1
|
Grenier F, Baby V, Allard S, Lévesque S, Papale F, Sullivan R, Landecker HL, Higgins PG, Rodrigue S, Haraoui LP. Isolation of a blaNDM-1-positive strain in Israel predating the earliest observations from India. Microbiol Spectr 2024; 12:e0100224. [PMID: 39320107 PMCID: PMC11537007 DOI: 10.1128/spectrum.01002-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
blaNDM, the most prevalent carbapenemase among carbapenem-resistant Enterobacteriaceae, is thought to have emerged in India, as its initial detection in 2008 was linked to this country, and subsequent retrospective surveys had so far established the earliest blaNDM-positive strains to be isolated in India in 2005. Molecular dating and analyses suggest blaNDM emerged within Acinetobacter species decades prior to 2005 on a Tn125 transposon. Despite early reports of elevated rates of carbapenem-resistant Acinetobacter species in Israel starting in the 1990s, limited molecular data are available from this location. We searched for blaNDM among Acinetobacter species isolated in Israel between 2001 and 2006. One A. junii strain, Ajun-H1-3, isolated in January 2004, carried blaNDM-1 within a Tn125-like transposon on a 49-kb plasmid, pNDM-Ajun-H1-3, making Ajun-H1-3 the earliest NDM-positive isolate observed to date. The pNDM-Ajun-H1-3 plasmid matched numerous BJ01-like NDM-positive plasmids identified from 2005 onward in Acinetobacter species as well as Enterobacterales. These results indicate the need for further retrospective work on global strain archives to shed light on the conditions favoring the emergence as well as subsequent evolution and spread of blaNDM. IMPORTANCE This study presents the earliest observation of blaNDM-1, isolated in a geographical region distant from where it is believed to have originated. In doing so, this study provides novel insights into the emergence and spread of blaNDM, the most prevalent carbapenemase among carbapenem-resistant Enterobacteriaceae, and its associated mobile genetic elements. It also sheds light on the conditions that foster the evolution of antimicrobial resistance, one of the greatest public health challenges we face.
Collapse
Affiliation(s)
- Frédéric Grenier
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Sherbrooke, Québec, Canada
| | - Vincent Baby
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Sherbrooke, Québec, Canada
| | - Sarah Allard
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Simon Lévesque
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
- CIUSSS de l’Estrie - CHUS, Sherbrooke, Québec, Canada
| | - François Papale
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Richard Sullivan
- Conflict and Health Research Group, King’s College London, London, United Kingdom
| | | | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), partner site Cologne-Bonn, Cologne, Germany
| | - Sébastien Rodrigue
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Sherbrooke, Québec, Canada
| | - Louis-Patrick Haraoui
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
- Centre de recherche Charles-Le Moyne, CISSS Montérégie-Centre, Longueuil, Québec, Canada
| |
Collapse
|
2
|
Acman M, Wang R, van Dorp L, Shaw LP, Wang Q, Luhmann N, Yin Y, Sun S, Chen H, Wang H, Balloux F. Role of mobile genetic elements in the global dissemination of the carbapenem resistance gene bla NDM. Nat Commun 2022; 13:1131. [PMID: 35241674 PMCID: PMC8894482 DOI: 10.1038/s41467-022-28819-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
The mobile resistance gene blaNDM encodes the NDM enzyme which hydrolyses carbapenems, a class of antibiotics used to treat some of the most severe bacterial infections. The blaNDM gene is globally distributed across a variety of Gram-negative bacteria on multiple plasmids, typically located within highly recombining and transposon-rich genomic regions, which leads to the dynamics underlying the global dissemination of blaNDM to remain poorly resolved. Here, we compile a dataset of over 6000 bacterial genomes harbouring the blaNDM gene, including 104 newly generated PacBio hybrid assemblies from clinical and livestock-associated isolates across China. We develop a computational approach to track structural variants surrounding blaNDM, which allows us to identify prevalent genomic contexts, mobile genetic elements, and likely events in the gene's global spread. We estimate that blaNDM emerged on a Tn125 transposon before 1985, but only reached global prevalence around a decade after its first recorded observation in 2005. The Tn125 transposon seems to have played an important role in early plasmid-mediated jumps of blaNDM, but was overtaken in recent years by other elements including IS26-flanked pseudo-composite transposons and Tn3000. We found a strong association between blaNDM-carrying plasmid backbones and the sampling location of isolates. This observation suggests that the global dissemination of the blaNDM gene was primarily driven by successive between-plasmid transposon jumps, with far more restricted subsequent plasmid exchange, possibly due to adaptation of plasmids to their specific bacterial hosts.
