1
|
Karkhanis AV, Harwood MD, Stader F, Bois FY, Neuhoff S. Applications of the Cholesterol Metabolite, 4β-Hydroxycholesterol, as a Sensitive Endogenous Biomarker for Hepatic CYP3A Activity Evaluated within a PBPK Framework. Pharmaceutics 2024; 16:1284. [PMID: 39458613 PMCID: PMC11510160 DOI: 10.3390/pharmaceutics16101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Plasma levels of 4β-hydroxycholesterol (4β-OHC), a CYP3A-specific metabolite of cholesterol, are elevated after administration of CYP3A inducers like rifampicin and carbamazepine. To simulate such plasma 4β-OHC increase, we developed a physiologically based pharmacokinetic (PBPK) model of cholesterol and 4β-OHC in the Simcyp PBPK Simulator (Version 23, Certara UK Ltd.) using a middle-out approach. Methods: Relevant physicochemical properties and metabolic pathway data for CYP3A and CYP27A1 was incorporated in the model. Results: The PBPK model recovered the observed baseline plasma 4β-OHC levels in Caucasian, Japanese, and Korean populations. The model also captured the higher baseline 4β-OHC levels in females compared to males, indicative of sex-specific differences in CYP3A abundance. More importantly, the model recapitulated the increased 4β-OHC plasma levels after multiple-dose rifampicin treatment in six independent studies, indicative of hepatic CYP3A induction. The verified model also captured the altered 4β-OHC levels in CYP3A4/5 polymorphic populations and with other CYP3A inducers. The model is limited by scant data on relative contributions of CYP3A and CYP27A1 pathways and does not account for regulatory mechanisms that control plasma cholesterol and 4β-OHC levels. Conclusion: This study provides a quantitative fit-for-purpose and framed-for-future modelling framework for an endogenous biomarker to evaluate the DDI risk with hepatic CYP3A induction.
Collapse
Affiliation(s)
- Aneesh V. Karkhanis
- Certara UK Limited, Certara Predictive Technologies, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK; (M.D.H.); (F.S.); (F.Y.B.); (S.N.)
| | | | | | | | | |
Collapse
|
2
|
Griesel R, Banda CG, Zhao Y, Omar Z, Wiesner L, Meintjes G, Sinxadi P, Maartens G. Pharmacokinetics of Single-Dose Versus Double-Dose Dolutegravir After Switching From a Failing Efavirenz-Based Regimen. J Acquir Immune Defic Syndr 2024; 96:85-91. [PMID: 38372621 DOI: 10.1097/qai.0000000000003402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/09/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Dolutegravir exposure is reduced after switching from efavirenz, which could select for dolutegravir resistance if switching occurs during virologic failure. METHODS We measured serial dolutegravir trough concentrations after switching from efavirenz in a clinical trial, which randomized some participants to a supplemental dolutegravir dose or placebo for the first 14 days. Changes in dolutegravir trough concentrations between days 3, 7, 14, and 28 were evaluated. The primary outcome was the geometric mean ratio of dolutegravir trough concentrations on day 7 versus day 28. RESULTS Twenty-four participants received double-dose dolutegravir (50 mg twice daily) and 11 standard dose for the first 14 days. Baseline characteristics were 77% female, median age 36 years, CD4 cell count 254 cells/mm3, and HIV-1 RNA 4.0 log10 copies/mL. The geometric mean ratio (90% CI) of dolutegravir trough concentrations on day 7 versus day 28 was 0.637 (0.485 to 0.837) in the standard-dose group and 1.654 (1.404 to 1.948) in the double-dose group. There was a prolonged induction effect at day 28 in participants with efavirenz slow metaboliser genotypes. One participant in the double-dose group had a dolutegravir trough concentration below the protein-binding adjusted concentration needed to inhibit 90% of HIV-1 (PA-IC90) at day 3. CONCLUSIONS No participants on standard-dose dolutegravir had dolutegravir trough concentrations below the PA-IC90. Slow efavirenz metaboliser genotypes had higher baseline efavirenz concentrations and more pronounced and longer period of induction postswitch. These findings suggest that a 14-day lead-in supplemental dolutegravir dose may not be necessary when switching from a failing efavirenz-based first-line regimen.
Collapse
Affiliation(s)
- Rulan Griesel
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Clifford G Banda
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Ying Zhao
- Department of Medicine, University of Cape Town, Cape Town, South Africa ; and
| | - Zaayid Omar
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa ; and
| | - Phumla Sinxadi
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Platform for Pharmacogenomics Research and Translation (PREMED), University of Cape Town, South African Medical Research Council, Cape Town, South Africa
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Pregnancy Increases CYP3A Enzymes Activity as Measured by the 4β-Hydroxycholesterol/Cholesterol Ratio. Int J Mol Sci 2022; 23:ijms232315168. [PMID: 36499500 PMCID: PMC9739497 DOI: 10.3390/ijms232315168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/17/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Changes in cortisol and other hormones during pregnancy may alter CYP3A enzymes activity, but data from sub-Saharan Africa are sparse. We investigated the effect of pregnancy and CYP3A5 genotypes on CYP3A enzymes activity using the plasma 4β-hydroxycholesterol (4β-OHC)/cholesterol (Chol) ratio, a known endogenous biomarker. Tanzanian pregnant women (n = 110) and non-pregnant women (n = 59) controls were enrolled. Plasma 4β-OHC and Chol were determined in the second and third trimesters for pregnant women and once for non-pregnant women using gas chromatography−mass spectrometry. Genotyping for CYP3A5 (*3, *6, *7) was performed. Wilcoxon Signed-Rank Test and Mann−Whitney U test were used to compare the median 4β-OHC/Chol ratio between trimesters in pregnant women and between pregnant and non-pregnant women. Repeated-measure ANOVA was used to evaluate the effect of the CYP3A5 genotypes on the 4β-OHC/Chol ratio in pregnant women. No significant effect of the pregnancy status or the CYP3A5 genotype on the cholesterol level was observed. The plasma 4β-OHC/Chol ratio significantly increased by 7.3% from the second trimester to the third trimester (p = 0.02). Pregnant women had a significantly higher mean 4β-OHC/Chol ratio than non-pregnant women, (p < 0.001). In non-pregnant women, the mean 4β-OHC/Chol ratio was significantly lower in carriers of defective CYP3A5 alleles (*3, *6 or *7) as compared to women with the CYP3A5*1/*1 genotypes (p = 0.002). Pregnancy increases CYP3A enzymes activity in a gestational-stage manner. The CYP3A5 genotype predicts CYP3A enzymes activity in the black Tanzanian population, but not during pregnancy-mediated CYP3A enzyme induction.
