1
|
Mousavi SMJ, Hosseinpour M, Rafiei F, Mahmoudi M, Shahraki H, Shiri H, Hashemi A, Sharahi JY. Colistin antibacterial activity, clinical effectiveness, and mechanisms of intrinsic and acquired resistance. Microb Pathog 2025:107317. [PMID: 39863092 DOI: 10.1016/j.micpath.2025.107317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/10/2024] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Following a period of disuse owing to the emergence of multidrug-resistant Gram-negative bacteria, colistin has regained global attention as an antibiotic of last resort. The resurgence in its utilization has led to a concurrent increase in acquired resistance, presenting a significant challenge in clinical treatment. Predominantly, resistance mechanisms involve alterations in the lipid A component of the lipopolysaccharide (LPS) structure. These alterations are facilitated by the addition of cationic phosphoethanolamine (pEtN) or 4-amino-L-arabinose, often driven by the upregulation of two-component regulatory systems such as PmrAB and PhoPQ. Structural components of bacteria, such as capsules and efflux pumps, can also play an important role in the resistance mechanism. In addition to these biochemical modifications, structural components of bacteria like capsules and efflux pumps also play crucial roles in mediating resistance. Another significant mechanism is the acquisition of the plasmid-mediated mobilized colistin resistance (mcr) gene, which poses a global health threat due to its ability to transfer between different bacterial genera. Contemporary strategies to combat colistin resistance include the development and use of novel drugs and inhibitors. To devise effective interventions, it is imperative to first elucidate the precise mechanisms of colistin resistance and determine the roles of various contributing factors.
Collapse
Affiliation(s)
| | - Minoo Hosseinpour
- Department of Microbiology, Virology and Microbial Toxins, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fariba Rafiei
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hojat Shahraki
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Shiri
- Department of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Yasbolaghi Sharahi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Dramé I, Rossez Y, Krzewinski F, Charbonnel N, Ollivier-Nakusi L, Briandet R, Dague E, Forestier C, Balestrino D. FabR, a regulator of membrane lipid homeostasis, is involved in Klebsiella pneumoniae biofilm robustness. mBio 2024; 15:e0131724. [PMID: 39240091 PMCID: PMC11481535 DOI: 10.1128/mbio.01317-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
Biofilm is a dynamic structure from which individual bacteria and micro-aggregates are released to subsequently colonize new niches by either detachment or dispersal. Screening of a transposon mutant library identified genes associated with the alteration of Klebsiella pneumoniae biofilm including fabR, which encodes a transcriptional regulator involved in membrane lipid homeostasis. An isogenic ∆fabR mutant formed more biofilm than the wild-type (WT) strain and its trans-complemented strain. The thick and round aggregates observed with ∆fabR were resistant to extensive washes, unlike those of the WT strain. Confocal microscopy and BioFlux microfluidic observations showed that fabR deletion was associated with biofilm robustness and impaired erosion over time. The genes fabB and yqfA associated with fatty acid metabolism were significantly overexpressed in the ∆fabR strain, in both planktonic and biofilm conditions. Two monounsaturated fatty acids, palmitoleic acid (C16:1) and oleic acid (C18:1), were found in higher proportion in biofilm cells than in planktonic forms, whereas heptadecenoic acid (C17:1) and octadecanoic acid, 11-methoxy (C18:0-OCH3) were found in higher proportion in the planktonic lifestyle. The fabR mutation induced variations in the fatty acid composition, with no clear differences in the amounts of saturated fatty acids (SFA) and unsaturated fatty acids for the planktonic lifestyle but lower SFA in the biofilm form. Atomic force microscopy showed that deletion of fabR is associated with decreased K. pneumoniae cell rigidity in the biofilm lifestyle, as well as a softer, more elastic biofilm with increased cell cohesion compared to the wild-type strain.IMPORTANCEKlebsiella pneumoniae is an opportunistic pathogen responsible for a wide range of nosocomial infections. The success of this pathogen is due to its high resistance to antibiotics and its ability to form biofilms. The molecular mechanisms involved in biofilm formation have been largely described but the dispersal process that releases individual and aggregate cells from mature biofilm is less well documented while it is associated with the colonization of new environments and thus new threats. Using a multidisciplinary approach, we show that modifications of bacterial membrane fatty acid composition lead to variations in the biofilm robustness, and subsequent bacterial detachment and biofilm erosion over time. These results enhance our understanding of the genetic requirements for biofilm formation in K. pneumoniae that affect the time course of biofilm development and the embrittlement step preceding its dispersal that will make it possible to control K. pneumoniae infections.
Collapse
Affiliation(s)
- Ibrahima Dramé
- Université Clermont Auvergne, CNRS, LMGE, Clermont–Ferrand, France
| | - Yannick Rossez
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Frederic Krzewinski
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | | | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Etienne Dague
- LAAS-CNRS, CNRS, Univeristé de Toulouse, Toulouse, France
| | | | | |
Collapse
|
3
|
Sarker S, Neeloy RM, Habib MB, Urmi UL, Al Asad M, Mosaddek ASM, Khan MRK, Nahar S, Godman B, Islam S. Mobile Colistin-Resistant Genes mcr-1, mcr-2, and mcr-3 Identified in Diarrheal Pathogens among Infants, Children, and Adults in Bangladesh: Implications for the Future. Antibiotics (Basel) 2024; 13:534. [PMID: 38927200 PMCID: PMC11200974 DOI: 10.3390/antibiotics13060534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Colistin is a last-resort antimicrobial for treating multidrug-resistant Gram-negative bacteria. Phenotypic colistin resistance is highly associated with plasmid-mediated mobile colistin resistance (mcr) genes. mcr-bearing Enterobacteriaceae have been detected in many countries, with the emergence of colistin-resistant pathogens a global concern. This study assessed the distribution of mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5 genes with phenotypic colistin resistance in isolates from diarrheal infants and children in Bangladesh. Bacteria were identified using the API-20E biochemical panel and 16s rDNA gene sequencing. Polymerase chain reactions detected mcr gene variants in the isolates. Their susceptibilities to colistin were determined by agar dilution and E-test by minimal inhibitory concentration (MIC) measurements. Over 31.6% (71/225) of isolates showed colistin resistance according to agar dilution assessment (MIC > 2 μg/mL). Overall, 15.5% of isolates carried mcr genes (7, mcr-1; 17, mcr-2; 13, and mcr-3, with co-occurrence occurring in two isolates). Clinical breakout MIC values (≥4 μg/mL) were associated with 91.3% of mcr-positive isolates. The mcr-positive pathogens included twenty Escherichia spp., five Shigella flexneri, five Citrobacter spp., two Klebsiella pneumoniae, and three Pseudomonas parafulva. The mcr-genes appeared to be significantly associated with phenotypic colistin resistance phenomena (p = 0.000), with 100% colistin-resistant isolates showing MDR phenomena. The age and sex of patients showed no significant association with detected mcr variants. Overall, mcr-associated colistin-resistant bacteria have emerged in Bangladesh, which warrants further research to determine their spread and instigate activities to reduce resistance.
Collapse
Affiliation(s)
- Shafiuzzaman Sarker
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
| | - Reeashat Muhit Neeloy
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
| | - Marnusa Binte Habib
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
| | - Umme Laila Urmi
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Mamun Al Asad
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
| | | | | | - Shamsun Nahar
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
| | - Brian Godman
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
- Division of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| | - Salequl Islam
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Padhy I, Dwibedy SK, Mohapatra SS. A molecular overview of the polymyxin-LPS interaction in the context of its mode of action and resistance development. Microbiol Res 2024; 283:127679. [PMID: 38508087 DOI: 10.1016/j.micres.2024.127679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
With the rising incidences of antimicrobial resistance (AMR) and the diminishing options of novel antimicrobial agents, it is paramount to decipher the molecular mechanisms of action and the emergence of resistance to the existing drugs. Polymyxin, a cationic antimicrobial lipopeptide, is used to treat infections by Gram-negative bacterial pathogens as a last option. Though polymyxins were identified almost seventy years back, their use has been restricted owing to toxicity issues in humans. However, their clinical use has been increasing in recent times resulting in the rise of polymyxin resistance. Moreover, the detection of "mobile colistin resistance (mcr)" genes in the environment and their spread across the globe have complicated the scenario. The mechanism of polymyxin action and the development of resistance is not thoroughly understood. Specifically, the polymyxin-bacterial lipopolysaccharide (LPS) interaction is a challenging area of investigation. The use of advanced biophysical techniques and improvement in molecular dynamics simulation approaches have furthered our understanding of this interaction, which will help develop polymyxin analogs with better bactericidal effects and lesser toxicity in the future. In this review, we have delved deeper into the mechanisms of polymyxin-LPS interactions, highlighting several models proposed, and the mechanisms of polymyxin resistance development in some of the most critical Gram-negative pathogens.
