1
|
Fernandes ÂR, Rodrigues AG, Cobrado L. Effect of prolonged exposure to disinfectants in the antimicrobial resistance profile of relevant micro-organisms: a systematic review. J Hosp Infect 2024; 151:45-59. [PMID: 38740303 DOI: 10.1016/j.jhin.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/27/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Antimicrobial resistance (AMR) constitutes a major global health threat, to a very large extent due to the inadequate use of antibiotics. Additionally, the misuse of disinfectants can also trigger the selection of resistant clones, where micro-organisms develop an adaptative response and progress to resistance mechanisms. Cross-resistance may occur when a biocide's selective pressure induces antimicrobial resistance. AIM To acknowledge the potential relationship between repeated and/or prolonged exposure to disinfectants and antimicrobial resistance profile adjustment. METHODS This systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Studies published until December 2023 that were related to the interaction between disinfectants and antimicrobials were included. Further selection was based on the methodology of exposure. FINDINGS Selected studies included testing about 'exposure to sublethal concentrations' for seventeen disinfectants. The mechanism of action for the majority of the disinfectants involved interactions with the cell membrane. Chlorhexidine was the most studied disinfectant. CONCLUSION Adaptation phenomena related to disinfectant exposure were documented and development of cross-resistance to antimicrobials was verified for several species, including Streptococcus spp., Klebsiella pneumoniae, Acinetobacter baumannii, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida spp. Changes associated with disinfectant exposure also influenced biofilm formation, colony morphology, and efflux pump activity - three relevant determinants of loss of antibiotic efficacy.
Collapse
Affiliation(s)
- Â R Fernandes
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - A G Rodrigues
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal; Centre for Health Technology and Services Research/Rede de Investigação em Saúde (CINTESIS@RISE), Faculty of Medicine, University of Porto, Porto, Portugal; Burn Unit, Department of Plastic and Reconstructive Surgery, University Hospital Centre of São João, Porto, Portugal
| | - L Cobrado
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal; Centre for Health Technology and Services Research/Rede de Investigação em Saúde (CINTESIS@RISE), Faculty of Medicine, University of Porto, Porto, Portugal; Burn Unit, Department of Plastic and Reconstructive Surgery, University Hospital Centre of São João, Porto, Portugal
| |
Collapse
|
2
|
Sabrin S, Hong SH, Karmokar DK, Habibullah H, Fitridge R, Short RD, Szili EJ. Healing wounds with plasma-activated hydrogel therapy. Trends Biotechnol 2024:S0167-7799(24)00190-2. [PMID: 39209604 DOI: 10.1016/j.tibtech.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024]
Abstract
Chronic wound infections are a silent pandemic in danger of becoming a global healthcare crisis. Innovations to control infections and improve healing are required. In the context of this challenge, researchers are exploiting plasma-activated hydrogel therapy (PAHT) for use either alone or in combination with other antimicrobial strategies. PAHT involves the cold atmospheric pressure plasma activation of hydrogels with reactive oxygen and nitrogen species to decontaminate infections and promote healing. This opinion article describes PAHT for wound treatment and provides an overview of current research and outstanding challenges in translating the technology for medical use. A 'blueprint' of an autonomous PAHT is presented in the final section that can move the management and treatment of wounds from the clinical setting to the community.
Collapse
Affiliation(s)
- Sumyea Sabrin
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia.
| | - Sung-Ha Hong
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia
| | - Debabrata K Karmokar
- UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia
| | - Habibullah Habibullah
- UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia
| | - Robert Fitridge
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia; Vascular and Endovascular Service, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Robert D Short
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, UK.