Collapse
|
4
|
Predictors of Efavirenz Plasma Exposure, Auto-Induction Profile, and Effect of Pharmacogenetic Variations among HIV-Infected Children in Ethiopia: A Prospective Cohort Study. J Pers Med 2021; 11:jpm11121303. [PMID: 34945777 PMCID: PMC8707067 DOI: 10.3390/jpm11121303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/11/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Efavirenz plasma concentration displays wide between-patient variability partly due to pharmacogenetic variation and autoinduction. Pediatric data on efavirenz pharmacokinetics and the relevance of pharmacogenetic variation are scarce, particularly from sub-Saharan Africa, where >90% of HIV-infected children live and population genetic diversity is extensive. We prospectively investigated the short- and long-term effects of efavirenz auto-induction on plasma drug exposure and the influence of pharmacogenetics among HIV-infected Ethiopian children. (2) Method: Treatment-naïve HIV-infected children aged 3-16 years old (n = 111) were enrolled prospectively to initiate efavirenz-based combination antiretroviral therapy (cART). Plasma efavirenz concentrations were quantified at 4, 8, 12, 24, and 48 weeks of cART. Genotyping for CYP2B6, CYP3A5, UGT2B7, ABCB1, and SLCO1B1 common functional variant alleles was performed. (3) Results: The efavirenz plasma concentration reached a peak at two months, declined by the 3rd month, and stabilized thereafter, with no significant difference in geometric mean over time. On average, one-fourth of the children had plasma efavirenz concentrations ≥4 µg/mL. On multivariate analysis, CYP2B6*6 and ABCB1c.3435 C > T genotypes and low pre-treatment low-density lipoprotein (LDL) were significantly associated with higher plasma efavirenz concentration regardless of treatment duration. Duration of cART, sex, age, nutritional status, weight, and SLCO1B, CYP3A5, UGT2B7, and ABCB1 rs3842 genotypes were not significant predictors of efavirenz plasma exposure. (4) Conclusion: Pre-treatment LDL cholesterol and CYP2B6*6 and ABCB1c.3435 C > T genotypes predict efavirenz plasma exposure among HIV-infected children, but treatment-duration-dependent changes in plasma efavirenz exposure due to auto-induction are not statistically significant.
Collapse
|
5
|
Mnkugwe RH, Minzi O, Kinung'hi S, Kamuhabwa A, Aklillu E. Effect of Pharmacogenetics Variations on Praziquantel Plasma Concentrations and Schistosomiasis Treatment Outcomes Among Infected School-Aged Children in Tanzania. Front Pharmacol 2021; 12:712084. [PMID: 34531744 PMCID: PMC8438567 DOI: 10.3389/fphar.2021.712084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Studies on pharmacogenetics of praziquantel (PZQ) and its relevance on plasma drug concentrations and schistosomiasis treatment outcomes are lacking. We investigated the effect of pharmacogenetics variations of PZQ on plasma drug levels and schistosomiasis treatment outcomes among infected Tanzanian school-aged children. A total of 340 Schistosoma mansoni infected children were enrolled and treated with single-dose PZQ. Stool samples analysis was done by thick smear Kato-Katz technique, and treatment efficacy was assessed at 3-weeks post-treatment. Safety was assessed within 4 h after PZQ intake. Plasma samples were collected at 4 h post-dose, and PZQ and trans-4-OH-PZQ concentrations were quantified using UPLCMS/MS. Genotyping for CYP3A4*1B, CYP3A5 (*3, *6, *7), CYP2C19 (*2, *3, *17), and CYP2C9 (*2, *3) were done by Real-Time PCR. The median age (range) of the study participants was 12 years (7-17). There was a significant association of CYP2C19 genotypes with PZQ concentrations and its metabolic ratio (trans-4-OH-PZQ/PZQ). PZQ concentration was significantly higher among CYP2C19 (*2, *3) carriers than CYP2C19 *1/*1 and CYP2C19 *17 carriers (ultra-rapid metabolizers) (p = 0.04). The metabolic ratio was significantly higher among CYP2C19*17 carriers than CYP2C19 (*2, *3) carriers (p = 0.01). No significant effect of CYP3A4, CYP3A5, CYP2C19, and CYP2C9 genotypes on treatment efficacy or adverse events were observed. Baseline infection intensity and CYP3A5 genotype were significant predictors of treatment associated-adverse events. In conclusion, CYP2C19 genotype significantly affects plasma PZQ concentration and its metabolic ratio. For the first time, we report the importance of pharmacogenetic variation for the treatment of schistosomiasis, a neglected tropical disease.
Collapse
Affiliation(s)
- Rajabu Hussein Mnkugwe
- Department of Clinical Pharmacology, School of Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.,Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska University Hospital-Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Omary Minzi
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Safari Kinung'hi
- National Institute for Medical Research (NIMR), Mwanza Research Centre, Mwanza, Tanzania
| | - Appolinary Kamuhabwa
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Eleni Aklillu
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska University Hospital-Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Aklillu E, Zumla A, Habtewold A, Amogne W, Makonnen E, Yimer G, Burhenne J, Diczfalusy U. Early or deferred initiation of efavirenz during rifampicin-based TB therapy has no significant effect on CYP3A induction in TB-HIV infected patients. Br J Pharmacol 2020; 178:3294-3308. [PMID: 33155675 PMCID: PMC8359173 DOI: 10.1111/bph.15309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
Background and Purpose In TB‐HIV co‐infection, prompt initiation of TB therapy is recommended but anti‐retroviral treatment (ART) is often delayed due to potential drug–drug interactions between rifampicin and efavirenz. In a longitudinal cohort study, we evaluated the effects of efavirenz/rifampicin co‐treatment and time of ART initiation on CYP3A induction. Experimental Approach Treatment‐naïve TB‐HIV co‐infected patients (n = 102) were randomized to efavirenz‐based‐ART after 4 (n = 69) or 8 weeks (n = 33) of commencing rifampicin‐based anti‐TB therapy. HIV patients without TB (n = 94) receiving efavirenz‐based‐ART only were enrolled as control. Plasma 4β‐hydroxycholesterol/cholesterol (4β‐OHC/Chol) ratio, an endogenous biomarker for CYP3A activity, was determined at baseline, at 4 and 16 weeks of ART. Key Results In patients treated with efavirenz only, median 4β‐OHC/Chol ratios increased from baseline by 269% and 275% after 4 and 16 weeks of ART, respectively. In TB‐HIV patients, rifampicin only therapy for 4 and 8 weeks increased median 4β‐OHC/Chol ratios from baseline by 378% and 576% respectively. After efavirenz/rifampicin co‐treatment, 4β‐OHC/Chol ratios increased by 560% of baseline (4 weeks) and 456% of baseline (16 weeks). Neither time of ART initiation, sex, genotype nor efavirenz plasma concentration were significant predictors of 4β‐OHC/Chol ratios after 4 weeks of efavirenz/rifampicin co‐treatment. Conclusion and Implications Rifampicin induced CYP3A more potently than efavirenz, with maximum induction occurring within the first 4 weeks of rifampicin therapy. We provide pharmacological evidence that early (4 weeks) or deferred (8 weeks) ART initiation during anti‐TB therapy has no significant effect on CYP3A induction. LINKED ARTICLES This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc
Collapse
Affiliation(s)
- Eleni Aklillu
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge C1:68, Karolinska Institutet, Stockholm, Sweden
| | - Alimuddin Zumla