Collapse
Affiliation(s)
- Indira Padhy
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| | - Sambit K Dwibedy
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| | - Saswat S Mohapatra
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India.
| |
Collapse
|
5
|
Mourão J, Ribeiro-Almeida M, Novais C, Magalhães M, Rebelo A, Ribeiro S, Peixe L, Novais Â, Antunes P. From Farm to Fork: Persistence of Clinically Relevant Multidrug-Resistant and Copper-Tolerant Klebsiella pneumoniae Long after Colistin Withdrawal in Poultry Production. Microbiol Spectr 2023; 11:e0138623. [PMID: 37428073 PMCID: PMC10434174 DOI: 10.1128/spectrum.01386-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
Concerns about colistin-resistant bacteria in animal food-environmental-human ecosystems prompted the poultry sector to implement colistin restrictions and explore alternative trace metals/copper feed supplementation. The impact of these strategies on the selection and persistence of colistin-resistant Klebsiella pneumoniae in the whole poultry production chain needs clarification. We assessed colistin-resistant and copper-tolerant K. pneumoniae occurrence in chickens raised with inorganic and organic copper formulas from 1-day-old chicks to meat (7 farms from 2019 to 2020), after long-term colistin withdrawal (>2 years). Clonal diversity and K. pneumoniae adaptive features were characterized by cultural, molecular, and whole-genome-sequencing (WGS) approaches. Most chicken flocks (75%) carried K. pneumoniae at early and preslaughter stages, with a significant decrease (P < 0.05) in meat batches (17%) and sporadic water/feed contamination. High rates (>50%) of colistin-resistant/mcr-negative K. pneumoniae were observed among fecal samples, independently of feed. Most samples carried multidrug-resistant (90%) and copper-tolerant (81%; silA and pcoD positive and with a MICCuSO4 of ≥16 mM) isolates. WGS revealed accumulation of colistin resistance-associated mutations and F type multireplicon plasmids carrying antibiotic resistance and metal/copper tolerance genes. The K. pneumoniae population was polyclonal, with various lineages dispersed throughout poultry production. ST15-KL19, ST15-KL146, and ST392-KL27 and IncF plasmids were similar to those from global human clinical isolates, suggesting chicken production as a reservoir/source of clinically relevant K. pneumoniae lineages and genes with potential risk to humans through food and/or environmental exposure. Despite the limited mcr spread due to the long-term colistin ban, this action was ineffective in controlling colistin-resistant/mcr-negative K. pneumoniae, regardless of feed. This study provides crucial insights into the persistence of clinically relevant K. pneumoniae in the poultry production chain and highlights the need for continued surveillance and proactive food safety actions within a One Health perspective. IMPORTANCE The spread of bacteria resistant to last-resort antibiotics such as colistin throughout the food chain is a serious concern for public health. The poultry sector has responded by restricting colistin use and exploring alternative trace metals/copper feed supplements. However, it is unclear how and to which extent these changes impact the selection and persistence of clinically relevant Klebsiella pneumoniae throughout the poultry chain. We found a high occurrence of copper-tolerant and colistin-resistant/mcr-negative K. pneumoniae in chicken flocks, regardless of inorganic and organic copper formulas use and a long-term colistin ban. Despite the high K. pneumoniae isolate diversity, the occurrence of identical lineages and plasmids across samples and/or clinical isolates suggests poultry as a potential source of human K. pneumoniae exposure. This study highlights the need for continued surveillance and proactive farm-to-fork actions to mitigate the risks to public health, relevant for stakeholders involved in the food industry and policymakers tasked with regulating food safety.
Collapse
Affiliation(s)
- Joana Mourão
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Marisa Ribeiro-Almeida
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Carla Novais
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Mafalda Magalhães
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Andreia Rebelo
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
- ESS, Polytechnic of Porto, Porto, Portugal
| | - Sofia Ribeiro
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Luísa Peixe
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ângela Novais
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Patrícia Antunes
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Seethalakshmi PS, Rajeev R, Prabhakaran A, Kiran GS, Selvin J. The menace of colistin resistance across globe: Obstacles and opportunities in curbing its spread. Microbiol Res 2023; 270:127316. [PMID: 36812837 DOI: 10.1016/j.micres.2023.127316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/27/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Colistin-resistance in bacteria is a big concern for public health, since it is a last resort antibiotic to treat infectious diseases of multidrug resistant and carbapenem resistant Gram-negative pathogens in clinical settings. The emergence of colistin resistance in aquaculture and poultry settings has escalated the risks associated with colistin resistance in environment as well. The staggering number of reports pertaining to the rise of colistin resistance in bacteria from clinical and non-clinical settings is disconcerting. The co-existence of colistin resistant genes with other antibiotic resistant genes introduces new challenges in combatting antimicrobial resistance. Some countries have banned the manufacture, sale and distribution of colistin and its formulations for food producing animals. However, to tackle the issue of antimicrobial resistance, a one health approach initiative, inclusive of human, animal, and environmental health needs to be developed. Herein, we review the recent reports in colistin resistance in bacteria of clinical and non-clinical settings, deliberating on the new findings obtained regarding the development of colistin resistance. This review also discusses the initiatives implemented globally in mitigating colistin resistance, their strength and weakness.
Collapse
Affiliation(s)
- P S Seethalakshmi
- Department of Microbiology, Pondicherry University, Puducherry 605014, India.
| | - Riya Rajeev
- Department of Microbiology, Pondicherry University, Puducherry 605014, India.
| | | | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India.
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
7
|
MgrB Mutations and Altered Cell Permeability in Colistin Resistance in Klebsiella pneumoniae. Cells 2022; 11:cells11192995. [PMID: 36230959 PMCID: PMC9564205 DOI: 10.3390/cells11192995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
There has been a resurgence in the clinical use of polymyxin antibiotics such as colistin due to the limited treatment options for infections caused by carbapenem-resistant Enterobacterales (CRE). However, this last-resort antibiotic is currently confronted with challenges which include the emergence of chromosomal and plasmid-borne colistin resistance. Colistin resistance in Klebsiella pneumoniae is commonly caused by the mutations in the chromosomal gene mgrB. MgrB spans the inner membrane and negatively regulates PhoP phosphorylation, which is essential for bacterial outer membrane lipid biosynthesis. The present review intends to draw attention to the role of mgrB chromosomal mutations in membrane permeability in K. pneumoniae that confer colistin resistance. With growing concern regarding the global emergence of colistin resistance, deciphering physical changes of the resistant membrane mediated by mgrB inactivation may provide new insights for the discovery of novel antimicrobials that are highly effective at membrane penetration, in addition to finding out how this can help in alleviating the resistance situation.
Collapse
|
8
|
Hong HW, Kim YD, Jang J, Kim MS, Song M, Myung H. Combination Effect of Engineered Endolysin EC340 With Antibiotics. Front Microbiol 2022; 13:821936. [PMID: 35242119 PMCID: PMC8886149 DOI: 10.3389/fmicb.2022.821936] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/21/2022] [Indexed: 12/29/2022] Open
Abstract
Bacteriophage lysins, also known as endolysins or murein hydrolases, are hydrolytic enzymes produced by bacteriophages during the final stage of the lytic cycle to enable cleavage through the host's cell wall, thus allowing the phages to burst out of their host bacteria after multiplication inside them. When applied externally to Gram-negative bacteria as recombinant proteins, lysins cannot easily reach the cell wall due to the presence of an outer membrane (OM). In this study, endolysin EC340 obtained from phage PBEC131 infecting Escherichia coli was engineered for improved OM permeability and increased activity against Gram-negative bacteria. The engineered endolysin, LNT113, was tested for potential synergistic effects with standard-of-care antibiotics. A synergistic effect was demonstrated with colistin, while an additive effect was seen with meropenem, tigecycline, chloramphenicol, azithromycin, and ciprofloxacin. Neither ceftazidime nor kanamycin showed any synergy or additive effects with the LNT113 endolysin. Moreover, synergy and additive effects could not be generalized by antibiotic class, OM traverse mechanism, molecular weight, or the bactericidal nature of each antibiotic tested.
Collapse
Affiliation(s)
- Hye-Won Hong
- LyseNTech Co., Ltd., Seongnam-si, South Korea
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yongin-si, South Korea
| | | | | | - Min Soo Kim
- LyseNTech Co., Ltd., Seongnam-si, South Korea
| | - Miryoung Song
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yongin-si, South Korea
| | - Heejoon Myung
- LyseNTech Co., Ltd., Seongnam-si, South Korea
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yongin-si, South Korea
- The Bacteriophage Bank of Korea, Hankuk University of Foreign Studies, Yongin-si, South Korea
| |
Collapse
|
9
|
Prevalence of polymyxin resistance through the food chain, the global crisis. J Antibiot (Tokyo) 2022; 75:185-198. [PMID: 35079146 DOI: 10.1038/s41429-022-00502-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 12/24/2022]
Abstract
Antimicrobial resistance is one of the vital challenges facing global health today. Multi-drug resistant (MDR) infections are often treated with the narrow-spectrum drugs, colistin (polymyxin E) or polymyxin B, which are last-resort antibiotics for human therapeutics that are effective against Gram-negative bacteria. Unfortunately, resistance to these polymyxins has occurred because of selective pressure caused by the inappropriate use of those antibiotics, especially in farming. The mechanisms of resistance to polymyxins are mediated through intrinsic, mutational, or genetic alteration in chromosomal genes. The mechanism includes the regulatory network controlling chemical modifications of lipid A moiety of lipopolysaccharide, reducing the negative charge of lipid A and its affinity for polymyxins. Additionally, the unique mobile colistin/polymyxin B resistance (mcr) gene reported in Enterobacteriales is responsible for the horizontal dissemination of resistance to polymyxins via the food chain. There is now an urgent need to increase surveillance for detecting resistance to polymyxins. Therefore, this review presents an overview of presently available scientific literature on the mechanism of resistance to polymyxins, with their associated gene variants, evaluation methods, resistance transmission through the food chain via food bacteria, and related risk factors. We further focus on the significant implications of polymyxins usage in India and future views for food safety to preserve polymyxin activity.
Collapse
|
10
|
Stojowska-Swędrzyńska K, Łupkowska A, Kuczyńska-Wiśnik D, Laskowska E. Antibiotic Heteroresistance in Klebsiella pneumoniae. Int J Mol Sci 2021; 23:449. [PMID: 35008891 PMCID: PMC8745652 DOI: 10.3390/ijms23010449] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Klebsiella pneumoniae is one of the most common pathogens responsible for infections, including pneumonia, urinary tract infections, and bacteremias. The increasing prevalence of multidrug-resistant K. pneumoniae was recognized in 2017 by the World Health Organization as a critical public health threat. Heteroresistance, defined as the presence of a subpopulation of cells with a higher MIC than the dominant population, is a frequent phenotype in many pathogens. Numerous reports on heteroresistant K. pneumoniae isolates have been published in the last few years. Heteroresistance is difficult to detect and study due to its phenotypic and genetic instability. Recent findings provide strong evidence that heteroresistance may be associated with an increased risk of recurrent infections and antibiotic treatment failure. This review focuses on antibiotic heteroresistance mechanisms in K. pneumoniae and potential therapeutic strategies against antibiotic heteroresistant isolates.
