resistance genes among Escherichia coli from food animals in China. METHODS A total of 892 E. coli isolates collected from individual pigs (n=368), chickens (n=196), ducks (n=261), geese (n=35), pigeons (n=20) and partridges (n=12) in Guangdong Province during 2002-08 were screened for the presence of fosA3, fosA and fosC2 by PCR amplification and sequencing. The clonal relationship of fosA3-positive isolates, plasmid content and other associated resistance genes were also characterized. RESULTS Twelve (1.3%) E. coli isolates showed resistance to fosfomycin and 10 (1.1%) isolates (4 from pigs, 2 from chickens, 2 from ducks, 1 from a goose and 1 from a pigeon) were positive for fosA3. None of the E. coli isolates was positive for fosA or fosC2. All of the isolates carrying fosA3 were CTX-M producers, and three of them carried rmtB. Most of the fosA3-harbouring isolates were found to be clonally unrelated. The fosA3 genes were flanked by IS26. Two fosA3 genes co-localized with rmtB and blaCTX-M-65 on indistinguishable F33:A-:B- plasmids that carried three addiction systems (pemI/pemK, hok/mok/sok and srnB). Four, one and one fosA3 genes were found to be associated with IncN (ST8 type), IncI1 and F2:A-:B- plasmids, respectively. CONCLUSIONS We discovered that fosA3 is always associated with blaCTX-M, which facilitates its quick dispersal. The emergence of fosA3 in food animals could impact on human medicine by the potential transfer of resistance through the food chain.
Collapse
Affiliation(s)
- Jianxia Hou
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University (SCAU), Guangzhou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
29
|
He L, Partridge SR, Yang X, Hou J, Deng Y, Yao Q, Zeng Z, Chen Z, Liu JH. Complete nucleotide sequence of pHN7A8, an F33:A-:B- type epidemic plasmid carrying blaCTX-M-65, fosA3 and rmtB from China. J Antimicrob Chemother 2012; 68:46-50. [PMID: 22984205 DOI: 10.1093/jac/dks369] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To characterize a representative self-transmissible multidrug resistance plasmid pHN7A8 isolated from an Escherichia coli from a dog in China, classified as F33:A-:B- by replicon sequence typing and carrying the bla(TEM-1b), bla(CTX-M-65), fosA3 and rmtB genes conferring resistance to penicillins, cephalosporins, fosfomycin and aminoglycosides, respectively. METHODS pHN7A8 was sequenced using a whole-genome shotgun approach and the sequence analysed by comparison with reference plasmids. RESULTS pHN7A8 is a circular molecule of 76 878 bp. bla(CTX-M-65), fosA3 and rmtB are found in known contexts, interspersed with different mobile elements including ISEcp1, IS1, Tn2, IS1294, IS903 and four copies of IS26. This multiresistance region has only a single nucleotide difference from that of pXZ, an F2:A-:B- plasmid isolated from poultry in China. The pHN7A8 backbone carries genes encoding addiction and partitioning systems that promote plasmid maintenance and has a similar organization to pXZ, as well as IncFII plasmids such as R100, pC15-1a/pEK516 and pHK23, isolated in Japan, Canada/the UK and China, respectively, but with varying levels of identity, suggesting recombination. CONCLUSIONS pHN7A8 is a chimera that may have resulted from the acquisition, by recombination in the plasmid backbone, of the multiresistance region found in pXZ. This region appears to have evolved from the resistance determinant R100 through the stepwise integration of multiple antimicrobial resistance determinants from different sources by the actions of mobile elements and recombination. The successful dissemination of this multidrug resistance plasmid presents further challenges for the prevention and treatment of Enterobacteriaceae infections.
Collapse
Affiliation(s)
- Liangying He
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, SCAU, South China Agricultural University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Catheter-related bacteremia caused by multidrug-resistant Leclercia adecarboxylata in a patient with breast cancer. J Clin Microbiol 2012; 50:3129-32. [PMID: 22760051 DOI: 10.1128/jcm.00948-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report a multidrug-resistant strain of Leclercia adecarboxylata responsible for catheter-related bacteremia in a 47-year-old female with breast cancer. The isolated strain was resistant to several β-lactams, aminoglycosides, and folate pathway inhibitors and harbored bla(TEM-1) and bla(CTX-M) group 1 and intl1 genes (dfrA12-orfF-aadA2) as genetic determinants for resistance. Based on a review of the L. adecarboxylata literature, there have been only 4 reports of antibiotic-resistant strains. To our knowledge, this is the first report of an L. adecarboxylata strain with simultaneous resistance to β-lactams, aminoglycosides, and sulfonamides.
Collapse
|
31
|
Wachino JI, Arakawa Y. Exogenously acquired 16S rRNA methyltransferases found in aminoglycoside-resistant pathogenic Gram-negative bacteria: an update. Drug Resist Updat 2012; 15:133-48. [PMID: 22673098 DOI: 10.1016/j.drup.2012.05.001] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Exogenously acquired 16S rRNA methyltransferase (16S-RMTase) genes responsible for a very high level of resistance against various aminoglycosides have been widely distributed among Enterobacteriaceae and glucose-nonfermentative microbes recovered from human and animal. The 16S-RMTases are classified into two subgroups, N7-G1405 16S-RMTases and N1-A1408 16S-RMTases, based on the mode of modification of 16S rRNA. Both MTases add the methyl group of S-adenosyl-L-methionine (SAM) to the specific nucleotides at the A-site of 16S rRNA, which interferes with aminoglycoside binding to the target. The genetic determinants responsible for 16S-RMTase production are often mediated by mobile genetic elements like transposons and further embedded into transferable plasmids or chromosome. This genetic apparatus may thus contribute to the rapid worldwide dissemination of the resistance mechanism among pathogenic microbes. More worrisome is the fact that 16S-RMTase genes are frequently associated with other antimicrobial resistance mechanisms such as NDM-1 metallo-β-lactamase and CTX-M-type ESBLs, and some highly pathogenic microbes including Salmonella spp. have already acquired these genes. Thus far, 16S-RMTases have been reported from at least 30 countries or regions. The worldwide dissemination of 16S-RMTases is becoming a serious global concern and this implies the necessity to continue investigations on the trend of 16S-RMTases to restrict their further worldwide dissemination.
Collapse
Affiliation(s)
- Jun-ichi Wachino
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | | |
Collapse
|