| | - Endre J Szili
- UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
3
|
Saeed SI, Kamaruzzaman NF, Gahamanyi N, Nguyen TTH, Hossain D, Kahwa I. Confronting the complexities of antimicrobial management for Staphyloccous aureus causing bovine mastitis: an innovative paradigm. Ir Vet J 2024; 77:4. [PMID: 38418988 PMCID: PMC10900600 DOI: 10.1186/s13620-024-00264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Globally, Mastitis is a disease commonly affecting dairy cattle which leads to the use of antimicrobials. The majority of mastitis etiological agents are bacterial pathogens and Staphylococcus aureus is the predominant causative agent. Antimicrobial treatment is administered mainly via intramammary and intramuscular routes. Due to increasing antimicrobial resistance (AMR) often associated with antimicrobial misuse, the treatment of mastitis is becoming challenging with less alternative treatment options. Besides, biofilms formation and ability of mastitis-causing bacteria to enter and adhere within the cells of the mammary epithelium complicate the treatment of bovine mastitis. In this review article, we address the challenges in treating mastitis through conventional antibiotic treatment because of the rising AMR, biofilms formation, and the intracellular survival of bacteria. This review article describes different alternative treatments including phytochemical compounds, antimicrobial peptides (AMPs), phage therapy, and Graphene Nanomaterial-Based Therapy that can potentially be further developed to complement existing antimicrobial therapy and overcome the growing threat of AMR in etiologies of mastitis.
Collapse
Affiliation(s)
- Shamsaldeen Ibrahim Saeed
- Nanotechnology in Veterinary Medicine Research Group, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan (UMK), Pengkalan Chepa, Kelantan, 16100, Malaysia.
- Microbiology Department, Faculty of Veterinary Science, University of Nyala, PO Box 155, Nyala, Sudan.
| | - Nor Fadhilah Kamaruzzaman
- Nanotechnology in Veterinary Medicine Research Group, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan (UMK), Pengkalan Chepa, Kelantan, 16100, Malaysia
| | - Noel Gahamanyi
- Biology Department, School of Science, College of Science and Technology, University of Rwanda, P.O. Box 3900, Kigali, Rwanda
- Microbiology Unit, National Reference Laboratory, Rwanda Biomedical, P.O. Box 7162, Kigali, Rwanda
| | - Thi Thu Hoai Nguyen
- Research Center for Infectious Diseases, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Delower Hossain
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Lodi, 26900, Italy
- Department of Medicine and Public Health, Faculty of Animal Science and Veterinary Medicine, Sher-e -Bangla Agricultural University (SAU), Dhaka, 1207, Bangladesh
- Udder Health Bangladesh (UHB), Chattogram, 4225, Bangladesh
| | - Ivan Kahwa
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
| |
Collapse
|
4
|
Bromberg L, Magariños B, Torres BS, Santos Y, Concheiro A, Hatton TA, Alvarez-Lorenzo C. Multifunctional polymeric guanidine and hydantoin halamines with broad biocidal activity. Int J Pharm 2024; 651:123779. [PMID: 38181993 DOI: 10.1016/j.ijpharm.2024.123779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Prolonged and excessive use of biocides during the coronavirus disease era calls for incorporating new antiviral polymers that enhance the surface design and functionality for existing and potential future pandemics. Herein, we investigated previously unexplored polyamines with nucleophilic biguanide, guanidine, and hydantoin groups that all can be halogenated leading to high contents of oxidizing halogen that enables enhancement of the biocidal activity. Primary amino groups can be used to attach poly(N-vinylguanidine) (PVG) and poly(allylamine-co-4-aminopyridine-co-5-(4-hydroxybenzylidene)hydantoin) (PAH) as well as a broad-spectrum commercial biocide poly(hexamethylene biguanide) (PHMB) onto a solid support. Halogenation of polymer suspensions was conducted through in situ generation of excess hypobromous acid (HBrO) from bromine and sodium hydroxide or by sodium hypochlorite in aqueous solutions, resulting in N-halamines with high contents of active > N-Br or > N-Cl groups. The virucidal activity of the polymers against human respiratory coronavirus HCoV-229E increased dramatically with their halogenation. Brominated PHMB-Br showed activation activity value > 5 even at 1 mg/L, and complete virus inhibition was observed with either PHMB-Br or PAH-Br at 10 mg/mL. Brominated PVG-Br and PAH-Br possessed fungicidal activity against C. albicans, while PHMB was fungistatic. PHMB, PHMB-Br and PAH polymers demonstrated excellent bactericidal activity against the methicillin-resistant S. aureus and vancomycin-resistant E. faecium. Brominated polymers (PHMB-Br, PVG-Br, PAH-Br) were not toxic to the HeLa monolayers, indicating acceptable biocompatibility to cultured human cells. With these features, the N-halamine polymers of the present study are a worthwhile addition to the arsenal of biocides and are promising candidates for development of non-leaching coatings.