Collapse
Affiliation(s)
| | | | | | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.S.-S.); (A.Ł.); (D.K.-W.)
| |
Collapse
|
11
|
Gogry FA, Siddiqui MT, Sultan I, Haq QMR. Current Update on Intrinsic and Acquired Colistin Resistance Mechanisms in Bacteria. Front Med (Lausanne) 2021; 8:677720. [PMID: 34476235 PMCID: PMC8406936 DOI: 10.3389/fmed.2021.677720] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/09/2021] [Indexed: 01/07/2023] Open
Abstract
Colistin regained global interest as a consequence of the rising prevalence of multidrug-resistant Gram-negative Enterobacteriaceae. In parallel, colistin-resistant bacteria emerged in response to the unregulated use of this antibiotic. However, some Gram-negative species are intrinsically resistant to colistin activity, such as Neisseria meningitides, Burkholderia species, and Proteus mirabilis. Most identified colistin resistance usually involves modulation of lipid A that decreases or removes early charge-based interaction with colistin through up-regulation of multistep capsular polysaccharide expression. The membrane modifications occur by the addition of cationic phosphoethanolamine (pEtN) or 4-amino-l-arabinose on lipid A that results in decrease in the negative charge on the bacterial surface. Therefore, electrostatic interaction between polycationic colistin and lipopolysaccharide (LPS) is halted. It has been reported that these modifications on the bacterial surface occur due to overexpression of chromosomally mediated two-component system genes (PmrAB and PhoPQ) and mutation in lipid A biosynthesis genes that result in loss of the ability to produce lipid A and consequently LPS chain, thereafter recently identified variants of plasmid-borne genes (mcr-1 to mcr-10). It was hypothesized that mcr genes derived from intrinsically resistant environmental bacteria that carried chromosomal pmrC gene, a part of the pmrCAB operon, code three proteins viz. pEtN response regulator PmrA, sensor kinase protein PmrAB, and phosphotransferase PmrC. These plasmid-borne mcr genes become a serious concern as they assist in the dissemination of colistin resistance to other pathogenic bacteria. This review presents the progress of multiple strategies of colistin resistance mechanisms in bacteria, mainly focusing on surface changes of the outer membrane LPS structure and other resistance genetic determinants. New handier and versatile methods have been discussed for rapid detection of colistin resistance determinants and the latest approaches to revert colistin resistance that include the use of new drugs, drug combinations and inhibitors. Indeed, more investigations are required to identify the exact role of different colistin resistance determinants that will aid in developing new less toxic and potent drugs to treat bacterial infections. Therefore, colistin resistance should be considered a severe medical issue requiring multisectoral research with proper surveillance and suitable monitoring systems to report the dissemination rate of these resistant genes.
Collapse
Affiliation(s)
| | | | - Insha Sultan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | |
Collapse
|
12
|
Rodríguez-Santiago J, Cornejo-Juárez P, Silva-Sánchez J, Garza-Ramos U. Polymyxin resistance in Enterobacterales: overview and epidemiology in the Americas. Int J Antimicrob Agents 2021; 58:106426. [PMID: 34419579 DOI: 10.1016/j.ijantimicag.2021.106426] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/07/2021] [Accepted: 08/15/2021] [Indexed: 12/30/2022]
Abstract
The worldwide spread of carbapenem- and polymyxin-resistant Enterobacterales represents an urgent public-health threat. However, for most countries in the Americas, the available data are limited, although Latin America has been suggested as a silent spreading reservoir for isolates carrying plasmid-mediated polymyxin resistance mechanisms. This work provides an overall update on polymyxin and polymyxin resistance and focuses on uses, availability and susceptibility testing. Moreover, a comprehensive review of the current polymyxin resistance epidemiology in the Americas is provided. We found that reports in the English and Spanish literature show widespread carbapenemase-producing and colistin-resistant Klebsiella pneumoniae in the Americas determined by the clonal expansion of the pandemic clone ST258 and mgrB-mediated colistin resistance. In addition, widespread IncI2 and IncX4 plasmids carrying mcr-1 in Escherichia coli come mainly from human sources; however, plasmid-mediated colistin resistance in the Americas is underreported in the veterinary sector. These findings demonstrate the urgent need for the implementation of polymyxin resistance surveillance in Enterobacterales as well as appropriate regulatory measures for antimicrobial use in veterinary medicine.
Collapse
Affiliation(s)
- J Rodríguez-Santiago
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, México; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - P Cornejo-Juárez
- Departamento de Infectología, Instituto Nacional de Cancerología (INCan), Ciudad de México, México
| | - J Silva-Sánchez
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, México
| | - U Garza-Ramos
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, México.
| |
Collapse
|
13
|
Surface architecture of Neisseria meningitidis capsule and outer membrane as revealed by Atomic Force Microscopy. Res Microbiol 2021; 172:103865. [PMID: 34284091 DOI: 10.1016/j.resmic.2021.103865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 11/21/2022]
Abstract
An extensive morphological analysis of the Neisseria meningitidis cell envelope, including serogroup B capsule and outer membrane, based on atomic force microscopy (AFM) together with mechanical characterization by force spectroscopic measurements, has been carried out. Three meningococcal strains were used: the encapsulated serogroup B strain B1940, and the isogenic mutants B1940 siaD(+C) (lacking capsule), and B1940 cps (lacking both capsule and lipooligosaccharide outer core). regularly structured AFM experiments with the encapsulated strain B1940 provided unprecedented images of the meningococcal capsule, which seems to be characterized by protrusions ("bumps") with the lateral dimensions of about 30 nm. Measurement of the Young's modulus provided quantitative assessment of the property of the capsule to confer resistance to mechanical stress. Moreover, Raman spectroscopy gave a fingerprint by which it was possible to identify the specific molecular species of the three strains analyzed, and to highlight major differences between them.
Collapse
|
14
|
Nwabor OF, Terbtothakun P, Voravuthikunchai SP, Chusri S. A Bibliometric Meta-Analysis of Colistin Resistance in Klebsiella pneumoniae. Diseases 2021; 9:44. [PMID: 34202931 PMCID: PMC8293170 DOI: 10.3390/diseases9020044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Colistin is a last resort antibiotic medication for the treatment of infections caused by carbapenem-resistant Klebsiella pneumoniae. In recent years, various mechanisms have been reported to mediate colistin resistance in K. pneumoniae. This study reports a bibliometric analysis of published articles retrieved from the Scopus database relating to colistin resistance in K. pneumoniae. The research trends in colistin resistance and mechanisms of resistance were considered. A total of 1819 research articles published between 1995 and 2019 were retrieved, and the results indicated that 50.19% of the documents were published within 2017-2019. The USA had the highest participation with 340 (14.31%) articles and 14087 (17.61%) citations. Classification based on the WHO global epidemiological regions showed that the European Region contributed 42% of the articles while the American Region contributed 21%. The result further indicated that 45 countries had published at least 10 documents with strong international collaborations amounting to 272 links and a total linkage strength of 735. A total of 2282 keywords were retrieved; however, 57 keywords had ≥15 occurrences with 764 links and a total linkage strength of 2388. Furthermore, mcr-1, colistin resistance, NDM, mgrB, ceftazidime-avibactam, MDR, combination therapy, and carbapenem-resistant Enterobacteriaceae were the trending keywords. Concerning funders, the USA National Institute of Health funded 9.1% of the total research articles, topping the list. The analysis indicated poor research output, collaboration, and funding from Africa and South-East Asia and demands for improvement in international research collaboration.
Collapse
Affiliation(s)
- Ozioma Forstinus Nwabor
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (O.F.N.); (P.T.)
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
| | - Pawarisa Terbtothakun
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (O.F.N.); (P.T.)
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
| | - Supayang P. Voravuthikunchai
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
| | - Sarunyou Chusri
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (O.F.N.); (P.T.)
| |
Collapse
|
15
|
Xiao Y, Cheng Y, He P, Wu X, Li Z. New insights into external layers of cyanobacteria and microalgae based on multiscale analysis of AFM force-distance curves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145680. [PMID: 33607435 DOI: 10.1016/j.scitotenv.2021.145680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/23/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
External layers, the outermost structures around cells, perform essential eco-physiological functions to support cyanobacteria and microalgae in aquatic environments. These layers have been recognized as adaptations to turbulence, a ubiquitous and inherent physical process occurring in the environments of most cyanobacteria and microalgae. However, the underlying biophysical mechanism of these layers is still poorly understood. Force measurements were performed directly on the external layers of eight living cyanobacterial and green algal strains in situ using atomic force microscopy (AFM). We developed a wavelet analysis method based on a multiscale decomposition of derivative force-distance curves to quantify the elastic responses of various external layers upon mechanical deformation. Such analysis has the advantages of detecting singularities and distinguishing the biomechanical contributions of each external layer. The elastic modulus of the same type of external layer follows the same statistical distribution. However, the elastic response among different types of external layers is challenged by our method, indicating the heterogeneity of the mechanical properties of inner and outer layers in multilayer strains. This discrepancy was due to the thickness and texture of each external layer, especially the chemical presence of ribose, hydroxyproline and glutamic acid. This study highlights a new way to elucidate more precise information about external layers and provides a biophysical mechanistic explanation for the functioning of the various external layers to protect cyanobacterial and microalgal cells in a turbulent environment.
Collapse
Affiliation(s)
- Yan Xiao
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Yuran Cheng
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Pan He
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Xinghua Wu
- China Three Gorges Corporation, Beijing 100038, China
| | - Zhe Li
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
16
|
Ara B, Urmi UL, Haque TA, Nahar S, Rumnaz A, Ali T, Alam MS, Mosaddek ASM, Rahman NAA, Haque M, Islam S. Detection of mobile colistin-resistance gene variants ( mcr-1 and mcr-2) in urinary tract pathogens in Bangladesh: the last resort of infectious disease management colistin efficacy is under threat. Expert Rev Clin Pharmacol 2021; 14:513-522. [PMID: 33691556 DOI: 10.1080/17512433.2021.1901577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background: Currently, colistin-resistant pathogens emerged has become a global health concern. This study assessed the distribution of mcr-1 to mcr-5 variants with the phenotypic colistin-resistance in bacterial isolates from urinary tract infection (UTI) patients in Bangladesh.Methods: A cross-sectional study was conducted between April 2017 and March 2018 to enroll uncomplicated UTI patients, and 142 urine samples were analyzed. Uropathogens were identified using the API-20E biochemical panel and 16s rRNA gene sequencing. Polymerase chain reactions detected the mcr gene variants in the UTI isolates. The phenotypic colistin-susceptibility was determined by the Kirby-Bauer disc-diffusion method and the minimal inhibitory concentration (MIC) measurement.Results: The combined carriage of mcr-1 and mcr-2 genes in 11.4% (14/123) of urinary tract pathogens. The mcr-positive pathogens include five Escherichia coli, three Klebsiella pneumoniae, three Pseudomonas putida, two Enterobacter cloacae, and one Enterobacter hormaechei. The mcr-positive variant showed significantly higher phenotypic colistin resistance with MIC between >16 µg/mL and >128 µg/mL (p< 0.001). Over 85% of colistin-resistant isolates showed MDR phenomena.Conclusions: The emergence of the clinical MDR pathogens with resistance to a highly selective drug may lead to a lack of treatment options for the infectious diseases and spread of infection to the unaffected cohorts.
