1
|
Négrel S, Brunel JM. Synthesis and Biological Activities of Naturally Functionalized Polyamines: An Overview. Curr Med Chem 2021; 28:3406-3448. [PMID: 33138746 DOI: 10.2174/0929867327666201102114544] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/01/2020] [Accepted: 09/16/2020] [Indexed: 11/22/2022]
Abstract
Recently, extensive researches have emphasized the fact that polyamine conjugates are becoming important in all biological and medicinal fields. In this review, we will focus our attention on natural polyamines and highlight recent progress in both fundamental mechanism studies and interests in the development and application for the therapeutic use of polyamine derivatives.
Collapse
Affiliation(s)
- Sophie Négrel
- Aix Marseille University, Faculty of Pharmacy, UMR-MD1, 27 bd Jean Moulin, 13385 Marseille, France
| | - Jean Michel Brunel
- Aix Marseille University, Faculty of Pharmacy, UMR-MD1, 27 bd Jean Moulin, 13385 Marseille, France
| |
Collapse
|
2
|
Fallacara A, Busato L, Pozzoli M, Ghadiri M, Ong HX, Young PM, Manfredini S, Traini D. Combination of urea-crosslinked hyaluronic acid and sodium ascorbyl phosphate for the treatment of inflammatory lung diseases: An in vitro study. Eur J Pharm Sci 2018; 120:96-106. [PMID: 29723596 DOI: 10.1016/j.ejps.2018.04.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/16/2018] [Accepted: 04/27/2018] [Indexed: 12/29/2022]
Abstract
This in vitro study evaluated, for the first time, the safety and the biological activity of a novel urea-crosslinked hyaluronic acid component and sodium ascorbyl phosphate (HA-CL - SAP), singularly and/or in combination, intended for the treatment of inflammatory lung diseases. The aim was to understand if the combination HA-CL - SAP had an enhanced activity with respect to the combination native hyaluronic acid (HA) - SAP and the single SAP, HA and HA-CL components. Sample solutions displayed pH, osmolality and viscosity values suitable for lung delivery and showed to be not toxic on epithelial Calu-3 cells at the concentrations used in this study. The HA-CL - SAP displayed the most significant reduction in interleukin-6 (IL-6) and reactive oxygen species (ROS) levels, due to the combined action of HA-CL and SAP. Moreover, this combination showed improved cellular healing (wound closure) with respect to HA - SAP, SAP and HA, although at a lower rate than HA-CL alone. These preliminary results showed that the combination HA-CL - SAP could be suitable to reduce inflammation and oxidative stress in lung disorders like acute respiratory distress syndrome, asthma, emphysema and chronic obstructive pulmonary disease, where inflammation is prominent.
Collapse
Affiliation(s)
- Arianna Fallacara
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, The University of Sydney, 431 Glebe Point Road, Glebe, NSW 2037, Australia; Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy..
| | - Laura Busato
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, The University of Sydney, 431 Glebe Point Road, Glebe, NSW 2037, Australia; Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy..
| | - Michele Pozzoli
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, The University of Sydney, 431 Glebe Point Road, Glebe, NSW 2037, Australia.
| | - Maliheh Ghadiri
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, The University of Sydney, 431 Glebe Point Road, Glebe, NSW 2037, Australia.
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, The University of Sydney, 431 Glebe Point Road, Glebe, NSW 2037, Australia.
| | - Paul M Young
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, The University of Sydney, 431 Glebe Point Road, Glebe, NSW 2037, Australia.
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy..
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, The University of Sydney, 431 Glebe Point Road, Glebe, NSW 2037, Australia.
| |
Collapse
|
3
|
Papa R, Selan L, Parrilli E, Tilotta M, Sannino F, Feller G, Tutino ML, Artini M. Anti-Biofilm Activities from Marine Cold Adapted Bacteria Against Staphylococci and Pseudomonas aeruginosa. Front Microbiol 2015; 6:1333. [PMID: 26696962 PMCID: PMC4677098 DOI: 10.3389/fmicb.2015.01333] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/13/2015] [Indexed: 01/18/2023] Open
Abstract
Microbial biofilms have great negative impacts on the world’s economy and pose serious problems to industry, public health and medicine. The interest in the development of new approaches for the prevention and treatment of bacterial adhesion and biofilm formation has increased. Since, bacterial pathogens living in biofilm induce persistent chronic infections due to the resistance to antibiotics and host immune system. A viable approach should target adhesive properties without affecting bacterial vitality in order to avoid the appearance of resistant mutants. Many bacteria secrete anti-biofilm molecules that function in regulating biofilm architecture or mediating the release of cells from it during the dispersal stage of biofilm life cycle. Cold-adapted marine bacteria represent an untapped reservoir of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules. The anti-biofilm activity of cell-free supernatants derived from sessile and planktonic cultures of cold-adapted bacteria belonging to Pseudoalteromonas, Psychrobacter, and Psychromonas species were tested against Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa strains. Reported results demonstrate that we have selected supernatants, from cold-adapted marine bacteria, containing non-biocidal agents able to destabilize biofilm matrix of all tested pathogens without killing cells. A preliminary physico-chemical characterization of supernatants was also performed, and these analyses highlighted the presence of molecules of different nature that act by inhibiting biofilm formation. Some of them are also able to impair the initial attachment of the bacterial cells to the surface, thus likely containing molecules acting as anti-biofilm surfactant molecules. The described ability of cold-adapted bacteria to produce effective anti-biofilm molecules paves the way to further characterization of the most promising molecules and to test their use in combination with conventional antibiotics.