Collapse
Affiliation(s)
- Lev Bromberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Beatriz Magariños
- Department of Microbiology and Parasitology, Facultad de Biología, CIBUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Beatriz S Torres
- Department of Microbiology and Parasitology, Facultad de Biología, CIBUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ysabel Santos
- Department of Microbiology and Parasitology, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Angel Concheiro
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - T Alan Hatton
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Carmen Alvarez-Lorenzo
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
5
|
Lu Y, Wang D, Zhang Y, Hu Y, Lu J, Zeng Z, Zeng D. Preparation and Antimicrobial Activity of a Film-Forming Polyhexamethylene Biguanide Teat Disinfectant. Int J Mol Sci 2023; 24:17444. [PMID: 38139273 PMCID: PMC10743736 DOI: 10.3390/ijms242417444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Bovine mastitis caused by infectious pathogens can lead to a decline in production performance and an increase in elimination rate, resulting in huge losses to the dairy industry. This study aims to prepare a novel dairy cow teat disinfectant with polyhexamethylene biguanide (PHMB) as the main bactericidal component and to evaluate its bactericidal activity in vitro and its disinfection effect in dairy cow teats. PHMB disinfectant with a concentration of 3 g/L was prepared with PVA-1788, propylene glycol and glycerol as excipients. When the dilution ratio is 1:4800 and the action time is 5 min, the PHMB teat disinfectant can reduce the four types of bacteria (S. agalactiae ATCC 12386, S. dysgalactiae ATCC 35666, S. aureus ATCC 6538, and E. coli ATCC 8099) by 99.99%. PHMB teat disinfectant applied on the skin of rabbits with four bacteria types achieved an average log10 reduction greater than 4. After 30 s of PHMB teat disinfectant dipping, the bacteria of cow teats were counted prior to disinfection. The mean log10 reduction in bacteria on the skin surface of 12 cows ranged from 0.99 to 3.52 after applying the PHMB teat disinfectant for 10 min. After 12 h, the PHMB teat disinfectant achieved an average log10 reduction in bacteria from 0.27 to 0.68 (compared with that prior to disinfection). These results suggested that PHMB teat disinfection has the potential to prevent and treat mastitis-causing bacteria in dairy herds.
Collapse
Affiliation(s)
- Yixing Lu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (D.W.); (Y.Z.); (Y.H.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| | - Di Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (D.W.); (Y.Z.); (Y.H.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| | - Yongxiang Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (D.W.); (Y.Z.); (Y.H.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| | - Yueying Hu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (D.W.); (Y.Z.); (Y.H.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| | - Jiaxuan Lu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (D.W.); (Y.Z.); (Y.H.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (D.W.); (Y.Z.); (Y.H.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| | - Dongping Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (D.W.); (Y.Z.); (Y.H.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| |
Collapse
|
6
|
Bai S, Song J, Pu H, Yu Y, Song W, Chen Z, Wang M, Campbell-Valois FX, Wong WL, Cai Q, Wan M, Zhang C, Bai Y, Feng X. Chemical Biology Approach to Reveal the Importance of Precise Subcellular Targeting for Intracellular Staphylococcus aureus Eradication. J Am Chem Soc 2023; 145:23372-23384. [PMID: 37838963 DOI: 10.1021/jacs.3c09587] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Intracellular bacterial pathogens, such as Staphylococcus aureus, that may hide in intracellular vacuoles represent the most significant manifestation of bacterial persistence. They are critically associated with chronic infections and antibiotic resistance, as conventional antibiotics are ineffective against such intracellular persisters due to permeability issues and mechanistic reasons. Direct subcellular targeting of S. aureus vacuoles suggests an explicit opportunity for the eradication of these persisters, but a comprehensive understanding of the chemical biology nature and significance of precise S. aureus vacuole targeting remains limited. Here, we report an oligoguanidine-based peptidomimetic that effectively targets and eradicates intracellular S. aureus persisters in the phagolysosome lumen, and this oligomer was utilized to reveal the mechanistic insights linking precise targeting to intracellular antimicrobial efficacy. The oligomer has high cellular uptake via a receptor-mediated endocytosis pathway and colocalizes with S. aureus persisters in phagolysosomes as a result of endosome-lysosome interconversion and lysosome-phagosome fusion. Moreover, the observation of a bacterium's altered susceptibility to the oligomer following a modification in its intracellular localization offers direct evidence of the critical importance of precise intracellular targeting. In addition, eradication of intracellular S. aureus persisters was achieved by the oligomer's membrane/DNA dual-targeting mechanism of action; therefore, its effectiveness is not hampered by the hibernation state of the persisters. Such precise subcellular targeting of S. aureus vacuoles also increases the agent's biocompatibility by minimizing its interaction with other organelles, endowing excellent in vivo bacterial targeting and therapeutic efficacy in animal models.