Collapse
Affiliation(s)
- Bayasrin Ara
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | - Umme Laila Urmi
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | - Tanjum Ara Haque
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | - Shamsun Nahar
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | - Adity Rumnaz
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | - Tamanna Ali
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | | | | | - Nor Azlina A Rahman
- Department of Physical Rehabilitation Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Malaysia
| | - Mainul Haque
- Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, Malaysia
| | - Salequl Islam
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| |
Collapse
|
17
|
Li L, Li R, Qi C, Gao H, Wei Q, Tan L, Sun F. Mechanisms of polymyxin resistance induced by Salmonella typhimurium in vitro. Vet Microbiol 2021; 257:109063. [PMID: 33932721 DOI: 10.1016/j.vetmic.2021.109063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/29/2021] [Indexed: 11/26/2022]
Abstract
The increase incidence of multi-drug resistant (MDR) Salmonella has become a major global health concern. Polymyxin, an ancient polypeptide antibiotic, has been given renewed attention over recent years, resulting in resistance of Gram-negative bacteria to polymyxin, but its resistance mechanism is not completely clear. Thus, it is important to study its resistance mechanisms. In this study, an in vitro induced polymyxin-resistant strain of Salmonella typhimurium in the laboratory were constructed to investigate the mechanism of resistance of Salmonella to polymyxin. Gradual induction of Salmonella typhimurium ATCC13311 (AT) by concentration increment was used to screen for a highly polymyxin-resistant strain AT-P128. The broth dilution technique was used to compare the sensitivity of the two strains to different antimicrobial drugs. Single nucleotide polymorphisms (SNPs) were then identified by whole genome sequencing, and differences in gene expression between the two strains were compared by transcriptome sequencing and reverse transcription-quantitative PCR (RT-qPCR). Finally, for the first time, the CRISPR/Cas9 gene-editing system was used to construct gene deletion mutants in Salmonella to knock out the phoP gene of AT-P128. The results showed that strain AT-P128 was significantly more resistant to amoxicillin, ceftiofur, ampicillin, fluphenazine, and chloramphenicol and significantly less resistant to sulfamethoxazole than the parental strain AT. The growth curve results showed no significant change in the growth rate between AT-P128 and AT. Motility and biofilm formation assays showed a significant decrease in AT-P128. Additionally, the WGS results showed that AT-P128 had mutations in 9 genes involving 14 SNPs. RNA-seq and RT-qPCR results showed increased expression of phoPQ. The loss of the phoP gene decreased AT-P128ΔphoP resistance to polymyxin by 32-fold. These results suggested that polymyxin resistance affected the biology, genome components, and gene expression levels of Salmonella and that the PhoPQ two-component system played a key role in polymyxin resistance in Salmonella, providing insights into the diversity and complexity of polymyxin resistance in Salmonella.
Collapse
Affiliation(s)
- Lin Li
- Pharmacology and Toxicology Laboratory, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230026, PR China; Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Rui Li
- Pharmacology and Toxicology Laboratory, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230026, PR China
| | - Caili Qi
- Pharmacology and Toxicology Laboratory, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230026, PR China
| | - Haixia Gao
- Pharmacology and Toxicology Laboratory, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230026, PR China
| | - Qiling Wei
- Pharmacology and Toxicology Laboratory, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230026, PR China
| | - Lei Tan
- Pharmacology and Toxicology Laboratory, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230026, PR China
| | - Feifei Sun
- Pharmacology and Toxicology Laboratory, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230026, PR China; Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui 230036, PR China.
| |
Collapse
|
18
|
Lopes SP, Jorge P, Sousa AM, Pereira MO. Discerning the role of polymicrobial biofilms in the ascent, prevalence, and extent of heteroresistance in clinical practice. Crit Rev Microbiol 2021; 47:162-191. [PMID: 33527850 DOI: 10.1080/1040841x.2020.1863329] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antimicrobial therapy is facing a worrisome and underappreciated challenge, the phenomenon of heteroresistance (HR). HR has been gradually documented in clinically relevant pathogens (e.g. Pseudomonas aeruginosa, Staphylococcus aureus, Burkholderia spp., Acinetobacter baumannii, Klebsiella pneumoniae, Candida spp.) towards several drugs and is believed to complicate the clinical picture of chronic infections. This type of infections are typically mediated by polymicrobial biofilms, wherein microorganisms inherently display a wide range of physiological states, distinct metabolic pathways, diverging refractory levels of stress responses, and a complex network of chemical signals exchange. This review aims to provide an overview on the relevance, prevalence, and implications of HR in clinical settings. Firstly, related terminologies (e.g. resistance, tolerance, persistence), sometimes misunderstood and overlapped, were clarified. Factors generating misleading HR definitions were also uncovered. Secondly, the recent HR incidences reported in clinically relevant pathogens towards different antimicrobials were annotated. The potential mechanisms underlying such occurrences were further elucidated. Finally, the link between HR and biofilms was discussed. The focus was to recognize the presence of heterogeneous levels of resistance within most biofilms, as well as the relevance of polymicrobial biofilms in chronic infectious diseases and their role in resistance spreading. These topics were subject of a critical appraisal, gaining insights into the ascending clinical implications of HR in antimicrobial resistance spreading, which could ultimately help designing effective therapeutic options.
Collapse
Affiliation(s)
- Susana Patrícia Lopes
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Paula Jorge
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Ana Margarida Sousa
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Maria Olívia Pereira
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| |
Collapse
|
19
|
Shao C, Zhu Y, Jian Q, Lai Z, Tan P, Li G, Shan A. Cross-Strand Interaction, Central Bending, and Sequence Pattern Act as Biomodulators of Simplified β-Hairpin Antimicrobial Amphiphiles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2003899. [PMID: 33354914 DOI: 10.1002/smll.202003899] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Novel antimicrobial peptides (AMPs) have revolutionarily evolved into formidable candidates for antibiotic substitute materials against pathogenic infections. However, cost, lability, disorderly sequences, systemic toxicology, and biological profiles have plagued the perennial search. Here, a progressive β-hairpin solution with the simplest formulation is implanted into an AMP-based therapeutic strategy to systematically reveal the complex balance between function and toxicity of structural moieties, including cationicity, hydrophobicity, cross-strand interactions, center bending, and sequence pattern. Comprehensive implementation of structural identification, ten microorganisms, eleven in vitro barriers, four mammalian cells, and a diversified membrane operation setup led to the emergence of β-hairpin prototypes from a 24-member library. Lead amphiphiles, WKF-PG and WRF-NG, can tackle bacterial infection through direct antimicrobial efficacy and potential inflammation-limiting capabilities, such as an Escherichia coli challenge in a mouse peritonitis-sepsis model, without observed toxicity after systemic administration. Their optimal states with dissimilar modulators and the unavailable drug resistance related to membrane lytic mechanisms, also provide an usher for renewed innovation among β-sheet peptide-based antimicrobial biomaterials.
Collapse
Affiliation(s)
- Changxuan Shao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Yongjie Zhu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Qiao Jian
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Zhenheng Lai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Peng Tan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Guoyu Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| |
Collapse
|
20
|
Beaussart A, Feuillie C, El-Kirat-Chatel S. The microbial adhesive arsenal deciphered by atomic force microscopy. NANOSCALE 2020; 12:23885-23896. [PMID: 33289756 DOI: 10.1039/d0nr07492f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microbes employ a variety of strategies to adhere to abiotic and biotic surfaces, as well as host cells. In addition to their surface physicochemical properties (e.g. charge, hydrophobic balance), microbes produce appendages (e.g. pili, fimbriae, flagella) and express adhesion proteins embedded in the cell wall or cell membrane, with adhesive domains targeting specific ligands or chemical properties. Atomic force microscopy (AFM) is perfectly suited to deciphering the adhesive properties of microbial cells. Notably, AFM imaging has revealed the cell wall topographical organization of live cells at unprecedented resolution, and AFM has a dual capability to probe adhesion at the single-cell and single-molecule levels. AFM is thus a powerful tool for unravelling the molecular mechanisms of microbial adhesion at scales ranging from individual molecular interactions to the behaviours of entire cells. In this review, we cover some of the major breakthroughs facilitated by AFM in deciphering the microbial adhesive arsenal, including the exciting development of anti-adhesive strategies.
Collapse
|
21
|
Emerging Transcriptional and Genomic Mechanisms Mediating Carbapenem and Polymyxin Resistance in Enterobacteriaceae: a Systematic Review of Current Reports. mSystems 2020; 5:5/6/e00783-20. [PMID: 33323413 PMCID: PMC7771540 DOI: 10.1128/msystems.00783-20] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The spread of carbapenem- and polymyxin-resistant Enterobacteriaceae poses a significant threat to public health, challenging clinicians worldwide with limited therapeutic options. This review describes the current coding and noncoding genetic and transcriptional mechanisms mediating carbapenem and polymyxin resistance, respectively. The spread of carbapenem- and polymyxin-resistant Enterobacteriaceae poses a significant threat to public health, challenging clinicians worldwide with limited therapeutic options. This review describes the current coding and noncoding genetic and transcriptional mechanisms mediating carbapenem and polymyxin resistance, respectively. A systematic review of all studies published in PubMed database between 2015 to October 2020 was performed. Journal articles evaluating carbapenem and polymyxin resistance mechanisms, respectively, were included. The search identified 171 journal articles for inclusion. Different New Delhi metallo-β-lactamase (NDM) carbapenemase variants had different transcriptional and affinity responses to different carbapenems. Mutations within the Klebsiella pneumoniae carbapenemase (KPC) mobile transposon, Tn4401, affect its promoter activity and expression levels, increasing carbapenem resistance. Insertion of IS26 in ardK increased imipenemase expression 53-fold. ompCF porin downregulation (mediated by envZ and ompR mutations), micCF small RNA hyperexpression, efflux upregulation (mediated by acrA, acrR, araC, marA, soxS, ramA, etc.), and mutations in acrAB-tolC mediated clinical carbapenem resistance when coupled with β-lactamase activity in a species-specific manner but not when acting without β-lactamases. Mutations in pmrAB, phoPQ, crrAB, and mgrB affect phosphorylation of lipid A of the lipopolysaccharide through the pmrHFIJKLM (arnBCDATEF or pbgP) cluster, leading to polymyxin resistance; mgrB inactivation also affected capsule structure. Mobile and induced mcr, efflux hyperexpression and porin downregulation, and Ecr transmembrane protein also conferred polymyxin resistance and heteroresistance. Carbapenem and polymyxin resistance is thus mediated by a diverse range of genetic and transcriptional mechanisms that are easily activated in an inducing environment. The molecular understanding of these emerging mechanisms can aid in developing new therapeutics for multidrug-resistant Enterobacteriaceae isolates.