Collapse
Affiliation(s)
- Mislav Acman
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Ruobing Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Liam P Shaw
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Nina Luhmann
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Yuyao Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Shijun Sun
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Hongbin Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Francois Balloux
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
3
|
Marí-Almirall M, Cosgaya C, Pitart C, Viñes J, Muñoz L, Campo I, Cuscó A, Rodríguez-Serna L, Santana G, Del Río A, Francino O, Ciruela P, Pujol I, Ballester F, Marco F, Martínez JA, Soriano Á, Vila J, Roca I. Dissemination of NDM-producing Klebsiella pneumoniae and Escherichia coli high-risk clones in Catalan healthcare institutions. J Antimicrob Chemother 2021; 76:345-354. [PMID: 33200193 DOI: 10.1093/jac/dkaa459] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES To characterize the clonal spread of carbapenem-resistant Klebsiella pneumoniae and Escherichia coli isolates between different healthcare institutions in Catalonia, Spain. METHODS Antimicrobial susceptibility was tested by disc diffusion. MICs were determined by gradient diffusion or broth microdilution. Carbapenemase production was confirmed by lateral flow. PCR and Sanger sequencing were used to identify the allelic variants of resistance genes. Clonality studies were performed by PFGE and MLST. Plasmid typing, conjugation assays, S1-PFGE plus Southern blotting and MinION Oxford Nanopore sequencing were used to characterize resistance plasmids. RESULTS Twenty-nine carbapenem-resistant isolates recovered from three healthcare institutions between January and November 2016 were included: 14 K. pneumoniae isolates from a tertiary hospital in the south of Catalonia (hospital A); 2 K. pneumoniae isolates from a nearby healthcare centre; and 12 K. pneumoniae isolates and 1 E. coli isolate from a tertiary hospital in Barcelona (hospital B). The majority of isolates were resistant to all antimicrobial agents, except colistin, and all were NDM producers. PFGE identified a major K. pneumoniae clone (n = 27) belonging to ST147 and co-producing NDM-1 and CTX-M-15, with a few isolates also harbouring blaOXA-48. Two sporadic isolates of K. pneumoniae ST307 and E. coli ST167 producing NDM-7 were also identified. blaNDM-1 was carried in two related IncR plasmid populations and blaNDM-7 in a conjugative 50 kb IncX3 plasmid. CONCLUSIONS We report the inter-hospital dissemination of XDR high-risk clones of K. pneumoniae and E. coli associated with the carriage of small, transferable plasmids harbouring blaNDM genes.
Collapse
Affiliation(s)
- Marta Marí-Almirall
- Laboratory of Antimicrobial Resistance, ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Clara Cosgaya
- Laboratory of Antimicrobial Resistance, ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Cristina Pitart
- Department of Clinical Microbiology, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Joaquim Viñes
- SVGM, Molecular Genetics Veterinary Service, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,Vetgenomics, PRUAB, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Laura Muñoz
- Laboratory of Antimicrobial Resistance, ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Irene Campo
- Department of Clinical Microbiology, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Anna Cuscó
- Vetgenomics, PRUAB, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Laura Rodríguez-Serna
- Department of Epidemiology and Preventive Medicine, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Gemina Santana
- Department of Epidemiology and Preventive Medicine, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Ana Del Río
- Department of Infectious Diseases, Hospital Clínic - Institut d'investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | - Olga Francino
- SVGM, Molecular Genetics Veterinary Service, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Pilar Ciruela
- Public Health Agency of Catalonia (ASPCAT), Generalitat de Catalunya, Barcelona, Spain.,CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Pujol
- Laboratori de Microbiologia, Hospital Universitari Sant Joan de Reus, Reus, Spain.,Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Frederic Ballester
- Hospital Universitari Sant Joan de Reus-Laboratori de Referència del Camp de Tarragona i de les Terres de l'Ebre, Reus, Spain
| | - Francesc Marco
- Laboratory of Antimicrobial Resistance, ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Department of Clinical Microbiology, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - José Antonio Martínez
- Department of Infectious Diseases, Hospital Clínic - Institut d'investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | - Álex Soriano