Collapse
Affiliation(s)
- Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University Rome, Italy
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University Rome, Italy
| | | | - Marco Tilotta
- Department of Public Health and Infectious Diseases, Sapienza University Rome, Italy
| | - Filomena Sannino
- Department of Chemical Sciences, University of Naples Federico II Naples, Italy
| | - Georges Feller
- Laboratory of Biochemistry, Centre for Protein Engineering, University of Liège Liège, Belgium
| | - Maria L Tutino
- Department of Chemical Sciences, University of Naples Federico II Naples, Italy
| | - Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University Rome, Italy
| |
Collapse
|
4
|
Hoe S, Boraey MA, Ivey JW, Finlay WH, Vehring R. Manufacturing and device options for the delivery of biotherapeutics. J Aerosol Med Pulm Drug Deliv 2013; 27:315-28. [PMID: 24299502 DOI: 10.1089/jamp.2013.1090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biotherapeutic aerosol formulations are an intense area of interest for systemic and local drug delivery. This article provides a short overview of typical factors required specifically for biotherapeutic aerosol formulation design, the processing options open for consideration, and the issue of inhalation device selection. Focusing on spray drying, four case studies are used to highlight the relevant issues, describing investigations into: (1) the mechanical stresses occurring in bacteriophage formulations during spray-dryer atomization; (2) modeling of the spray-dryer process and droplet drying kinetics, to assist process design and predictions of formulation stability; (3) a predictive approach to the design and processing of a five-component dry powder aerosol formulation; and (4) the survival of bacteriophages after pressurized metered dose inhaler atomization.
Collapse
Affiliation(s)
- Susan Hoe
- Department of Mechanical Engineering, University of Alberta , Edmonton, AB, Canada
| | | | | | | | | |
Collapse
|
5
|
Zarogoulidis P, Kioumis I, Porpodis K, Spyratos D, Tsakiridis K, Huang H, Li Q, Turner JF, Browning R, Hohenforst-Schmidt W, Zarogoulidis K. Clinical experimentation with aerosol antibiotics: current and future methods of administration. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:1115-34. [PMID: 24115836 PMCID: PMC3793595 DOI: 10.2147/dddt.s51303] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Currently almost all antibiotics are administered by the intravenous route. Since several systems and situations require more efficient methods of administration, investigation and experimentation in drug design has produced local treatment modalities. Administration of antibiotics in aerosol form is one of the treatment methods of increasing interest. As the field of drug nanotechnology grows, new molecules have been produced and combined with aerosol production systems. In the current review, we discuss the efficiency of aerosol antibiotic studies along with aerosol production systems. The different parts of the aerosol antibiotic methodology are presented. Additionally, information regarding the drug molecules used is presented and future applications of this method are discussed.
Collapse
Affiliation(s)
- Paul Zarogoulidis
- Pulmonary Department, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; Department of Interventional Pneumology, Ruhrlandklinik, West German Lung Center, University Hospital, University Duisburg-Essen, Essen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Zarogoulidis P, Kioumis I, Ritzoulis C, Petridis D, Darwiche K, Porpodis K, Spyratos D, Parrish S, Browning R, Li Q, Turner JF, Freitag L, Zarogoulidis K. New insights in the production of aerosol antibiotics. Evaluation of the optimal aerosol production system for ampicillin-sulbactam, meropenem, ceftazidime, cefepime and piperacillin-tazobactam. Int J Pharm 2013; 455:182-8. [PMID: 23891745 DOI: 10.1016/j.ijpharm.2013.07.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Several aerosol antibiotics are on the market and several others are currently being evaluated. Aim of the study was to evaluate the aerosol droplet size of five different antibiotics for future evaluation as an aerosol administration. MATERIALS AND METHODS The nebulizers Sunmist(®), Maxineb(®) and Invacare(®) were used in combination with four different "small <6 ml" residual cups and two "large <10 ml" with different loadings 2-4-6-8 ml (8 ml only for large residual cups) with five different antibiotic drugs (ampicilln-sulbactam, meropenem, ceftazidime, cefepime and piperacillin-tazobactam). The Mastersizer 2000 (Malvern) was used to evaluate the produced droplet size from each combination RESULTS Significant effect on the droplet size produced the different antibiotic (F=96.657, p<0.001) and the residual cup design (F=68.535, p<0.001) but not the different loading amount (p=0.127) and the nebulizer (p=0.715). Interactions effects were found significant only between antibiotic and residual cup (F=16.736, p<0.001). No second order interactions were found statistically significant. CONCLUSION Our results firstly indicate us indirectly that the chemical formulation of the drug is the main factor affecting the produced droplet size and secondly but closely the residual cup design.