Collapse
|
22
|
Wozniak JE, Chande AT, Burd EM, Band VI, Satola SW, Farley MM, Jacob JT, Jordan IK, Weiss DS. Absence of mgrB Alleviates Negative Growth Effects of Colistin Resistance in Enterobacter cloacae. Antibiotics (Basel) 2020; 9:antibiotics9110825. [PMID: 33227907 PMCID: PMC7699182 DOI: 10.3390/antibiotics9110825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/21/2022] Open
Abstract
Colistin is an important last-line antibiotic to treat highly resistant Enterobacter infections. Resistance to colistin has emerged among clinical isolates but has been associated with a significant growth defect. Here, we describe a clinical Enterobacter isolate with a deletion of mgrB, a regulator of colistin resistance, leading to high-level resistance in the absence of a growth defect. The identification of a path to resistance unrestrained by growth defects suggests colistin resistance could become more common in Enterobacter.
Collapse
Affiliation(s)
- Jessie E. Wozniak
- Emory Vaccine Center, Atlanta, GA 30317, USA; (J.E.W.); (V.I.B.)
- School of Medicine, Emory University, Atlanta, GA 30322, USA; (E.M.B.); (S.W.S.); (M.M.F.); (J.T.J.)
- Emory Antibiotic Resistance Center, Atlanta, GA 30329, USA
| | - Aroon T. Chande
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Applied Bioinformatics Laboratory, Atlanta, GA 30346, USA
- PanAmerican Bioinformatics Institute, Cali 760043, Valle del Cauca, Colombia
| | - Eileen M. Burd
- School of Medicine, Emory University, Atlanta, GA 30322, USA; (E.M.B.); (S.W.S.); (M.M.F.); (J.T.J.)
- Emory Antibiotic Resistance Center, Atlanta, GA 30329, USA
| | - Victor I. Band
- Emory Vaccine Center, Atlanta, GA 30317, USA; (J.E.W.); (V.I.B.)
- School of Medicine, Emory University, Atlanta, GA 30322, USA; (E.M.B.); (S.W.S.); (M.M.F.); (J.T.J.)
- Emory Antibiotic Resistance Center, Atlanta, GA 30329, USA
| | - Sarah W. Satola
- School of Medicine, Emory University, Atlanta, GA 30322, USA; (E.M.B.); (S.W.S.); (M.M.F.); (J.T.J.)
- Emory Antibiotic Resistance Center, Atlanta, GA 30329, USA
| | - Monica M. Farley
- School of Medicine, Emory University, Atlanta, GA 30322, USA; (E.M.B.); (S.W.S.); (M.M.F.); (J.T.J.)
- Emory Antibiotic Resistance Center, Atlanta, GA 30329, USA
- Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Jesse T. Jacob
- School of Medicine, Emory University, Atlanta, GA 30322, USA; (E.M.B.); (S.W.S.); (M.M.F.); (J.T.J.)
- Emory Antibiotic Resistance Center, Atlanta, GA 30329, USA
| | - I. King Jordan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- IHRC Applied Bioinformatics Laboratory, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David S. Weiss
- Emory Vaccine Center, Atlanta, GA 30317, USA; (J.E.W.); (V.I.B.)
- School of Medicine, Emory University, Atlanta, GA 30322, USA; (E.M.B.); (S.W.S.); (M.M.F.); (J.T.J.)
- Emory Antibiotic Resistance Center, Atlanta, GA 30329, USA
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Correspondence:
| |
Collapse
|
23
|
Colistin Heteroresistance among Extended Spectrum β-lactamases-Producing Klebsiella pneumoniae. Microorganisms 2020; 8:microorganisms8091279. [PMID: 32825799 PMCID: PMC7569871 DOI: 10.3390/microorganisms8091279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 01/24/2023] Open
Abstract
Colistin-heteroresistant (CST-HR) Enterobacterales isolates have been identified recently, challenging the clinical laboratories since routine susceptibility tests fail to detect this phenotype. In this work we describe the first CST-HR phenotype in extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae isolates in South America. Additionally, we determine the genomic mechanisms of colistin heteroresistance in these strains. The CST-HR phenotype was analyzed by the population analysis profile (PAP) method, and mutations associated with this phenotype were determined by whole-genome sequencing (WGS) and the local BLAST+ DB tool. As a result, 8/60 isolates were classified as CST-HR according to the PAP method. From WGS, we determined that the CST-HR isolates belong to three different Sequence Types (STs) and four K-loci: ST11 (KL15 and KL81), ST25 (KL2), and ST1161 (KL19). We identified diverse mutations in the two-component regulatory systems PmrAB and PhoPQ, as well as a disruption of the mgrB global regulator mediated by IS1-like and IS-5-like elements, which could confer resistance to CST in CST-HR and ESBL-producing isolates. These are the first descriptions in Chile of CST-HR in ESBL-producing K. pneumoniae isolates. The emergence of these isolates could have a major impact on the effectiveness of colistin as a “last resort” against these isolates, thus jeopardizing current antibiotic alternatives; therefore, it is important to consider the epidemiology of the CST-HR phenotype.
Collapse
|
24
|
Ayoub Moubareck C. Polymyxins and Bacterial Membranes: A Review of Antibacterial Activity and Mechanisms of Resistance. MEMBRANES 2020; 10:membranes10080181. [PMID: 32784516 PMCID: PMC7463838 DOI: 10.3390/membranes10080181] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022]
Abstract
Following their initial discovery in the 1940s, polymyxin antibiotics fell into disfavor due to their potential clinical toxicity, especially nephrotoxicity. However, the dry antibiotic development pipeline, together with the rising global prevalence of infections caused by multidrug-resistant (MDR) Gram-negative bacteria have both rejuvenated clinical interest in these polypeptide antibiotics. Parallel to the revival of their use, investigations into the mechanisms of action and resistance to polymyxins have intensified. With an initial known effect on biological membranes, research has uncovered the detailed molecular and chemical interactions that polymyxins have with Gram-negative outer membranes and lipopolysaccharide structure. In addition, genetic and epidemiological studies have revealed the basis of resistance to these agents. Nowadays, resistance to polymyxins in MDR Gram-negative pathogens is well elucidated, with chromosomal as well as plasmid-encoded, transferrable pathways. The aims of the current review are to highlight the important chemical, microbiological, and pharmacological properties of polymyxins, to discuss their mechanistic effects on bacterial membranes, and to revise the current knowledge about Gram-negative acquired resistance to these agents. Finally, recent research, directed towards new perspectives for improving these old agents utilized in the 21st century, to combat drug-resistant pathogens, is summarized.
Collapse
|
25
|
Ultrashort Cationic Lipopeptides-Effect of N-Terminal Amino Acid and Fatty Acid Type on Antimicrobial Activity and Hemolysis. Molecules 2020; 25:molecules25020257. [PMID: 31936341 PMCID: PMC7024302 DOI: 10.3390/molecules25020257] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 01/28/2023] Open
Abstract
Ultrashort cationic lipopeptides (USCLs) are promising antimicrobial agents that hypothetically may be alternatively used to combat pathogens such as bacteria and fungi. In general, USCLs consist of fatty acid chains and a few basic amino acid residues. The main shortcoming of USCLs is their relatively high cytotoxicity and hemolytic activity. This study focuses on the impact of the hydrophobic fatty acid chain, on both antimicrobial and hemolytic activities. To learn more about this region, a series of USCLs with different straight-chain fatty acids (C8, C10, C12, C14) attached to the tripeptide with two arginine residues were synthesized. The amino acid at the N-terminal position was exchanged for proteinogenic and non-proteinogenic amino acid residues (24 in total). Moreover, the branched fatty acid residues were conjugated to N-terminus of a dipeptide with two arginine residues. All USCLs had C-terminal amides. USCLs were tested against reference bacterial strains (including ESKAPE group) and Candida albicans. The hemolytic potential was tested on human erythrocytes. Hydrophobicity of the compounds was evaluated by RP-HPLC. Shortening of the fatty acid chain and simultaneous addition of amino acid residue at N-terminus were expected to result in more selective and active compounds than those of the reference lipopeptides with similar lipophilicity. Hypothetically, this approach would also be beneficial to other antimicrobial peptides where N-lipidation strategy was used to improve their biological characteristics.
Collapse
|
26
|
Acquired Resistance to Colistin via Chromosomal And Plasmid-Mediated Mechanisms in Klebsiella pneumoniae. ACTA ACUST UNITED AC 2019. [DOI: 10.1097/im9.0000000000000002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Aghapour Z, Gholizadeh P, Ganbarov K, Bialvaei AZ, Mahmood SS, Tanomand A, Yousefi M, Asgharzadeh M, Yousefi B, Kafil HS. Molecular mechanisms related to colistin resistance in Enterobacteriaceae. Infect Drug Resist 2019; 12:965-975. [PMID: 31190901 PMCID: PMC6519339 DOI: 10.2147/idr.s199844] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/04/2019] [Indexed: 12/16/2022] Open
Abstract
Colistin is an effective antibiotic for treatment of most multidrug-resistant Gram-negative bacteria. It is used currently as a last-line drug for infections due to severe Gram-negative bacteria followed by an increase in resistance among Gram-negative bacteria. Colistin resistance is considered a serious problem, due to a lack of alternative antibiotics. Some bacteria, including Pseudomonas aeruginosa, Acinetobacter baumannii, Enterobacteriaceae members, such as Escherichia coli, Salmonella spp., and Klebsiella spp. have an acquired resistance against colistin. However, other bacteria, including Serratia spp., Proteus spp. and Burkholderia spp. are naturally resistant to this antibiotic. In addition, clinicians should be alert to the possibility of colistin resistance among multidrug-resistant bacteria and development through mutation or adaptation mechanisms. Rapidly emerging bacterial resistance has made it harder for us to rely completely on the discovery of new antibiotics; therefore, we need to have logical approaches to use old antibiotics, such as colistin. This review presents current knowledge about the different mechanisms of colistin resistance.