- Department of Infectious Diseases, Hospital Clínic - Institut d'investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | - Jordi Vila
- Laboratory of Antimicrobial Resistance, ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Department of Clinical Microbiology, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Ignasi Roca
- Laboratory of Antimicrobial Resistance, ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | |
Collapse
|
4
|
Iimura M, Hayashi W, Arai E, Natori T, Horiuchi K, Matsumoto G, Tanaka H, Soga E, Nagano Y, Nagano N. Detection of Acinetobacter pittii ST220 co-producing NDM-1 and OXA-820 carbapenemases from a hospital sink in a non-endemic country of NDM. J Glob Antimicrob Resist 2019; 21:353-356. [PMID: 31783194 DOI: 10.1016/j.jgar.2019.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVES NDM-1 is by far one of the most commonly prevalent carbapenemases in Enterobacteriaceae and Acinetobacter baumannii. This study presented an Acinetobacter pittii (A. pittii) isolate co-harboring blaNDM-1 and blaOXA-820 from a university hospital sink, where New Delhi metallo-β-lactamase (NDM) producers have not been found in either patients or their environments. METHODS Whole-genome sequencing was performed on the HiSeq 4000 platform, and the reads were de novo assembled using the A5-miSeq Assembly pipeline. Annotation of the resulting scaffolds were performed by using the DDBJ Fast Annotation and Submission Tool (DFAST). The blaNDM-1-carrying plasmid was determined. RESULTS The A. pittii ST220 strain SU1805 detected from a sink strainer in the treatment room was resistant to imipenem and meropenem. Antimicrobial resistance genes blaNDM-1, blaOXA-820, blaADC-43, and aphA6 were found in this strain. The blaNDM-1 was found to be located downstream of an ISAba125 element on a plasmid pSU1805NDM with a size of 41,022 bp, and GC content of 38.3% harbouring 48 protein-coding genes. The aphA6 gene was also located upstream of the ISAba125 on the same plasmid. The A. pittii intrinsic blaOXA-213-like gene blaOXA-820 was located between fxsA and yncA genes in the chromosome. The strain also harboured biofilm-associated genes such as ompA, the csu operon and their regulating genes bfmRS. CONCLUSION This study described the first isolation of NDM-1-producing A. pittii in Japan, and highlighted the importance of proper implementation of measures against AMR for sink drainage systems, since NDM producers may have already been hidden in such environments in a non-endemic country of NDM.
Collapse
Affiliation(s)
- Masaki Iimura
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Wataru Hayashi
- Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Eriko Arai
- Department of Laboratory Medicine, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Tatsuya Natori
- Department of Laboratory Medicine, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Kazuki Horiuchi
- Department of Laboratory Medicine, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Go Matsumoto
- Department of Laboratory Medicine, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Hayato Tanaka
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Eiji Soga
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Yukiko Nagano
- Department of Bacteriology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Noriyuki Nagano
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| |
Collapse
|
5
|
Pailhoriès H, Hadjadj L, Mahieu R, Crochette N, Rolain JM, Kempf M. Fortuitous diagnosis of NDM-1-producing Acinetobacter pittii carriage in a patient from France with no recent history of travel. J Antimicrob Chemother 2018; 72:942-944. [PMID: 27999060 DOI: 10.1093/jac/dkw505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hélène Pailhoriès
- L'UNAM Université, Université d'Angers, ATOMycA, Inserm Equipe Avenir, CRCNA, Inserm U892, 6299 CNRS - IRIS, CHU, 4 rue Larrey, 49933 Angers cedex, France.,Laboratoire de Bactériologie, Institut de Biologie en Santé-PBH, CHU, 4 rue Larrey, 49933 Angers cedex, France
| | - Linda Hadjadj
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Rafael Mahieu
- L'UNAM Université, Université d'Angers, ATOMycA, Inserm Equipe Avenir, CRCNA, Inserm U892, 6299 CNRS - IRIS, CHU, 4 rue Larrey, 49933 Angers cedex, France
| | - Nicolas Crochette
- Service de Maladies Infectieuses et Tropicales-CHU, 4 rue Larrey, 49933 Angers cedex, France
| | - Jean-Marc Rolain
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Marie Kempf
- L'UNAM Université, Université d'Angers, ATOMycA, Inserm Equipe Avenir, CRCNA, Inserm U892, 6299 CNRS - IRIS, CHU, 4 rue Larrey, 49933 Angers cedex, France.,Laboratoire de Bactériologie, Institut de Biologie en Santé-PBH, CHU, 4 rue Larrey, 49933 Angers cedex, France
| |
Collapse
|
6
|