- Division of Infection and Immunity, University College London, NIHR Biomedical Research Centre at UCL Hospitals NHS Foundation Trust, London, UK.,UNZA-UCLMS Research and Training Program, Department of Medicine, University Teaching Hospital, Lusaka, Zambia
| | - Abiy Habtewold
- Department of Pharmaceutical Sciences, School of Pharmacy, William Carey University, Biloxi, MS, USA
| | - Wondwossen Amogne
- Department of Internal Medicine, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
| | - Eyasu Makonnen
- Department of Pharmacology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Getnet Yimer
- Department of Pharmacology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - Ulf Diczfalusy
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Abulfathi AA, Assawasuwannakit P, Donald PR, Diacon AH, Reuter H, Svensson EM. Probability of mycobactericidal activity of para-aminosalicylic acid with novel dosing regimens. Eur J Clin Pharmacol 2020; 76:1557-1565. [PMID: 32588106 DOI: 10.1007/s00228-020-02943-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/19/2020] [Indexed: 12/01/2022]
Abstract
PURPOSE Para-aminosalicylic acid (PAS) is currently one of the add-on group C medicines recommended by the World Health Organization for multidrug-resistant tuberculosis treatment. At the recommended doses (8-12 g per day in two to three divided doses) of the widely available slow-release PAS formulation, studies suggest PAS exposures are lower than those reached with older PAS salt formulations and do not generate bactericidal activity. Understanding the PASER dose-exposure-response relationship is crucial for dose optimization. The objective of our study was to establish a representative population pharmacokinetics model for PASER and evaluate the probability of bactericidal and bacteriostatic target attainment with different dosing regimens. METHODS To this end, we validated and optimized a previously published population pharmacokinetic model on an extended dataset. The probability of target attainment was evaluated for once-daily doses of 12 g, 14 g, 16 g and 20 g PASER. RESULTS The final optimized model included the addition of variability in bioavailability and allometric scaling with body weight on disposition parameters. Peak PAS concentrations over minimum inhibitory concentration of 100, which is required for bactericidal activity are achieved in 53%, 65%, 72% and 84% of patients administered 12, 14, 16 and 20 g once-daily PASER, respectively, when MIC is 1 mg/L. For the typical individual, the exposure remained above 1 mg/L for ≥ 98% of the dosing interval in all the evaluated PASER regimens. CONCLUSION The pharmacokinetic/pharmacodynamic parameters linked to bactericidal activity should be determined for 14 g, 16 g and 20 g once-daily doses of PASER.
Collapse
Affiliation(s)
- Ahmed A Abulfathi
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | | | - Peter R Donald
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andreas H Diacon
- Task Applied Science, Bellville, South Africa.,Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Helmuth Reuter
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Elin M Svensson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.,Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
8
|
Mutagonda RF, Minzi OMS, Massawe SN, Asghar M, Färnert A, Kamuhabwa AAR, Aklillu E. Pregnancy and CYP3A5 Genotype Affect Day 7 Plasma Lumefantrine Concentrations. Drug Metab Dispos 2020; 47:1415-1424. [PMID: 31744845 DOI: 10.1124/dmd.119.088062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/27/2019] [Indexed: 12/21/2022] Open
Abstract
Pregnancy and pharmacogenetics variation alter drug disposition and treatment outcome. The objective of this study was to investigate the effect of pregnancy and pharmacogenetics variation on day 7 lumefantrine (LF) plasma concentration and therapeutic responses in malaria-infected women treated with artemether-lumefantrine (ALu) in Tanzania. A total of 277 (205 pregnant and 72 nonpregnant) women with uncomplicated Plasmodium falciparum malaria were enrolled. Patients were treated with ALu and followed up for 28 days. CYP3A4, CYP3A5, and ABCB1 genotyping were done. Day 7 plasma LF concentration and the polymerase chain reaction (PCR) - corrected adequate clinical and parasitological response (ACPR) at day 28 were determined. The mean day 7 plasma LF concentrations were significantly lower in pregnant women than nonpregnant women [geometric mean ratio = 1.40; 95% confidence interval (CI) of geometric mean ratio (1.119-1.1745), P < 0.003]. Pregnancy, low body weight, and CYP3A5*1/*1 genotype were significantly associated with low day 7 LF plasma concentration (P < 0.01). PCR-corrected ACPR was 93% (95% CI = 89.4-96.6) in pregnant women and 95.7% (95% CI = 90.7-100) in nonpregnant women. Patients with lower day 7 LF concentration had a high risk of treatment failure (mean 652 vs. 232 ng/ml, P < 0.001). In conclusion, pregnancy, low body weight, and CYP3A5*1 allele are significant predictors of low day 7 LF plasma exposure. In turn, lower day 7 LF concentration is associated with a higher risk of recrudescence. SIGNIFICANCE STATEMENT: This study reports a number of factors contributing to the lower day 7 lumefantrine (LF) concentration in women, which includes pregnancy, body weight, and CYP3A5*1/*1 genotype. It also shows that day 7 LF concentration is a main predictor of malaria treatment. These findings highlight the need to look into artemether-LF dosage adjustment in pregnant women so as to be able to maintain adequate drug concentration, which is required to reduce treatment failure rates in pregnant women.
Collapse
Affiliation(s)
- Ritah F Mutagonda
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy (R.F.M., O.O.M.S.M., A.A.R.K.), and Department of Obstetrics and Gynecology, School of Medicine (S.N.M.), Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden (M.A., A.F.); Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden (A.F.); and Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden (E.A.)
| | - Omary M S Minzi
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy (R.F.M., O.O.M.S.M., A.A.R.K.), and Department of Obstetrics and Gynecology, School of Medicine (S.N.M.), Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden (M.A., A.F.); Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden (A.F.); and Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden (E.A.)
| | - Siriel N Massawe
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy (R.F.M., O.O.M.S.M., A.A.R.K.), and Department of Obstetrics and Gynecology, School of Medicine (S.N.M.), Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden (M.A., A.F.); Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden (A.F.); and Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden (E.A.)
| | - Muhammad Asghar
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy (R.F.M., O.O.M.S.M., A.A.R.K.), and Department of Obstetrics and Gynecology, School of Medicine (S.N.M.), Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden (M.A., A.F.); Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden (A.F.); and Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden (E.A.)
| | - Anna Färnert
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy (R.F.M., O.O.M.S.M., A.A.R.K.), and Department of Obstetrics and Gynecology, School of Medicine (S.N.M.), Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden (M.A., A.F.); Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden (A.F.); and Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden (E.A.)