Collapse
Affiliation(s)
- Zahra Aghapour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Suhad Saad Mahmood
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Asghar Tanomand
- Department of Microbiology, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Boudjemaa R, Steenkeste K, Canette A, Briandet R, Fontaine-Aupart MP, Marlière C. Direct observation of the cell-wall remodeling in adhering Staphylococcus aureus 27217: An AFM study supported by SEM and TEM. Cell Surf 2019; 5:100018. [PMID: 32743135 PMCID: PMC7389151 DOI: 10.1016/j.tcsw.2019.100018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/19/2018] [Accepted: 01/24/2019] [Indexed: 01/28/2023] Open
Abstract
We took benefit from Atomic Force Microscopy (AFM) in the force spectroscopy mode to describe the time evolution – over 24 h – of the surface nanotopography and mechanical properties of the strain Staphylococcus aureus 27217 from bacterial adhesion to the first stage of biofilm genesis. In addition, Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) experiments allowed identifying two types of self-adhering subpopulations (the so-called “bald” and “hairy” cells) and revealed changes in their relative populations with the bacterial culture age and the protocol of preparation. We indeed observed a dramatic evanescing of the “hairy” subpopulation for samples that underwent centrifugation and resuspension processes. When examined by AFM, the “hairy” cell surface resembled to a herringbone structure characterized by upper structural units with lateral dimensions of ∼70 nm and a high Young modulus value (∼2.3 MPa), a mean depth of the trough between them of ∼15 nm and a resulting roughness of ∼5 nm. By contrast, the “bald” cells appeared much softer (∼0.35 MPa) with a roughness one order of magnitude lower. We observed too the gradual detachment of the herringbone patterns from the “hairy” bacterial envelope of cell harvested from a 16 h old culture and their progressive accumulation between the bacteria in the form of globular clusters. The secretion of a soft extracellular polymeric substance was also identified that, in addition to the globular clusters, may contribute to the initiation of the biofilm spatial organization.
Collapse
Affiliation(s)
- Rym Boudjemaa
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Karine Steenkeste
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Alexis Canette
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,Institut de Biologie Paris-Seine (FR 3631), Unité Mixte de Service (UMS 30) d'Imagerie et de Cytométrie (LUMIC), Sorbonne Université, CNRS, Paris, France
| | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Marie-Pierre Fontaine-Aupart
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Christian Marlière
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| |
Collapse
|
29
|
Hashemi MM, Holden BS, Coburn J, Taylor MF, Weber S, Hilton B, Zaugg AL, McEwan C, Carson R, Andersen JL, Price JC, Deng S, Savage PB. Proteomic Analysis of Resistance of Gram-Negative Bacteria to Chlorhexidine and Impacts on Susceptibility to Colistin, Antimicrobial Peptides, and Ceragenins. Front Microbiol 2019; 10:210. [PMID: 30833936 PMCID: PMC6388577 DOI: 10.3389/fmicb.2019.00210] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/24/2019] [Indexed: 12/19/2022] Open
Abstract
Use of chlorhexidine in clinical settings has led to concerns that repeated exposure of bacteria to sub-lethal doses of chlorhexidine might result in chlorhexidine resistance and cross resistance with other cationic antimicrobials including colistin, endogenous antimicrobial peptides (AMPs) and their mimics, ceragenins. We have previously shown that colistin-resistant Gram-negative bacteria remain susceptible to AMPs and ceragenins. Here, we investigated the potential for cross resistance between chlorhexidine, colistin, AMPs and ceragenins by serial exposure of standard strains of Gram-negative bacteria to chlorhexidine to generate resistant populations of organisms. Furthermore, we performed a proteomics study on the chlorhexidine-resistant strains and compared them to the wild-type strains to find the pathways by which bacteria develop resistance to chlorhexidine. Serial exposure of Gram-negative bacteria to chlorhexidine resulted in four- to eight-fold increases in minimum inhibitory concentrations (MICs). Chlorhexidine-resistant organisms showed decreased susceptibility to colistin (8- to 32-fold increases in MICs) despite not being exposed to colistin. In contrast, chlorhexidine-resistant organisms had the same MICs as the original strains when tested with representative AMPs (LL-37 and magainin I) and ceragenins (CSA-44 and CSA-131). These results imply that there may be a connection between the emergence of highly colistin-resistant Gram-negative pathogens and the prevalence of chlorhexidine usage. Yet, use of chlorhexidine may not impact innate immune defenses (e.g., AMPs) and their mimics (e.g., ceragenins). Here, we also show that chlorhexidine resistance is associated with upregulation of proteins involved in the assembly of LPS for outer membrane biogenesis and virulence factors in Pseudomonas aeruginosa. Additionally, resistance to chlorhexidine resulted in elevated expression levels of proteins associated with chaperones, efflux pumps, flagella and cell metabolism. This study provides a comprehensive overview of the evolutionary proteomic changes in P. aeruginosa following exposure to chlorhexidine and colistin. These results have important clinical implications considering the continuous application of chlorhexidine in hospitals that could influence the emergence of colistin-resistant strains.
Collapse
Affiliation(s)
- Marjan M Hashemi
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Brett S Holden
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Jordan Coburn
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Maddison F Taylor
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Scott Weber
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Brian Hilton
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Aaron L Zaugg
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Colten McEwan
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Richard Carson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Joshua L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - John C Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Shenglou Deng
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| |
Collapse
|
30
|
Abstract
Antimicrobial peptides (AMPs) are one of the most promising alternatives to conventional antibiotics. Atomic force microscopy (AFM), as imaging and force spectroscopy tool, has been applied to study their mechanism of action and development. Here, we describe different methods to be applied in the study of AMP effects on bacteria, either by imaging or by force spectroscopy studies, essential to underlie their action and to identify possibly outcomes of the same.
Collapse
Affiliation(s)
- Marco M Domingues
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| | - Mário R Felício
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
31
|
Jean SS, Lu MC, Shi ZY, Tseng SH, Wu TS, Lu PL, Shao PL, Ko WC, Wang FD, Hsueh PR. In vitro activity of ceftazidime-avibactam, ceftolozane-tazobactam, and other comparable agents against clinically important Gram-negative bacilli: results from the 2017 Surveillance of Multicenter Antimicrobial Resistance in Taiwan (SMART). Infect Drug Resist 2018; 11:1983-1992. [PMID: 30464540 PMCID: PMC6208934 DOI: 10.2147/idr.s175679] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Objectives We investigated the in vitro antimicrobial susceptibilities of clinically important Gram-negative bacteria (GNB) from 16 major teaching hospitals in Taiwan in 2017. Materials and methods Escherichia coli (n=686) and Klebsiella pneumoniae bloodstream isolates (n=673), non-typhoid Salmonella (NTS; n=221) from various sources, Shigella species (n=21) from fecal samples, and Neisseria gonorrhoeae (n=129) from the genitourinary tract were collected. Antibiotic minimum inhibitory concentrations (MICs) were determined using the broth microdilution method. Alleles encoding K. pneumoniae carbapenemases (KPCs), New Delhi metallo-β-lactamases (NDMs), Verona integron-encoded metallo-β-lactamase, imipenemase, OXA-48-like, and mcr-1-5 genes were detected by molecular methods in Enterobacteriaceae isolates. Results Five (0.7%) E. coli isolates harbored mcr-1 alleles. Twenty-four (3.6%), seven (1.0%), four (0.6%), and one (0.15%) K. pneumoniae isolates contained blaKPC, blaOXA-48-like, mcr-1, and blaNDM, respectively. Three (1.4%) NTS and no Shigella isolates harbored mcr-1 genes. Seventy-one (10.5%) K. pneumoniae isolates displayed non-susceptibility (NS) to carbapenem agent(s). Phenotypically extended-spectrum β-lactamase (ESBL)-producing K. pneumoniae isolates showed significantly higher rates of ertapenem, tigecycline, and ceftolozane–tazobactam (CLZ– TAZ) NS (40.2%, 16.3%, and 71%–80%, respectively) than E. coli isolates exhibiting ESBL phenotypes (5.4%, 0.7%, and 18%–28%, respectively). All phenotypically ESBL-producing E. coli isolates were ceftazidime–avibactam (CAZ–AVB) susceptible. Two (8.3%) KPC-producing K. pneumoniae isolates showed CAZ–AVB NS. Hospital-acquired K. pneumoniae isolates were significantly less susceptible to ertapenem and CLZ–TAZ than hospital-acquired E. coli isolates. Conclusion Third-generation cephalosporins remain the optimal choice for treating NTS, Shigella, and gonococcal infections in Taiwan. Hospital-acquired and phenotypically ESBL-producing K. pneumoniae are a heavy resistance burden in Taiwan.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Emergency Medicine and Emergency and Critical Care Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Min-Chi Lu
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Zhi-Yuan Shi
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shu-Hui Tseng
- Center for Disease Control and Prevention, Ministry of Health and Welfare, Taiwan
| | - Ting-Shu Wu
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Po-Liang Lu
- Department of Internal Medicine, Kaohsiung Medical University Hospital, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Lan Shao
- Department of Pediatrics, Hsin-Chu Branch, National Taiwan University Hospital, Hsin-Chu, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan
| | - Fu-Der Wang
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, .,School of Medicine, National Yang-Ming University, Taipei, Taiwan,
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
32
|
Lu Y, Feng Y, McNally A, Zong Z. The Occurence of Colistin-Resistant Hypervirulent Klebsiella pneumoniae in China. Front Microbiol 2018; 9:2568. [PMID: 30410479 PMCID: PMC6209640 DOI: 10.3389/fmicb.2018.02568] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/08/2018] [Indexed: 02/05/2023] Open
Abstract
Hypervirulent Klebsiella pneumoniae strains are usually susceptible to many antimicrobial agents including colistin. Here we report the isolation and characterization of several colistin-resistant hypervirulent K. pneumoniae clinical strains. K. pneumoniae strains recovered from blood samples were collected at a university hospital in China. MICs of colistin were determined using microdilution. Colistin-resistant strains were subjected to whole genome sequencing to reveal their clonal background, antimicrobial resistance determinants and virulence factors. Virulence assays were performed with strains carrying the mucoid phenotype regulator gene rmpA using wax moth larvae. The pmrB gene encoding a P344L substitution was cloned into a colistin-susceptible K. pneumoniae strain to examine whether the substitution confers colistin resistance. Five colistin-resistant hypervirulent K. pneumoniae were recovered from blood samples of patients in China, belonging to four sequence/capsular types (ST23:K1, ST412:K57, ST660:K16, and ST700:K1) and carried the virulence factor rmpA. Three strains had the known colistin-resistant D150G substitution in PhoQ including one ST700:K1 strain also carrying mcr-1. The remaining two isolates had a P344L substitution of PmrB but cloning of pmrB encoding the substitution into a colistin-susceptible isolate did not alter MICs of colistin, suggesting that such a substitution did not confer resistance to colistin. In conclusion, the convergence of colistin resistance and hypervirulence in K. pneumoniae of multiple clonal backgrounds has emerged and may warrant further surveillance.