Collapse
Affiliation(s)
- Silei Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Junfeng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Huangsheng Pu
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel NanoOptoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
| | - Yue Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wenwen Song
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Zhiyong Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Min Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | | | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Muyang Wan
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Chunhui Zhang
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yugang Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xinxin Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
7
|
Yan Y, Li Y, Li H, Ma X, Tang Y, Yi K, Lin X, Li J, Liu Z. Antimicrobial Zeolitic Imidazolate Frameworks with Dual Mechanisms of Action. ACS Infect Dis 2023; 9:507-517. [PMID: 36815744 DOI: 10.1021/acsinfecdis.2c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The horizontal transfer of drug-resistant genes and the formation of biofilm barriers have threatened the therapeutic efficacy of conventional antibiotic drugs. Development of non-antibiotic agents with high delivery efficiency through bacterial biofilms is urgently required. A pyrithione (PT)-loading zeolitic imidazolate framework (ZIF-8@PT) is synthesized to destroy biofilms and improve the sensitivity of bacteria to PT. ZIF-8@PT can target and destroy the biofilm as well as the cell membrane, promoting the intracellular delivery of PT and possibly its interaction with SmpB, a protein that could regulate the drug resistance of bacteria. ZIF-8@PT effectively suppresses abdominal infections induced by multiresistant Aeromonas veronii C4 in rodent models without systemic toxicity. ZIF-8@PT promises wide applications in treating infections caused by multidrug-resistant bacteria through a dual mechanism of action.
Collapse
Affiliation(s)
- Yunxiang Yan
- School of Life Sciences, Hainan University, Haikou 570228, China.,One Health Institute, Hainan University, Haikou 570228, China
| | - Ye Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Hong Li
- School of Life Sciences, Hainan University, Haikou 570228, China.,One Health Institute, Hainan University, Haikou 570228, China
| | - Xiang Ma
- School of Life Sciences, Hainan University, Haikou 570228, China.,One Health Institute, Hainan University, Haikou 570228, China
| | - Yanqiong Tang
- School of Life Sciences, Hainan University, Haikou 570228, China.,One Health Institute, Hainan University, Haikou 570228, China
| | - Kexian Yi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Juanjuan Li
- School of Life Sciences, Hainan University, Haikou 570228, China.,One Health Institute, Hainan University, Haikou 570228, China
| | - Zhu Liu
- School of Life Sciences, Hainan University, Haikou 570228, China.,One Health Institute, Hainan University, Haikou 570228, China
| |
Collapse
|
8
|
Fungal cell barriers and organelles are disrupted by polyhexamethylene biguanide (PHMB). Sci Rep 2023; 13:2790. [PMID: 36797386 PMCID: PMC9935507 DOI: 10.1038/s41598-023-29756-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
The similarities between fungal and mammalian cells pose inherent challenges for the development of treatments for fungal infections, due to drug crossover recognition of host drug targets by antifungal agents. Thus, there are a limited number of drug classes available for treatment. Treatment is further limited by the acquisition and dissemination of antifungal resistance which contributes to the urgent need of new therapies. Polyhexamethylene biguanide (PHMB) is a cationic antimicrobial polymer with bactericidal, parasiticidal and fungicidal activities. The antifungal mechanism of action appears to involve preferential mechanical disruption of microbial cell structures, offering an alternative to conventional antifungals. However, the antifungal mechanisms have been little studied. The aim of this study was to characterise PHMB's activities on selected yeast (Saccharomyces cerevisiae, Candida albicans) and filamentous fungal species (Fusarium oxysporum, Penicillium glabrum). Fungal membrane disruption, cell entry and intracellular localisation activities of PHMB were evaluated using viability probe entry and polymer localisation studies. We observed that PHMB initially permeabilises fungal cell membranes and then accumulates within the cytosol. Once in the cytosol, it disrupts the nuclear membrane, leading to DNA binding and fragmentation. The electrostatic interaction of PHMB with membranes suggests other intracellular organelles could be potential targets of its action. Overall, the results indicate multiple antifungal mechanisms, which may help to explain its broad-spectrum efficacy. A better understanding of PHMB's mechanism(s) of action may aid the development of improved antifungal treatment strategies.