| | - Appolinary A R Kamuhabwa
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy (R.F.M., O.O.M.S.M., A.A.R.K.), and Department of Obstetrics and Gynecology, School of Medicine (S.N.M.), Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden (M.A., A.F.); Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden (A.F.); and Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden (E.A.)
| | - Eleni Aklillu
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy (R.F.M., O.O.M.S.M., A.A.R.K.), and Department of Obstetrics and Gynecology, School of Medicine (S.N.M.), Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden (M.A., A.F.); Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden (A.F.); and Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden (E.A.)
| |
Collapse
|
9
|
von Braun A, Castelnuovo B, Ledergerber B, Cusato J, Buzibye A, Kambugu A, Fehr J, Calcagno A, Lamorde M, Sekaggya-Wiltshire C. High efavirenz serum concentrations in TB/HIV-coinfected Ugandan adults with a CYP2B6 516 TT genotype on anti-TB treatment. J Antimicrob Chemother 2020; 74:135-138. [PMID: 30239753 DOI: 10.1093/jac/dky379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/24/2018] [Indexed: 01/15/2023] Open
Abstract
Objectives To report the efavirenz serum concentrations in TB/HIV-coinfected Ugandan adults on concomitant anti-TB treatment and analyse factors associated with elevated concentrations in this specific population. Methods Serum efavirenz concentrations in TB/HIV-coinfected Ugandan adults on efavirenz-based ART (600 mg daily) were measured onsite at 2, 8, 12 and 24 weeks of concomitant anti-TB treatment, including rifampicin. Genetic analysis was done retrospectively through real-time PCR by allelic discrimination (CYP2B6 516G>T, rs3745274). Univariable and multivariable logistic regression analyses were done to assess factors potentially associated with elevated efavirenz serum concentrations. Results A total of 166 patients were included in the analysis. The median age was 34 (IQR = 30-40) years, 99 (59.6%) were male, the median CD4 cell count was 195 (IQR = 71-334) cells/mm3 and the median BMI was 19 (IQR = 17.6-21.5) kg/m2. Almost half of all patients (82, 49.4%) had at least one efavirenz serum concentration above the reference range of 4 mg/L. The serum efavirenz concentrations of patients with genotype CYP2B6 516 TT were consistently above 4 mg/L and significantly higher than those of patients with GG/GT genotypes: CYP2B6 516 TT 9.6 mg/L (IQR = 7.3-13.3) versus CYP2B6 516 GT 3.4 mg/L (IQR = 2.1-5.1) and CYP2B6 516 GG 2.6 mg/L (IQR = 1.3-4.0) (Wilcoxon rank-sum test: P < 0.0001). Conclusions A large proportion of our study participants had at least one efavirenz serum concentration >4 mg/L. The CYP2B6 516 TT genotype was the strongest predictor of high concentration. Physicians should be vigilant that efavirenz serum concentrations may be elevated in patients on concomitant anti-TB treatment and that individualized care is warranted whenever possible.
Collapse
Affiliation(s)
- Amrei von Braun
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Barbara Castelnuovo
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bruno Ledergerber
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jessica Cusato
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Allan Buzibye
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Andrew Kambugu
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Jan Fehr
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Public Health, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Mohammed Lamorde
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | | |
Collapse
|
10
|
Calcagno A, Cusato J, Sekaggya-Wiltshire C, von Braun A, Motta I, Turyasingura G, Castelnuovo B, Fehr J, Di Perri G, Lamorde M. The Influence of Pharmacogenetic Variants in HIV/Tuberculosis Coinfected Patients in Uganda in the SOUTH Study. Clin Pharmacol Ther 2019; 106:450-457. [PMID: 30779340 DOI: 10.1002/cpt.1403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/08/2019] [Indexed: 11/10/2022]
Abstract
Unsatisfactory treatment outcomes have been reported in patients coinfected with HIV/tuberculosis (TB). The aim of this study was to assess the influence of single-nucleotide polymorphisms (SNPs) in genes encoding for proteins involved in antitubercular drug disposition or effect. A pharmacogenetic study was conducted in Kampala, Uganda, where all analysis was performed. The impact of SNPs on antitubercular drug exposure, adverse events, and treatment outcomes was evaluated in patients coinfected with HIV/TB receiving treatments for both conditions. In 221 participants, N-acetyltransferase 2 (NAT2; rs1799930), solute carrier organic anion transporter family member 1B1 (SLCO1B1; rs4149032), and pregnane X receptor (PXR; rs2472677) variants affected isoniazid exposure in multivariate analysis. Most patients were deemed cured (163; 73.8%), yet PXR 63396TT carriers had a higher probability of death (P = 0.007) and of worsening peripheral neuropathy (P = 0.018). In this exploratory study in Ugandan patients coinfected with HIV/TB, genetic variants in PXR, SLCO1B1, and NAT2 were moderately associated with isoniazid exposure, whereas PXR 63396TT carriers showed worse outcomes.
Collapse
Affiliation(s)
- Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Jessica Cusato
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | | | - Amrei von Braun
- Division of Infectious Diseases and Tropical Medicine, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Ilaria Motta
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Grace Turyasingura
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Barbara Castelnuovo
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Jan Fehr
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Public Health, Epidemiology, Biostatistics, and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Giovanni Di Perri
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Mohammed Lamorde
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
11
|
Li Y, Connarn JN, Chen J, Tong Z, Palmisano M, Zhou S. Modeling and simulation of the endogenous CYP3A induction marker 4β-hydroxycholesterol during enasidenib treatment. Clin Pharmacol 2019; 11:39-50. [PMID: 30858735 PMCID: PMC6385784 DOI: 10.2147/cpaa.s192687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Enasidenib (IDHIFA®, AG-221) is a first-in-class, targeted inhibitor of mutant IDH2 proteins for treatment of relapsed or refractory acute myeloid leukemia. This was a Phase I/II study evaluating safety, efficacy, and pharmacokinetics/pharmacodynamics (PK/PD) of orally administered enasidenib in subjects with advanced hematologic malignancies with an IDH2 mutation. Methods Blood samples for PK and PD assessment were collected. A semi-mechanistic nonlinear mixed effect PK/PD model was successfully developed to characterize enasidenib plasma PK and to assess enasidenib-induced CYP3A activity. Results The PK model showed that enasidenib plasma concentrations were adequately described by a one-compartment model with first-order absorption and elimination; the PD model showed a high capacity to induce CYP3A (Emax=7.36) and a high enasidenib plasma concentration to produce half of maximum CYP3A induction (EC50 =31,400 ng/mL). Monte Carlo simulations based on the final PK/PD model showed that at 100 mg once daily dose there was significant drug accumulation and a maximum of three-fold CYP3A induction after multiple doses. Although the EC50 value for CYP3A induction by enasidenib is high, CYP3A induction was observed due to significant drug accumulation. Conclusion CYP3A induction following enasidenib dosing should be considered when prescribing concomitant medication metabolized via this pathway.