Acinetobacter pittii, an emerging new multi-drug resistant fish pathogen isolated from diseased blunt snout bream (Megalobrama amblycephala Yih) in China. Appl Microbiol Biotechnol 2017; 101:6459-6471. [DOI: 10.1007/s00253-017-8392-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 04/25/2017] [Accepted: 06/14/2017] [Indexed: 11/25/2022]
|
7
|
Cosgaya C, Marí-Almirall M, Van Assche A, Fernández-Orth D, Mosqueda N, Telli M, Huys G, Higgins PG, Seifert H, Lievens B, Roca I, Vila J. Acinetobacter dijkshoorniae sp. nov., a member of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex mainly recovered from clinical samples in different countries. Int J Syst Evol Microbiol 2016; 66:4105-4111. [PMID: 27432448 DOI: 10.1099/ijsem.0.001318] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The recent advances in bacterial species identification methods have led to the rapid taxonomic diversification of the genus Acinetobacter. In the present study, phenotypic and molecular methods have been used to determine the taxonomic position of a group of 12 genotypically distinct strains belonging to the Acinetobacter calcoaceticus-Acinetobacter baumannii (ACB) complex, initially described by Gerner-Smidt and Tjernberg in 1993, that are closely related to Acinetobacter pittii. Strains characterized in this study originated mostly from human samples obtained in different countries over a period of 15 years. rpoB gene sequences and multilocus sequence typing were used for comparisons against 94 strains representing all species included in the ACB complex. Cluster analysis based on such sequences showed that all 12 strains grouped together in a distinct clade closest to Acinetobacter pittiithat was supported by bootstrap values of 99 %. Values of average nucleotide identity based on blast between the genome sequence of strain JVAP01T (NCBI accession no. LJPG00000000) and those of other species from the ACB complex were always <91.2 %, supporting the species status of the group. In addition, the metabolic characteristics of the group matched those of the ACB complex and the analysis of their protein signatures by matrix-assisted laser desorption ionization time-of-flight MS identified some specific peaks. Our results support the designation of these strains as representing a novel species, for which the name Acinetobacter dijkshoorniae sp. nov. is proposed. The type strain is JVAP01T (=CECT 9134T=LMG 29605T).
Collapse
Affiliation(s)
- Clara Cosgaya
- Department of Clinical Microbiology and ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Marta Marí-Almirall
- Department of Clinical Microbiology and ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Ado Van Assche
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Sint-Katelijne-Waver, Belgium
| | - Dietmar Fernández-Orth
- Department of Clinical Microbiology and ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Noraida Mosqueda
- Department of Clinical Microbiology and ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Murat Telli
- Department of Clinical Microbiology, School of Medicine, Adnan Menderes University, Aydin, Turkey
| | - Geert Huys
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,German Centre for Infection Research (DZIF), Partner site Bonn-Cologne, Germany
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,German Centre for Infection Research (DZIF), Partner site Bonn-Cologne, Germany
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Sint-Katelijne-Waver, Belgium
| | - Ignasi Roca
- Department of Clinical Microbiology and ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Jordi Vila
- Department of Clinical Microbiology and ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Tang HJ, Chen CC, Lai CC, Zhang CC, Weng TC, Chiu YH, Toh HS, Chiang SR, Yu WL, Ko WC, Chuang YC. In vitro and in vivo antibacterial activity of tigecycline against Vibrio vulnificus. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2016; 51:76-81. [PMID: 27260781 DOI: 10.1016/j.jmii.2016.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/12/2016] [Accepted: 04/25/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND/PURPOSE The aim of this study is to investigate the role of tigecycline in Vibrio vulnificus infection. METHODS Eight randomly selected clinical V. vulnificus isolates were studied to obtain the minimal inhibitory concentrations (MICs) of minocycline, cefotaxime, and tigecycline, and the time-kill curves of tigecycline alone or in combination with other drugs. A peritonitis mouse model was used for the evaluation of the therapeutic efficacy of tigecycline alone or cefotaxime in combination with minocycline or tigecycline. RESULTS The MIC of minocycline, cefotaxime, and tigecycline for eight clinical V. vulnificus isolates was 0.06-0.12 μg/mL, 0.03-0.06 μg/mL, and 0.03-0.06 μg/mL, respectively. In time-killing studies, at the concentration of 1 × MIC, the inhibitory effect of