Collapse
Affiliation(s)
- Yang Lu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China.,Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China.,Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China.,Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Laskowski D, Strzelecki J, Pawlak K, Dahm H, Balter A. Effect of ampicillin on adhesive properties of bacteria examined by atomic force microscopy. Micron 2018; 112:84-90. [DOI: 10.1016/j.micron.2018.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 01/05/2023]
|
34
|
Zhou K, Cattoir V, Xiao Y. Intrinsic colistin resistance. THE LANCET. INFECTIOUS DISEASES 2018; 16:1227-1228. [PMID: 27788985 DOI: 10.1016/s1473-3099(16)30394-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/13/2016] [Indexed: 11/17/2022]
Affiliation(s)
- Kai Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital of Medicine School, Zhejiang University, 310003 Hangzhou, Zhejiang China
| | - Vincent Cattoir
- CHU de Caen, Service de Microbiologie, Caen, France; Université de Caen Basse-Normandie, EA4655 (équipe "Antibiorésistance"), Caen, France; CNR de la Résistance aux Antibiotiques, Laboratoire Associé "Entérocoques et résistances particulières des bactéries à Gram positif", Caen, France
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital of Medicine School, Zhejiang University, 310003 Hangzhou, Zhejiang China.
| |
Collapse
|
35
|
Formosa-Dague C, Castelain M, Martin-Yken H, Dunker K, Dague E, Sletmoen M. The Role of Glycans in Bacterial Adhesion to Mucosal Surfaces: How Can Single-Molecule Techniques Advance Our Understanding? Microorganisms 2018; 6:E39. [PMID: 29734645 PMCID: PMC6027152 DOI: 10.3390/microorganisms6020039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 12/14/2022] Open
Abstract
Bacterial adhesion is currently the subject of increased interest from the research community, leading to fast progress in our understanding of this complex phenomenon. Resent research within this field has documented the important roles played by glycans for bacterial surface adhesion, either through interaction with lectins or with other glycans. In parallel with this increased interest for and understanding of bacterial adhesion, there has been a growth in the sophistication and use of sensitive force probes for single-molecule and single cell studies. In this review, we highlight how the sensitive force probes atomic force microscopy (AFM) and optical tweezers (OT) have contributed to clarifying the mechanisms underlying bacterial adhesion to glycosylated surfaces in general and mucosal surfaces in particular. We also describe research areas where these techniques have not yet been applied, but where their capabilities appear appropriate to advance our understanding.
Collapse
Affiliation(s)
| | - Mickaël Castelain
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31400 Toulouse, France.
| | - Hélène Martin-Yken
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31400 Toulouse, France.
| | - Karen Dunker
- Department of Biotechnology and Food Science, NTNU the Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Etienne Dague
- LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France.
| | - Marit Sletmoen
- Department of Biotechnology and Food Science, NTNU the Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
36
|
Elucidating the Pharmacokinetics/Pharmacodynamics of Aerosolized Colistin against Multidrug-Resistant Acinetobacter baumannii and Klebsiella pneumoniae in a Mouse Lung Infection Model. Antimicrob Agents Chemother 2018; 62:AAC.01790-17. [PMID: 29229637 DOI: 10.1128/aac.01790-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/04/2017] [Indexed: 11/20/2022] Open
Abstract
The pharmacokinetics/pharmacodynamics (PK/PD) of aerosolized colistin was investigated against Acinetobacter baumannii and Klebsiella pneumoniae over 24 h in a neutropenic mouse lung infection model. Dose fractionation studies were performed over 2.64 to 23.8 mg/kg/day, and the data were fitted to a sigmoid inhibitory model. The area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC) in the epithelial lining fluid was the most predictive PK/PD index for aerosolized colistin against both pathogens. Our study provides important pharmacological information for optimizing aerosolized colistin.
Collapse
|
37
|
Martinez-Rivas A, González-Quijano GK, Proa-Coronado S, Séverac C, Dague E. Methods of Micropatterning and Manipulation of Cells for Biomedical Applications. MICROMACHINES 2017; 8:E347. [PMID: 30400538 PMCID: PMC6187909 DOI: 10.3390/mi8120347] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022]
Abstract
Micropatterning and manipulation of mammalian and bacterial cells are important in biomedical studies to perform in vitro assays and to evaluate biochemical processes accurately, establishing the basis for implementing biomedical microelectromechanical systems (bioMEMS), point-of-care (POC) devices, or organs-on-chips (OOC), which impact on neurological, oncological, dermatologic, or tissue engineering issues as part of personalized medicine. Cell patterning represents a crucial step in fundamental and applied biological studies in vitro, hence today there are a myriad of materials and techniques that allow one to immobilize and manipulate cells, imitating the 3D in vivo milieu. This review focuses on current physical cell patterning, plus chemical and a combination of them both that utilizes different materials and cutting-edge micro-nanofabrication methodologies.
Collapse
Affiliation(s)
- Adrian Martinez-Rivas
- CIC, Instituto Politécnico Nacional (IPN), Av. Juan de Dios Bátiz S/N, Nueva Industrial Vallejo, 07738 Mexico City, Mexico.
| | - Génesis K González-Quijano
- CONACYT-CNMN, Instituto Politécnico Nacional (IPN), Av. Luis Enrique Erro s/n, Nueva Industrial Vallejo, 07738 Mexico City, Mexico.
| | - Sergio Proa-Coronado
- ENCB, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu, Unidad Adolfo López Mateos, 07738 Mexico City, Mexico.
| | | | - Etienne Dague
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
38
|
Emergence and clonal spread of colistin resistance due to multiple mutational mechanisms in carbapenemase-producing Klebsiella pneumoniae in London. Sci Rep 2017; 7:12711. [PMID: 28983088 PMCID: PMC5629223 DOI: 10.1038/s41598-017-12637-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/13/2017] [Indexed: 11/09/2022] Open
Abstract
Carbapenemase-producing Enterobacteriaceae (CPE) are emerging worldwide, limiting therapeutic options. Mutational and plasmid-mediated mechanisms of colistin resistance have both been reported. The emergence and clonal spread of colistin resistance was analysed in 40 epidemiologically-related NDM-1 carbapenemase producing Klebsiella pneumoniae isolates identified during an outbreak in a group of London hospitals. Isolates from July 2014 to October 2015 were tested for colistin susceptibility using agar dilution, and characterised by whole genome sequencing (WGS). Colistin resistance was detected in 25/38 (65.8%) cases for which colistin susceptibility was tested. WGS found that three potential mechanisms of colistin resistance had emerged separately, two due to different mutations in mgrB, and one due to a mutation in phoQ, with onward transmission of two distinct colistin-resistant variants, resulting in two sub-clones associated with transmission at separate hospitals. A high rate of colistin resistance (66%) emerged over a 10 month period. WGS demonstrated that mutational colistin resistance emerged three times during the outbreak, with transmission of two colistin-resistant variants.
Collapse
|
39
|
Ierardi V, Domenichini P, Reali S, Chiappara GM, Devoto G, Valbusa U. Klebsiella pneumoniae antibiotic resistance identified by atomic force microscopy. J Biosci 2017; 42:623-636. [DOI: 10.1007/s12038-017-9713-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Freudenthal O, Quilès F, Francius G. Discrepancies between Cyclic and Linear Antimicrobial Peptide Actions on the Spectrochemical and Nanomechanical Fingerprints of a Young Biofilm. ACS OMEGA 2017; 2:5861-5872. [PMID: 30023754 PMCID: PMC6044769 DOI: 10.1021/acsomega.7b00644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/30/2017] [Indexed: 06/08/2023]
Abstract
Antimicrobial peptides (AMPs) are currently known for their potential as an alternative to conventional antibiotics and new weapons against drug-resistant bacteria and biofilms. In the present work, the mechanism of action of a cyclic (colistin) and a linear (catestatin) AMP on a young E. coli biofilm was deciphered from the molecular to the cellular scale. To this end, infrared spectroscopy (attenuated total reflection-Fourier transform infrared) assisted by chemometric analysis was combined with fluorescence and atomic force microscopies to address the very different behaviors of both AMPs. Indeed, the colistin dramatically damaged the bacterial cell wall and the metabolism even though its action was not homogeneous over the whole bacterial population and repopulation can be observed after peptide removal. Conversely, catestatin did not lead to major damages in the bacterial morphology but its action was homogeneous over the whole bacterial population and the cells were unable to regrow after the peptide treatment. Our results strongly suggested that contrary to the cyclic molecule, the linear one is able to cause irreversible damages in the bacterial membrane concomitantly to a strong impact on the bacterial metabolism.