Collapse
Affiliation(s)
- Yan Li
- Translational Development and Clinical Pharmacology, Celgene Corporation, Summit, NJ, USA,
| | - Jamie N Connarn
- Translational Development and Clinical Pharmacology, Celgene Corporation, Summit, NJ, USA,
| | - Jian Chen
- Non-Clinical Development, Celgene Corporation, Summit, NJ, USA
| | - Zeen Tong
- Non-Clinical Development, Celgene Corporation, Summit, NJ, USA
| | - Maria Palmisano
- Translational Development and Clinical Pharmacology, Celgene Corporation, Summit, NJ, USA,
| | - Simon Zhou
- Translational Development and Clinical Pharmacology, Celgene Corporation, Summit, NJ, USA,
| |
Collapse
|
12
|
Penzak SR, Rojas-Fernandez C. 4β-Hydroxycholesterol as an Endogenous Biomarker for CYP3A Activity: Literature Review and Critical Evaluation. J Clin Pharmacol 2019; 59:611-624. [PMID: 30748026 DOI: 10.1002/jcph.1391] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/25/2019] [Indexed: 12/13/2022]
Abstract
A number of cytochrome P450 (CYP)3A phenotyping probes have been used to characterize the drug interaction potential of new molecular entities; of these, midazolam has emerged as the gold standard. Recently, plasma 4β-hydroxycholesterol (4β-OHC), the metabolite of CYP3A-mediated cholesterol metabolism, has been championed as an endogenous biomarker for CYP3A, particularly during chronic conditions where CYP3A activity is altered by disease and in long-term treatment studies where midazolam administration is not optimal. Multiple studies in humans have shown that 4β-OHC can qualitatively differentiate among weak, moderate, and potent CYP3A induction when an inducer, typically rifampin, is administered for up to 2 weeks. Conversely, longer durations of CYP3A inhibitor administration (≥1 month) appear to be necessary to differentiate among weak, moderate, and potent CYP3A inhibitors. A number of studies have reported statistically significant linear relationships between 4β-OHC plasma concentrations (and 4β-OHC:cholesterol ratios) and midazolam clearance. However, sufficiently powered studies assessing the ability of 4β-OHC or 4β-OHC:cholesterol ratios to measure CYP3A activity (ie, predictive performance) have not been conducted to date. Additional limitations associated with 4β-OHC phenotyping include inability to detect acute changes in CYP3A activity, uncertainty with regard to its intestinal formation, ambiguity surrounding the role of CYP3A5 in its metabolism, and lack of clarity regarding the role of transporters in its disposition. As such, the data do not support the use of 4β-OHC or 4β-OHC:cholesterol ratios as an endogenous biomarker for CYP3A activity.
Collapse
Affiliation(s)
- Scott R Penzak
- Auburn University Harrison School of Pharmacy, Auburn, AL, USA
| | | |
Collapse
|
13
|
Long-term efavirenz pharmacokinetics is comparable between Tanzanian HIV and HIV/Tuberculosis patients with the same CYP2B6*6 genotype. Sci Rep 2018; 8:16316. [PMID: 30397233 PMCID: PMC6218524 DOI: 10.1038/s41598-018-34674-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/23/2018] [Indexed: 01/11/2023] Open
Abstract
The impact of anti-tuberculosis co-treatment on efavirenz (EFV) exposure is still uncertain as contradictory reports exist, and the relevance of CYP2B6*6 genetic polymorphism on efavirenz clearance while on-and-off anti-tuberculosis co-treatment is not well investigated. We investigated the determinants of long-term efavirenz pharmacokinetics by enrolling HIV (n = 20) and HIV/Tuberculosis (n = 36) subjects undergoing efavirenz and efavirenz/rifampicin co-treatment respectively. Pharmacokinetic samplings were done 16 weeks after initiation of efavirenz-based anti-retroviral therapy and eight weeks after completion of rifampicin-based anti-tuberculosis treatment. Population pharmacokinetic modeling was used to characterize variabilities and covariates of efavirenz pharmacokinetic parameters. CYP2B6*6 genetic polymorphism but not rifampicin co-treatment was the statistically significant covariate. The estimated typical efavirenz clearance in the HIV only subjects with the CYP2B6*1/*1 genotype was 23.6 L/h/70 kg, while it was 38% and 69% lower in subjects with the CYP2B6*1/*6 and *6/*6 genotypes, respectively. Among subjects with the same CYP2B6 genotypes, efavirenz clearances were comparable between HIV and HIV/Tuberculosis subjects. Typical efavirenz clearances before and after completion of anti-tuberculosis therapy were comparable. In conclusion, after 16 weeks of treatment, efavirenz clearance is comparable between HIV and HIV/Tuberculosis patients with the same CYP2B6 genotype. CYP2B6 genotyping but not anti-tuberculosis co-treatment should guide efavirenz dosing to optimize treatment outcomes.
Collapse
|
14
|
Comparison of CYP3A4-Inducing Capacity of Enzyme-Inducing Antiepileptic Drugs Using 4β-Hydroxycholesterol as Biomarker. Ther Drug Monit 2018; 40:463-468. [DOI: 10.1097/ftd.0000000000000518] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Hole K, Størset E, Olastuen A, Haslemo T, Kro GB, Midtvedt K, Åsberg A, Molden E. Recovery of CYP3A Phenotype after Kidney Transplantation. Drug Metab Dispos 2017; 45:1260-1265. [PMID: 28928137 DOI: 10.1124/dmd.117.078030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/15/2017] [Indexed: 11/22/2022] Open
Abstract
End-stage renal disease impairs drug metabolism via cytochrome P450 CYP3A; however, it is unclear whether CYP3A activity recovers after kidney transplantation. Therefore, the aim of this study was to evaluate the change in CYP3A activity measured as 4β-hydroxycholesterol (4βOHC) concentration after kidney transplantation. In total, data from 58 renal transplant recipients with 550 prospective 4βOHC measurements were included in the study. One sample per patient was collected before transplantation, and 2-12 samples per patient were collected 1-82 days after transplantation. The measured pretransplant 4βOHC concentrations ranged by >7-fold, with a median value of 22.8 ng/ml. Linear mixed-model analysis identified a 0.16-ng/ml increase in 4βOHC concentration per day after transplantation (P < 0.001), indicating a regain in CYP3A activity. Increasing estimated glomerular filtration rate after transplantation was associated with increasing 4βOHC concentration (P < 0.001), supporting that CYP3A activity increases with recovering uremia. In conclusion, this study indicates that CYP3A activity is regained subsequent to kidney transplantation.