tigecycline persisted for 24 hours in five of eight isolates. With 2 × MIC and trough level, the inhibitory effect was noted in all isolates for 24 hours. With the combination of minocycline plus cefotaxime and tigecycline plus cefotaxime at 1/2 × MIC, the bactericidal effect was noted in 25% and 62.5% of eight isolates and synergism in 50% and 75% of isolates. With a low (1.25 × 105 CFU/mL) inoculum, all infected mice survived with tigecycline alone, tigecycline plus cefotaxime, or minocycline plus cefotaxime on the 14th day. At the inoculum of 1.25 × 106 CFU, the survival rate was 33.3% on the 14th day in the tigecycline plus cefotaxime-treated group, but none of the mice treated by tigecycline alone or minocycline plus cefotaxime survived (33.3% vs. 0%, p = 0.01 by Fisher's exact test). CONCLUSION Our in vitro combination and animal studies indicate that tigecycline could be an option for the treatment of invasive V. vulnificus infections.
Collapse
Affiliation(s)
- Hung-Jen Tang
- Department of Medicine, Chi Mei Medical Center, Tainan, Taiwan; Department of Health and Nutrition, Chia Nan University of Pharmacy & Science, Tainan, Taiwan
| | - Chi-Chung Chen
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Chih-Cheng Lai
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liou Ying, Tainan, Taiwan
| | | | - Tzu-Chieh Weng
- Department of Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Yu-Hsin Chiu
- Department of Medicine, Chi Mei Medical Center, Liou Ying, Tainan, Taiwan
| | - Han-Siong Toh
- Department of Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Shyh-Ren Chiang
- Department of Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Wen-Liang Yu
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Medicine, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan.
| | - Yin-Ching Chuang
- Department of Medicine, Chi Mei Medical Center, Tainan, Taiwan; Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan; Department of Medicine, Chi Mei Medical Center, Liou Ying, Tainan, Taiwan.
| |
Collapse
|
9
|
Al Atrouni A, Joly-Guillou ML, Hamze M, Kempf M. Emergence of NDM-1 and OXA-72 producing Acinetobacter pittii clinical isolates in Lebanon. New Microbes New Infect 2016; 12:43-4. [PMID: 27222717 PMCID: PMC4872368 DOI: 10.1016/j.nmni.2016.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/14/2016] [Indexed: 10/28/2022] Open
Abstract
Acinetobacter spp. have emerged as global opportunistic pathogen causing a wide range of infections. Emergence of carbapenem resistance in these organisms is a matter of great concern. We report here the first detection of Acinetobacter pittii clinical isolates in Lebanon carrying either the bla NDM-1 or the bla OXA-72 gene.
Collapse
Affiliation(s)
- A Al Atrouni
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie et Faculté de Santé Publique, Université Libanaise, Tripoli, Liban; ATOMycA, Inserm Atip-Avenir Team, CRCNA, Inserm U892, 6299 CNRS, University of Angers, France
| | - M-L Joly-Guillou
- ATOMycA, Inserm Atip-Avenir Team, CRCNA, Inserm U892, 6299 CNRS, University of Angers, France; Laboratoire de Bactériologie, Institut de Biologie en Santé - Centre Hospitalier Universitaire, Angers, France
| | - M Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie et Faculté de Santé Publique, Université Libanaise, Tripoli, Liban
| | - M Kempf
- ATOMycA, Inserm Atip-Avenir Team, CRCNA, Inserm U892, 6299 CNRS, University of Angers, France; Laboratoire de Bactériologie, Institut de Biologie en Santé - Centre Hospitalier Universitaire, Angers, France
| |
Collapse
|
10
|
Akova M. Epidemiology of antimicrobial resistance in bloodstream infections. Virulence 2016; 7:252-66. [PMID: 26984779 PMCID: PMC4871634 DOI: 10.1080/21505594.2016.1159366] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial resistance in bacterial pathogens is a worldwide challenge leading high morbidity and mortality in clinical settings. Multidrug resistant patterns in gram-positive and -negative bacteria have resulted in difficult-to-treat or even untreatable infections with conventional antimicrobials. Since the early identification of causative microorganisms and their antimicrobial susceptibility patterns in patients with bacteremia and other serious infections is lacking in many healthcare institutions, broad spectrum antibiotics are liberally and mostly unnecessarily used. Such practice has, in turn, caused dramatic increases in emerging resistance and when coupled with poor practice of infection control, resistant bacteria can easily be disseminated to the other patients and the environment. Thus, availability of updated epidemiological data on antimicrobial resistance in frequently encountered bacterial pathogens will be useful not only for deciding on empirical treatment strategies, but also devising an effective antimicrobial stewardship program in hospitals.