Collapse
Affiliation(s)
- Paul Zarogoulidis
- Pulmonary Department-Oncology Unit, G. Papanikolaou General Hospital, Aristotle Univesrity of Thessaloniki, Thessaloniki, Greece.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Nesamony J, Shah IS, Kalra A, Jung R. Nebulized oil-in-water nanoemulsion mists for pulmonary delivery: development, physico-chemical characterization and in vitro evaluation. Drug Dev Ind Pharm 2013; 40:1253-63. [PMID: 23837519 DOI: 10.3109/03639045.2013.814065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CONTEXT This study presents novel nanostructured oil-in-water (o/w) mists based on self-nanoemulsifying (SNE) mixtures capable of delivering poorly water-soluble drugs into the lungs. OBJECTIVE Formulation development of an o/w nanoemulsion (NE) capable of being nebulized for pulmonary delivery of poorly water-soluble drugs. MATERIALS AND METHODS SNE mixtures were prepared and evaluated using Tween 80 and Cremophor RH 40 as surfactants; Transcutol P, Capryol 90 and PEG 400 as cosurfactants; and Labrafac Lipophile Wl 1349 (a medium-chain triglyceride) as an oil. Liquid NEs were analyzed by light scattering, zeta potential, transmission electron microscopy (TEM) and in vitro drug release studies. The aqueous NE was nebulized and assessed by light scattering and TEM. The formulation was aseptically filtered and the sterility validated. In vitro cytotoxicity of the formulations was tested in NIH 3T3 cells. The capability of the formulation to deliver a poorly water-soluble drug was determined using ibuprofen. RESULTS Ibuprofen was found to be stable in the NEs. The formulations were neutrally charged with a droplet size of about 20 nm. TEM images displayed 100 nm oil droplets. The aseptic filtration method produced sterile NE. The nebulized mist revealed properties ideal for pulmonary delivery. The biocompatible aerosol has a nanostructure consisting of several oil nanodroplets enclosed within each water drop. Solubility and in vitro drug release studies showed successful incorporation and release of ibuprofen. CONCLUSION The developed formulation could be used as an inhalation for delivering material possessing poor water solubility into the lungs.
Collapse
Affiliation(s)
- Jerry Nesamony
- Department of Pharmacy Practice, College of Pharmacy and Pharmaceutical Sciences, University of Toledo , Toledo, OH , USA
| | | | | | | |
Collapse
|
8
|
Hraiech S, Brégeon F, Brunel JM, Rolain JM, Lepidi H, Andrieu V, Raoult D, Papazian L, Roch A. Antibacterial efficacy of inhaled squalamine in a rat model of chronic Pseudomonas aeruginosa pneumonia. J Antimicrob Chemother 2012; 67:2452-8. [PMID: 22744759 DOI: 10.1093/jac/dks230] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVES Squalamine is a steroid extracted from sharks with proven in vitro antibacterial activity. We assessed its efficacy in reducing the lung bacterial load and histological lesions when given via inhalation in a rat model of chronic Pseudomonas aeruginosa pneumonia. METHODS Sprague-Dawley rats were inoculated by tracheal intubation with 150 μL of a solution containing 10(8) cfu/mL of agar bead-embedded P. aeruginosa strain PAO1. MICs of squalamine and colistin for this strain were 2-8 and 0.5-1 mg/L, respectively. Starting the day after infection, the animals were treated twice daily with aerosolized squalamine (3 mg), colistin (160 mg) or 0.9% saline for 6 days. The bacterial load and lung histological lesions were evaluated on the seventh day. RESULTS Aerosols of squalamine and colistin resulted in a significant reduction in median (IQR) pulmonary bacterial count compared with saline [10(3) (6 × 10(2)-2 × 10(3)), 10(3) (9 × 10(2)-6 × 10(3)) and 10(5) (9 × 10(4)-2 × 10(5)) cfu/lung, respectively; P < 0.001 for both treated groups versus saline]. The lung weight and the lung histological severity score were significantly lower in both treated groups. CONCLUSIONS In a model of chronic P. aeruginosa pneumonia, treatment twice daily with a squalamine aerosol for 6 days leads to a significant reduction in the pulmonary bacterial count and pneumonia lesions with an efficacy comparable to that of colistin.
Collapse
Affiliation(s)
- Sami Hraiech
- Aix-Marseille Univ, URMITE CNRS-UMR 6236, 13005 Marseille, France
| | | | | | | | | | | | | | | | | |
Collapse
|