Collapse
Affiliation(s)
- Kristine Hole
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Elisabet Størset
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Ane Olastuen
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Tore Haslemo
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Grete Birkeland Kro
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Karsten Midtvedt
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Anders Åsberg
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| |
Collapse
|
16
|
Mutagonda RF, Kamuhabwa AAR, Minzi OMS, Massawe SN, Asghar M, Homann MV, Färnert A, Aklillu E. Effect of pharmacogenetics on plasma lumefantrine pharmacokinetics and malaria treatment outcome in pregnant women. Malar J 2017; 16:267. [PMID: 28673292 PMCID: PMC5496343 DOI: 10.1186/s12936-017-1914-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/27/2017] [Indexed: 01/09/2023] Open
Abstract
Background Pregnancy has considerable effects on the pharmacokinetic properties of drugs used to treat uncomplicated Plasmodium falciparum malaria. The role of pharmacogenetic variation on anti-malarial drug disposition and efficacy during pregnancy is not well investigated. The study aimed to examine the effect of pharmacogenetics on lumefantrine (LF) pharmacokinetics and treatment outcome in pregnant women. Methods Pregnant women with uncomplicated falciparum malaria were enrolled and treated with artemether-lumefantrine (ALu) at Mkuranga and Kisarawe district hospitals in Coast Region of Tanzania. Day-7 LF plasma concentration and genotyping forCYP2B6 (c.516G>T, c.983T>C), CYP3A4*1B, CYP3A5 (*3, *6, *7) and ABCB1 c.4036A4G were determined. Blood smear for parasite quantification by microscopy, and dried blood spot for parasite screening and genotyping using qPCR and nested PCR were collected at enrolment up to day 28 to differentiate between reinfection from recrudescence. Treatment response was recorded following the WHO protocol. Results In total, 92 pregnant women in their second and third trimester were included in the study and 424 samples were screened for presence of P. falciparum. Parasites were detected during the follow up period in 11 (12%) women between day 7 and 28 after treatment and PCR genotyping confirmed recrudescent infection in 7 (63.3%) women. The remaining four (36.4%) pregnant women had reinfection: one on day 14 and three on day 28. The overall PCR-corrected treatment failure rate was 9.0% (95% CI 4.4–17.4). Day 7 LF concentration was not significantly influenced by CYP2B6, CYP3A4*1B and ABCB1 c.4036A>G genotypes. Significant associations between CYP3A5 genotype and day 7 plasma LF concentrations was found, being higher in carriers of CYP3A5 defective variant alleles than CYP3A5*1/*1 genotype. No significant influence of CYP2B6, CYP3A5 and ABCB1 c.4036A>Genotypes on malaria treatment outcome were observed. However, CYP3A4*1B did affect malaria treatment outcome in pregnant women followed up for 28 days (P = 0.018). Conclusions Genetic variations in CYP3A4 and CYP3A5may influence LF pharmacokinetics and treatment outcome in pregnant women.
Collapse
Affiliation(s)
- Ritah F Mutagonda
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P.O. Box 65013, Dar es Salaam, Tanzania.
| | - Appolinary A R Kamuhabwa
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P.O. Box 65013, Dar es Salaam, Tanzania
| | - Omary M S Minzi
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P.O. Box 65013, Dar es Salaam, Tanzania
| | - Siriel N Massawe
- Department of Obstetrics and Gynaecology, School of Medicine, Muhimbili University of Allied Sciences, P.O Box 65013, Dar es Salaam, Tanzania
| | - Muhammad Asghar
- Unit of Infectious Diseases, Department of Medicine, Karolinska Institutet, Solna, 171 76, Stockholm, Sweden
| | - Manijeh V Homann
- Unit of Infectious Diseases, Department of Medicine, Karolinska Institutet, Solna, 171 76, Stockholm, Sweden
| | - Anna Färnert
- Unit of Infectious Diseases, Department of Medicine, Karolinska Institutet, Solna, 171 76, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Eleni Aklillu
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| |
Collapse
|
17
|
Mao J, Martin I, McLeod J, Nolan G, van Horn R, Vourvahis M, Lin YS. Perspective: 4β-hydroxycholesterol as an emerging endogenous biomarker of hepatic CYP3A. Drug Metab Rev 2016; 49:18-34. [PMID: 27718639 DOI: 10.1080/03602532.2016.1239630] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A key goal in the clinical development of a new molecular entity is to quickly identify whether it has the potential for drug-drug interactions. In particular, confirmation of in vitro data in the early stage of clinical development would facilitate the decision making and inform future clinical pharmacology study designs. Plasma 4β-hydroxycholesterol (4β-HC) is considered as an emerging endogenous biomarker for cytochrome P450 3A (CYP3A), one of the major drug metabolizing enzymes. Although there are increasing reports of the use of 4β-HC in academic- and industry-sponsored clinical studies, a thorough review, summary and consideration of the advantages and challenges of using 4β-HC to evaluate changes in CYP3A activity has not been attempted. Herein, we review the biology of 4β-HC, its response to treatment with CYP3A inducers, inhibitors and mixed inducer/inhibitors in healthy volunteers and patients, the association of 4β-HC with other probes of CYP3A activity (e.g. midazolam, urinary cortisol ratios), and present predictive pharmacokinetic models. We provide recommendations for studying hepatic CYP3A activity in clinical pharmacology studies utilizing 4β-HC at different stages of drug development.