Collapse
Affiliation(s)
- Murat Akova
- Department of Infectious Diseases, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
11
|
Task force on management and prevention of Acinetobacter baumannii infections in the ICU. Intensive Care Med 2015; 41:2057-75. [DOI: 10.1007/s00134-015-4079-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/22/2015] [Indexed: 12/16/2022]
|
12
|
Identification of NDM-1 in a Putatively Novel Acinetobacter Species ("NB14") Closely Related to Acinetobacter pittii. Antimicrob Agents Chemother 2015; 59:6657-60. [PMID: 26259796 DOI: 10.1128/aac.01455-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 08/04/2015] [Indexed: 11/20/2022] Open
Abstract
In this study, we describe the molecular characterization of a plasmid-located blaNDM-1 harbored by an Acinetobacter clinical isolate recovered from a patient in Turkey that putatively constitutes a novel Acinetobacter species, as shown by its distinct ARDRA (amplified 16S ribosomal DNA restriction analysis) profile and molecular sequencing techniques. blaNDM-1 was carried by a conjugative plasmid widespread among non-baumannii Acinetobacter isolates, suggesting its potential for dissemination before reaching more clinically relevant Acinetobacter species.
Collapse
|
13
|
Heydari F, Mammina C, Koksal F. NDM-1-producing Acinetobacter baumannii ST85 now in Turkey, including one isolate from a Syrian refugee. J Med Microbiol 2015; 64:1027-1029. [PMID: 26296677 DOI: 10.1099/jmm.0.000132] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
New Delhi metallo-β-lactamase-1 (NDM-1), an acquired class B carbapenemase, is a significant clinical threat owing to the extended hydrolysis of β-lactams including carbapenems. Here, to the best of our knowledge we describe for the first time in Turkey two NDM-1-producing Acinetobacter baumannii isolates recovered from intensive care unit patients. The presence of blaNDM-1 was detected by PCR and confirmed by sequencing. The clonal relationship was assessed by PFGE and multilocus sequence typing. Both isolates were positive for blaNDM-1 and were attributed with the sequence type 85. One isolate was from a Syrian refugee, whereas the second was from a patient who had never travelled outside Turkey. Our findings confirmed that the rapid spread of NDM-1-producing Gram-negative organisms could become a major challenge for the treatment and control of healthcare-associated infections in our geographical area. They suggest also that NDM-1-producing strains and/or their genetic determinants are probably being imported from Syria to neighbouring countries.
Collapse
Affiliation(s)
- Farzad Heydari
- Department of Medical Microbiology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Caterina Mammina
- Department of Sciences for Health Promotion and Mother-Child Care G. D'Alessandro, University of Palermo, Italy
| | - Fatih Koksal
- Department of Medical Microbiology, Faculty of Medicine, Cukurova University, Adana, Turkey
| |
Collapse
|
14
|
Hammerum AM, Hansen F, Littauer P. Use of whole-genome sequencing for characterisation of a ST119 NDM-1-producing Acinetobacter pittii from a patient in Denmark with no history of recent travel. Int J Antimicrob Agents 2015; 46:351-2. [PMID: 26143592 DOI: 10.1016/j.ijantimicag.2015.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 05/29/2015] [Indexed: 11/18/2022]
Affiliation(s)
- Anette M Hammerum
- Department of Microbiology and Infection Control, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark.