Collapse
Affiliation(s)
- Oona Freudenthal
- Université
de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour
l’Environnement, LCPME,
UMR 7564, Villers-lès-Nancy, F-54600, France
- CNRS,
Laboratoire de Chimie Physique et Microbiologie pour l’Environnement,
LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France
| | - Fabienne Quilès
- Université
de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour
l’Environnement, LCPME,
UMR 7564, Villers-lès-Nancy, F-54600, France
- CNRS,
Laboratoire de Chimie Physique et Microbiologie pour l’Environnement,
LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France
| | - Grégory Francius
- Université
de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour
l’Environnement, LCPME,
UMR 7564, Villers-lès-Nancy, F-54600, France
- CNRS,
Laboratoire de Chimie Physique et Microbiologie pour l’Environnement,
LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France
| |
Collapse
|
41
|
Formosa-Dague C, Duval RE, Dague E. Cell biology of microbes and pharmacology of antimicrobial drugs explored by Atomic Force Microscopy. Semin Cell Dev Biol 2017; 73:165-176. [PMID: 28668355 DOI: 10.1016/j.semcdb.2017.06.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 01/03/2023]
Abstract
Antimicrobial molecules have been used for more than 50 years now and are the basis of modern medicine. No surgery can nowdays be imagined to be performed without antibiotics; dreadful diseases like tuberculosis, leprosis, siphilys, and more broadly all microbial induced diseases, can be cured only through the use of antimicrobial treatments. However, the situation is becoming more and more complex because of the ability of microbes to adapt, develop, acquire, and share mechanisms of resistance to antimicrobial agents. We choose to introduce this review by briefly drawing the panorama of antimicrobial discovery and development, but also of the emergence of microbial resistance. Then we describe how Atomic Force Microscopy (AFM) can be used to provide a better understanding of the mechanisms of action of these drugs at the nanoscale level on microbial interfaces. In this section, we will address these questions: (1) how does drug treatment affect the morphology of single microbes?; (2) do antimicrobial molecules modify the nanomechanical properties of microbes, or do the nanomechanical properties of microbes play a role in antimicrobial activity and efficiency?; and (3) how are the adhesive abilitites of microbes affected by antimicrobial drugs treatment? Finally, in a second part of this review we focus on recent studies aimed at changing the paradigm of the single molecule/cell technology that AFM typically represents. Recent work dealing with the creation of a microbe array which can be explored by AFM will be presented, as these developments constitute the first steps toward transforming AFM into a higher throughput technology. We also discuss papers using AFM as NanoMechnanicalSensors (NEMS), and demonstrate the interest of such approaches in clinical microbiology to detect quickly and with high accuracy microbial resistance.
Collapse
Affiliation(s)
- Cécile Formosa-Dague
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France; CNRS, UMR 7565, SRSMC, F-54506 Vandœuvre-lès-Nancy, France; Université de Lorraine, UMR 7565, SRSMC, Faculté de Pharmacie, F-54001 Nancy, France.
| | - Raphaël Emmanuel Duval
- CNRS, UMR 7565, SRSMC, F-54506 Vandœuvre-lès-Nancy, France; Université de Lorraine, UMR 7565, SRSMC, Faculté de Pharmacie, F-54001 Nancy, France; ABC Platform(®), F-54001 Nancy, France
| | - Etienne Dague
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
42
|
Synergistic activity of synthetic N-terminal peptide of human lactoferrin in combination with various antibiotics against carbapenem-resistant Klebsiella pneumoniae strains. Eur J Clin Microbiol Infect Dis 2017; 36:1739-1748. [PMID: 28470337 DOI: 10.1007/s10096-017-2987-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/10/2017] [Indexed: 01/10/2023]
Abstract
The spread of multi-drug resistant (MDR) Klebsiella pneumoniae strains producing carbapenemases points to a pressing need for new antibacterial agents. To this end, the in-vitro antibacterial activity of a synthetic N-terminal peptide of human lactoferrin, further referred to as hLF1-11, was evaluated against K. pneumoniae strains harboring different carbapenemase genes (i.e. OXA-48, KPC-2, KPC-3, VIM-1), with different susceptibility to colistin and other antibiotics, alone or in combination with conventional antibiotics (gentamicin, tigecycline, rifampicin, clindamycin, and clarithromycin). An antimicrobial peptide susceptibility assay was used to assess the bactericidal activity of hLF1-11 against the different K. pneumoniae strains tested. The synergistic activity was evaluated by a checkerboard titration method, and the fractional inhibitory concentration (FIC) index was calculated for the various combinations. hLF1-11 was more efficient in killing a K. pneumoniae strain susceptible to most antimicrobials (including colistin) than a colistin-susceptible strain and a colistin-resistant MDR K. pneumoniae strain. In addition, hLF1-11 exhibited a synergistic effect with the tested antibiotics against MDR K. pneumoniae strains. The results of this study indicate that resistance to hLF1-11 and colistin are not strictly associated, and suggest an hLF1-11-induced sensitizing effect of K. pneumoniae to antibiotics, especially to hydrophobic antibiotics, which are normally not effective on Gram-negative bacteria. Altogether, these data indicate that hLF1-11 in combination with antibiotics is a promising candidate to treat infections caused by MDR-K. pneumoniae strains.
Collapse
|
43
|
First Report on a Cluster of Colistin-Resistant Klebsiella pneumoniae Strains Isolated from a Tertiary Care Center in India: Whole-Genome Shotgun Sequencing. GENOME ANNOUNCEMENTS 2017; 5:5/5/e01466-16. [PMID: 28153885 PMCID: PMC5289671 DOI: 10.1128/genomea.01466-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Klebsiella pneumoniae is a nosocomial pathogen with clinical importance due to its increasing resistance to carbapenems and colistin. Here, we report the genome sequences of eight colistin-resistant K. pneumoniae strains which might help in understanding the molecular mechanism of the species. The sequence data indicate genomes of ~5.2 to 5.4 Mb, along with several plasmids.
Collapse
|
44
|
Mularski A, Separovic F. Atomic Force Microscopy Studies of the Interaction of Antimicrobial Peptides with Bacterial Cells. Aust J Chem 2017. [DOI: 10.1071/ch16425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antimicrobial peptides (AMPs) are promising therapeutic alternatives to conventional antibiotics. Many AMPs are membrane-active but their mode of action in killing bacteria or in inhibiting their growth remains elusive. Recent studies indicate the mechanism of action depends on peptide structure and lipid components of the bacterial cell membrane. Owing to the complexity of working with living cells, most of these studies have been conducted with synthetic membrane systems, which neglect the possible role of bacterial surface structures in these interactions. In recent years, atomic force microscopy has been utilized to study a diverse range of biological systems under non-destructive, physiologically relevant conditions that yield in situ biophysical measurements of living cells. This approach has been applied to the study of AMP interaction with bacterial cells, generating data that describe how the peptides modulate various biophysical behaviours of individual bacteria, including the turgor pressure, cell wall elasticity, bacterial capsule thickness, and organization of bacterial adhesins.
Collapse
|
45
|
A nanomechanical study of the effects of colistin on the Klebsiella pneumoniae AJ218 capsule. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:351-361. [DOI: 10.1007/s00249-016-1178-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/30/2016] [Accepted: 10/05/2016] [Indexed: 01/30/2023]
|
46
|
Baron S, Hadjadj L, Rolain JM, Olaitan AO. Molecular mechanisms of polymyxin resistance: knowns and unknowns. Int J Antimicrob Agents 2016; 48:583-591. [PMID: 27524102 DOI: 10.1016/j.ijantimicag.2016.06.023] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/14/2016] [Accepted: 06/23/2016] [Indexed: 12/19/2022]
Abstract
Colistin, also referred to as polymyxin E, is an effective antibiotic against most multidrug-resistant Gram-negative bacteria and is currently used as a last-line drug for treating severe bacterial infections. Colistin resistance has increased gradually for the last few years, and knowledge of its multifaceted mechanisms is expanding. This includes the newly discovered plasmid-mediated colistin resistance gene mcr-1, which has been detected in over 20 countries within 3 months of its first report. We previously reported all of the known mechanisms of polymyxin resistance in our first review in 2014, but an update seems necessary in 2016, considering the significant recent discoveries that have been made in this domain. This review provides an update about what is already known, what is new, and some unresolved questions with respect to colistin resistance.
Collapse
Affiliation(s)
- Sophie Baron
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Linda Hadjadj
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Jean-Marc Rolain
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France.
| | - Abiola Olumuyiwa Olaitan
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France.
| |
Collapse
|
47
|
Silva A, Sousa AM, Alves D, Lourenço A, Pereira MO. Heteroresistance to colistin in Klebsiella pneumoniae is triggered by small colony variants sub-populations within biofilms. Pathog Dis 2016; 74:ftw036. [PMID: 27140200 DOI: 10.1093/femspd/ftw036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2016] [Indexed: 01/29/2023] Open
Abstract
The emergence of Klebsiella pneumoniae multidrug-resistant strains paves the way to the re-introduction of colistin as a salvage therapy. However, recent planktonic studies have reported several cases of heteroresistance to this antimicrobial agent. The aim of this present work was to gain better understanding about the response of K. pneumoniae biofilms to colistin antibiotherapy and inspect the occurrence of heteroresistance in biofilm-derived cells. Biofilm formation and its susceptibility to colistin were evaluated through the determination of biofilm-cells viability. The profiling of planktonic and biofilm cell populations was conducted to assess the occurrence of heteroresistance. Colony morphology was further characterized in order to inspect the potential role of colistin in K. pneumoniae phenotypic differentiation. Results show that K. pneumoniae was susceptible to colistin in its planktonic form, but biofilms presented enhanced resistance. Population analysis profiles pointed out that K. pneumoniae manifest heteroresistance to colistin only when grown in biofilm arrangements, and it was possible to identify a resistant sub-population presenting a small colony morphology (diameter around 5 mm). To the best of our knowledge, this is the first report linking heteroresistance to biofilm formation and a morphological distinctive sub-population. Moreover, this is the first evidence that biofilm formation can trigger the emergence of heteroresistance in an apparently susceptible strain.
Collapse
Affiliation(s)
- Ana Silva
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Ana Margarida Sousa
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Diana Alves
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Anália Lourenço
- ESEI-Escuela Superior de Ingeniería Informática, Universidad de Vigo, Ourense, Spain CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Maria Olívia Pereira
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| |
Collapse
|