Collapse
Affiliation(s)
- Jialin Mao
- a Drug Metabolism and Pharmacokinetics , Genentech , South San Francisco , CA , USA
| | - Iain Martin
- b Pharmacokinetics, Pharmacodynamics and Drug Metabolism , Merck , Boston , MA , USA
| | - James McLeod
- c Drug Development , Galleon Pharmaceuticals , Horsham , PA , USA
| | - Gail Nolan
- d Drug Metabolism and Pharmacokinetics , GlaxoSmithKline , Hertfordshire , UK
| | - Robert van Horn
- e Translational Medicine and Early Development , Sanofi , Bridgewater , NJ , USA
| | | | - Yvonne S Lin
- g Department of Pharmaceutics , University of Washington , Seattle , WA , USA
| |
Collapse
|
18
|
Vanhove T, de Jonge H, de Loor H, Annaert P, Diczfalusy U, Kuypers DRJ. Comparative performance of oral midazolam clearance and plasma 4β-hydroxycholesterol to explain interindividual variability in tacrolimus clearance. Br J Clin Pharmacol 2016; 82:1539-1549. [PMID: 27501475 DOI: 10.1111/bcp.13083] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/20/2016] [Accepted: 08/05/2016] [Indexed: 12/24/2022] Open
Abstract
AIMS We compared the CYP3A4 metrics weight-corrected midazolam apparent oral clearance (MDZ Cl/F/W) and plasma 4β-hydroxycholesterol/cholesterol (4β-OHC/C) as they relate to tacrolimus (TAC) Cl/F/W in renal transplant recipients. METHODS For a cohort of 147 patients, 8 h area under the curve (AUC) values for TAC and oral MDZ were calculated besides measurement of 4β-OHC/C. A subgroup of 70 patients additionally underwent intravenous erythromycin breath test (EBT) and were administered the intravenous MDZ probe. All patients were genotyped for common polymorphisms in CYP3A4, CYP3A5 and P450 oxidoreductase, among others. RESULTS MDZ Cl/F/W, 4β-OHC/C/W, EBT and TAC Cl/F/W were all moderately correlated (r = 0.262-0.505). Neither MDZ Cl/F/W nor 4β-OHC/C/W explained variability in TAC Cl/F/W in CYP3A5 expressors (n = 29). For CYP3A5 non-expressors (n = 118), factors explaining variability in TAC Cl/F/W in a MDZ-based model were MDZ Cl/F/W (R2 = 0.201), haematocrit (R2 = 0.139), TAC formulation (R2 = 0.107) and age (R2 = 0.032; total R2 = 0.479). In the 4β-OHC/C/W-based model, predictors were 4β-OHC/C/W (R2 = 0.196), haematocrit (R2 = 0.059) and age (R2 = 0.057; total R2 = 0.312). When genotype information was ignored, predictors of TAC Cl/F/W in the whole cohort were 4β-OHC/C/W (R2 = 0.167), MDZ Cl/F/W (R2 = 0.045); Tac QD formulation (R2 = 0.036), and haematocrit (R2 = 0.032; total R2 = 0.315). 4β-OHC/C/W, but not MDZ Cl/F/W, was higher in CYP3A5 expressors because it was higher in CYP3A4*1b carriers, which were almost all CYP3A5 expressors. CONCLUSIONS A MDZ-based model explained more variability in TAC clearance in CYP3A5 non-expressors. However, 4β-OHC/C/W was superior in a model in which no genotype information was available, likely because 4β-OHC/C/W was influenced by the CYP3A4*1b polymorphism.
Collapse
Affiliation(s)
- Thomas Vanhove
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Hylke de Jonge
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Henriëtte de Loor
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Ulf Diczfalusy
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Dirk R J Kuypers
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Nylén H, Habtewold A, Makonnen E, Yimer G, Bertilsson L, Burhenne J, Diczfalusy U, Aklillu E. Prevalence and risk factors for efavirenz-based antiretroviral treatment-associated severe vitamin D deficiency: A prospective cohort study. Medicine (Baltimore) 2016; 95:e4631. [PMID: 27559961 PMCID: PMC5400328 DOI: 10.1097/md.0000000000004631] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Initiation of efavirenz-based combination antiretroviral therapy (cART) is associated with Vitamin D deficiency, but the risk factors including efavirenz pharmacokinetics for cART-induced severe vitamin D deficiency (SVDD) and the impact of anti-tuberculosis (TB) cotreatment are not explored. We investigated the prevalence of SVDD in HIV and TB-HIV coinfected patients and associated risk factors for treatment-induced SVDD.Treatment-naïve Ethiopian HIV patients with (n = 102) or without (n = 89) TB co-infection were enrolled prospectively and received efavirenz-based cART. In TB-HIV coinfected patients, rifampicin-based anti-TB treatment was initiated 4 or 8 weeks before starting cART. Plasma 25-hydroxyvitamin D (25 [OH]D), cholesterol and 4-beta hydroxycholesterol concentrations were measured at baseline, 4, 16, and 48 week of cART. Plasma efavirenz concentrations were determined at 4 and 16 weeks of cART.TB-HIV patients had significantly lower plasma 25 (OH)D3 levels than HIV-only patients at baseline. TB co-infection, low Karnofsky score, high viral load, and high CYP3A activity as measured by plasma 4β-hydroxycholesterol/cholesterol ratios were significant predictors of low 25 (OH)D3 levels at baseline. In HIV-only patients, initiation of efavirenz-based cART increased the prevalence of SVVD from 27% at baseline to 76%, 79%, and 43% at 4, 16, and 48 weeks of cART, respectively. The median 25 (OH)D3 levels declined from baseline by -40%, -50%, and -14% at 4, 16, and 48 weeks of cART, respectively.In TB-HIV patients, previous anti-TB therapy had no influence on 25 (OH)D3 levels, but the initiation of efavirenz-based cART increased the prevalence of SVDD from 57% at baseline to 70% and 72% at the 4 and 16 weeks of cART, respectively. Median plasma 25 (OH)D3 declined from baseline by -17% and -21% at week 4 and 16 of cART, respectively.Our results indicate low plasma cholesterol, high CYP3A activity, and high plasma efavirenz concentrations as significant predictors of early efavirenz-based cART-induced vitamin D deficiency. Low plasma 25 (OH)D3 level at baseline is associated with TB co-infection and HIV diseases progression. Initiation of efavirenz-based cART is associated with high incidence of SVDD, whereas rifampicin based anti-TB therapy co-treatment has no significant effect. Supplementary vitamin D during cART initiation may be beneficial for HIV patients regardless of TB coinfection.
Collapse
Affiliation(s)
- Hanna Nylén
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| | - Abiy Habtewold
- Department of Pharmacology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Eyasu Makonnen
- Department of Pharmacology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Getnet Yimer
- Department of Pharmacology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Leif Bertilsson
- Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - Ulf Diczfalusy
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| | - Eleni Aklillu
- Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Correspondence: Professor Eleni Aklillu, Division of Clinical Pharmacology, Department of Laboratory of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge C-168, SE-141 86 Stockholm, Sweden (e-mail: )
| |
Collapse
|
20
|
Jiang X, Dutreix C, Jarugula V, Rebello S, Won CS, Sun H. An Exposure-Response Modeling Approach to Examine the Relationship Between Potency of CYP3A Inducer and Plasma 4β-Hydroxycholesterol in Healthy Subjects. Clin Pharmacol Drug Dev 2016; 6:19-26. [PMID: 27138546 DOI: 10.1002/cpdd.267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/12/2016] [Accepted: 04/27/2016] [Indexed: 11/10/2022]
Abstract
The objectives of this analysis were to establish the exposure-response relationship between plasma rifampicin and 4β-hydroxycholesterol (4βHC) concentration and to estimate the effect of weak, moderate, and potent CYP3A induction. Plasma rifampicin and 4βHC concentration-time data from a drug-drug interaction study with rifampicin 600 mg were used for model development. An indirect response model with an effect compartment described the relationship between rifampicin and 4βHC concentrations. The model predicted that the equilibration t1/2 and 4βHC t1/2 were 72.8 and 142 hours, respectively. EM50 and Emax of rifampicin induction were 32.6 μg and 8.39-fold, respectively. The population PK-PD model was then used to simulate the effects of rifampicin 10, 20, and 100 mg on plasma 4βHC for up to 21 days, in which rifampicin 10, 20, and 100 mg were used to represent weak, moderate, and strong inducers, respectively. The model-predicted median (5th, 95th percentiles) 1.13 (1.04, 1.44)-, 1.28 (1.10, 1.71)-, and 2.10 (1.45, 3.49)-fold increases in plasma 4βHC after 14-day treatment with rifampicin 10, 20, and 100 mg, respectively. A new drug candidate can likely be classified as a weak, moderate, or strong inducer if baseline-normalized plasma 4βHC increases by <1.13-, 1.13- to 2.10-, or >2.10-fold, respectively, after 14 days of dosing.