| | - Frank Hansen
- Department of Microbiology and Infection Control, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark
| | - Pia Littauer
- Department of Clinical Microbiology, Hvidovre University Hospital, Hvidovre, Denmark
| |
Collapse
|
15
|
Quiñones D, Carvajal I, Perez Y, Hart M, Perez J, Garcia S, Salazar D, Ghosh S, Kawaguchiya M, Aung MS, Kobayashi N. High prevalence of bla OXA-23 in Acinetobacter spp. and detection of bla NDM-1 in A. soli in Cuba: report from National Surveillance Program (2010-2012). New Microbes New Infect 2015; 7:52-6. [PMID: 26236494 PMCID: PMC4511621 DOI: 10.1016/j.nmni.2015.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/13/2015] [Accepted: 06/04/2015] [Indexed: 11/29/2022] Open
Abstract
As a first national surveillance of Acinetobacter in Cuba, a total of 500 Acinetobacter spp. isolates recovered from 30 hospitals between 2010 and 2012 were studied. Acinetobacter baumannii–calcoaceticus complex accounted for 96.4% of all the Acinetobacter isolates, while other species were detected at low frequency (A. junii 1.6%, A. lwoffii 1%, A. haemolyticus 0.8%, A. soli 0.2%). Resistance rates of isolates were 34–61% to third-generation cephalosporins, 49–50% to β-lactams/inhibitor combinations, 42–47% to aminoglycosides, 42–44% to carbapenems and 55% to ciprofloxacin. However, resistance rates to colistin, doxycycline, tetracycline and rifampin were less than 5%. Among carbapenem-resistant isolates, 75% harboured different blaOXA genes (OXA-23, 73%; OXA-24, 18%; OXA-58, 3%). The blaNDM-1 gene was identified in an A. soli strain, of which the species was confirmed by sequence analysis of 16S rRNA gene, rpoB, rpoB–rpoC and rpoL–rpoB intergenic spacer regions and gyrB. The sequences of blaNDM-1 and its surrounding genes were identical to those reported for plasmids of A. baumannii and A. lwoffi strains. This is the first report of blaNDM-1 in A. soli, together with a high prevalence of OXA-23 carbapenemase for carbapenem resistance in Acinetobacter spp. in Cuba.
Collapse
Affiliation(s)
- D Quiñones
- Tropical Medicine Institute 'Pedro Kourí', Havana City, Cuba
| | - I Carvajal
- Tropical Medicine Institute 'Pedro Kourí', Havana City, Cuba
| | - Y Perez
- Tropical Medicine Institute 'Pedro Kourí', Havana City, Cuba
| | - M Hart
- 'Hermanos Ameijeiras' Hospital, Havana City, Cuba
| | - J Perez
- Pediátrico 'J. M. Márquez' Hospital, Havana City, Cuba
| | - S Garcia
- 'V. I. Lenin' Hospital, Holguín, Holguín, Cuba
| | - D Salazar
- Tropical Medicine Institute 'Pedro Kourí', Havana City, Cuba
| | - S Ghosh
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan ; Department of Biomedical Science, Ross University School of Medicine, St Kitts, West Indies
| | - M Kawaguchiya
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - M S Aung
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - N Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
16
|
A case of IMP-4-, OXA-421-, OXA-96-, and CARB-2-producing Acinetobacter pittii sequence type 119 in Australia. J Clin Microbiol 2014; 53:727-30. [PMID: 25428154 DOI: 10.1128/jcm.02726-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
An IMP-4-producing Acinetobacter pittii strain coproducing oxacillinases was isolated from a leg wound of a 67-year-old female patient. Identification to the species level by rpoB and gyrB sequencing and multiplex-PCR-based analysis revealed that the isolate was A. pittii. Whole-genome sequencing of this A. pittii isolate determined the presence of blaOXA-96, blaCARB-2, and a novel blaOXA-421 gene. The position of this novel blaOXA-421 gene was similar to that of blaOXA-51 in A. baumannii, downstream of the phosphinothricin N-acetyltransferase gene and upstream of fxsA in the chromosome. This A. pittii isolate was found to belong to sequence type 119 (ST119). Here, we report the first isolation of IMP-4-producing A. pittii ST119 with a novel blaOXA-421 gene from a patient in Australia and characterize its draft genome.
Collapse
|