Collapse
Affiliation(s)
- Xuemin Jiang
- Drug Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research, East Hanover, NJ, USA
| | - Catherine Dutreix
- Oncology Clinical Pharmacology, Novartis Pharma AG, Basel, Switzerland
| | - Venkateswar Jarugula
- Drug Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research, East Hanover, NJ, USA
| | - Sam Rebello
- Drug Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research, East Hanover, NJ, USA
| | - Christina S Won
- Drug Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research, East Hanover, NJ, USA
| | - Haiying Sun
- Drug Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research, East Hanover, NJ, USA
| |
Collapse
|
21
|
CYP2B6*6 genotype and high efavirenz plasma concentration but not nevirapine are associated with low lumefantrine plasma exposure and poor treatment response in HIV-malaria-coinfected patients. THE PHARMACOGENOMICS JOURNAL 2015; 16:88-95. [PMID: 25963334 DOI: 10.1038/tpj.2015.37] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/12/2015] [Accepted: 04/07/2015] [Indexed: 01/03/2023]
Abstract
We investigated the influence of efavirenz (EFV)- or nevirapine (NVP)-based antiretroviral therapy (ART) on lumefantrine plasma exposure in HIV-malaria-coinfected patients and implication of pharmacogenetic variations. A total of 269 HIV patients with uncomplicated falciparum malaria on NVP-based ART (NVP-arm), EFV-based ART (EFV-arm) or not receiving ART (control-arm) were enrolled and treated with artemether-lumefantrine. Day-7 lumefantrine, baseline EFV and NVP plasma concentrations, and CYP2B6*6,*18, CYP3A4*1B, CYP3A5*3,*6,*7, ABCB1 c.3435C>T and ABCB1 c.4036A>G genotypes were determined. The median day-7 lumefantrine plasma concentration was significantly lower in the EFV-arm compared with that in NVP- and control-arm. High EFV plasma concentrations and CYP2B6*6/*6 genotype significantly correlated with low lumefantrine plasma concentrations and high rate of recurrent parasitemia. No significant effect of NVP-based ART on lumefantrine exposure was observed. In conclusion, owing to long-term CYP3A induction, EFV-based ART cotreatment significantly reduces lumefantrine plasma exposure leading to poor malaria treatment response, which is more pronounced in CYP2B6 slow metabolizers.
Collapse
|
22
|
Maganda BA, Ngaimisi E, Kamuhabwa AAR, Aklillu E, Minzi OMS. The influence of nevirapine and efavirenz-based anti-retroviral therapy on the pharmacokinetics of lumefantrine and anti-malarial dose recommendation in HIV-malaria co-treatment. Malar J 2015; 14:179. [PMID: 25906774 PMCID: PMC4424554 DOI: 10.1186/s12936-015-0695-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/14/2015] [Indexed: 01/29/2023] Open
Abstract
Background HIV-malaria co-infected patients in most parts of sub-Saharan Africa are treated with both artemether-lumefantrine (AL) and efavirenz (EFV) or nevirapine (NVP)-based antiretroviral therapy (ART). EFV, NVP, artemether and lumefantrine are substrates, inhibitors or inducers of CYP3A4 and CYP2B6, creating a potential for drug-drug interactions. The effect of EFV and/or NVP on lumefantrine pharmacokinetic profile among HIV-malaria co-infected patients on ART and treated with AL was investigated. Optimal lumefantrine dosage regimen for patients on EFV-based ART was determined by population pharmacokinetics and simulation. Methods This was a non-randomized, open label, parallel, prospective cohort study in which 128, 66 and 75 HIV-malaria co-infected patients on NVP-based ART (NVP-arm), EFV-based ART (EFV-arm) and ART naïve (control-am) were enrolled, respectively. Patients were treated with AL and contributed sparse venous plasma samples. Pharmacokinetic analysis of lumefantrine was done using non-linear mixed effect modelling. Results Of the evaluated models, a two-compartment pharmacokinetic model with first order absorption and lag-time described well lumefantrine plasma concentrations time profile. Patients in the EFV-arm but not in the NVP-arm had significantly lower lumefantrine bioavailability compared to that in the control-arm. Equally, 32% of patients in the EFV-arm had day-7 lumefantrine plasma concentrations below 280 ng/ml compared to only 4% in the control-arm and 3% in the NVP-arm. Upon post hoc simulation of lumefantrine exposure, patients in the EFV-arm had lower exposure (median (IQR)) compared to that in the control-arm; AUC0-inf; was 303,130 (211,080–431,962) versus 784,830 (547,405–1,116,250); day-7 lumefantrine plasma concentrations was: 335.5 (215.8-519.5) versus 858.7 (562.3-1,333.8), respectively. The predictive model through simulation of lumefantrine exposure at different dosage regimen scenarios for patients on EFV-based ART, suggest that AL taken twice daily for five days using the current dose could improve lumefantrine exposure and consequently malaria treatment outcomes. Conclusions Co-treatment of AL with EFV-based ART but not NVP-based ART significantly reduces lumefantrine bioavailability and consequently total exposure. To ensure adequate lumefantrine exposure and malaria treatment success in HIV-malaria co-infected patients on EFV-based ART, an extension of the duration of AL treatment to five days using the current dose is proposed.
Collapse
Affiliation(s)
- Betty A Maganda
- Department of Pharmaceutics, School of Pharmacy, Muhimbili University of Health and Allied Sciences, PO Box 65013, Dar es Salaam, Tanzania. .,Division of Clinical Pharmacology, Karolinska Institutet, Karolinska University Hospital, C-168, SE- 141 86, Stockholm, Sweden.
| | - Eliford Ngaimisi
- Unit of Pharmacology and Therapeutics, School of Pharmacy, Muhimbili University of Health and Allied Sciences, PO Box 65013, Dar es Salaam, Tanzania.
| | - Appolinary A R Kamuhabwa
- Unit of Pharmacology and Therapeutics, School of Pharmacy, Muhimbili University of Health and Allied Sciences, PO Box 65013, Dar es Salaam, Tanzania.
| | - Eleni Aklillu
- Division of Clinical Pharmacology, Karolinska Institutet, Karolinska University Hospital, C-168, SE- 141 86, Stockholm, Sweden.
| | - Omary M S Minzi
- Unit of Pharmacology and Therapeutics, School of Pharmacy, Muhimbili University of Health and Allied Sciences, PO Box 65013, Dar es Salaam, Tanzania.
| |
Collapse
|