Collapse
|
9
|
Fidelis CE, de Freitas Leite R, Garcia BLN, Gonçalves JL, Good L, Dos Santos MV. Antimicrobial activities of polyhexamethylene biguanide against biofilm-producing Prototheca bovis causing bovine mastitis. J Dairy Sci 2023; 106:1383-1393. [PMID: 36526458 DOI: 10.3168/jds.2022-22468] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Abstract
Prototheca spp. is a frequent cause of bovine mastitis and is highly resistant to commonly used disinfectants. This study aimed to: (1) evaluate the antimicrobial activity of polyhexamethylene biguanide (PHMB) against mastitis-causing Prototheca spp., and (2) evaluate the biofilm production ability of Prototheca spp. A total of 85 Prototheca bovis and 2 Prototheca blaschkeae isolates from bovine mastitis cases were submitted to biofilm production assays and antimicrobial susceptibility tests against PHMB and disinfectants commonly used in dairy herds (chlorhexidine digluconate, povidone-iodine, sodium dichloroisocyanurate, and sodium hypochlorite). The minimal inhibitory concentration (MIC) and minimal algicidal concentration (MAC) were determined by microdilution assays. We observed that PHMB (MIC90: ≥2 µg/mL and MAC90: ≥4 µg/mL) and chlorhexidine gluconate (MIC90 and MAC90: ≥2 µg/mL) presented the highest antimicrobial activity against P. bovis isolates, followed by sodium dichloroisocyanurate (MIC90 and MAC90: ≥1,400 µg/mL), sodium hypochlorite (MIC90 and MAC90: ≥2,800 µg/mL), and povidone-iodine (MIC90 and MAC90: ≥3,200 µg/mL). Concerning P. blaschkeae isolates, PHMB (MIC and MAC ≥1 µg/mL) and chlorhexidine gluconate (MIC and MAC ≥1 µg/mL) were the disinfectants that presented the lowest concentration values required to inhibit the isolates. Regarding biofilms formation, 63.5% (n = 54/85) of the P. bovis isolates were classified as strong, 28.3% (n = 24/85) moderate, and 8.2% (n = 7/85) weak biofilm producers. In contrast, the P. blaschkeae isolates were classified as weak and moderate biofilm producers. These findings suggest that PHMB has the potential to be used for teat and milking-equipment disinfection for the prevention of mastitis-causing Prototheca spp. in dairy herds.
Collapse
Affiliation(s)
- Carlos Eduardo Fidelis
- Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), São Paulo, Pirassununga, SP, Brazil 13635
| | - Renata de Freitas Leite
- Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), São Paulo, Pirassununga, SP, Brazil 13635
| | - Breno Luis Nery Garcia
- Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), São Paulo, Pirassununga, SP, Brazil 13635
| | - Juliano Leonel Gonçalves
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824-1046
| | - Liam Good
- Royal Veterinary College, University of London, London, NW1 0TU, United Kingdom
| | - Marcos Veiga Dos Santos
- Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), São Paulo, Pirassununga, SP, Brazil 13635.
| |
Collapse
|
10
|
Rippon MG, Rogers AA, Ousey K. Polyhexamethylene biguanide and its antimicrobial role in wound healing: a narrative review. J Wound Care 2023; 32:5-20. [PMID: 36630111 DOI: 10.12968/jowc.2023.32.1.5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A wound offers an ideal environment for the growth and proliferation of a variety of microorganisms which, in some cases, may lead to localised or even systemic infections that can be catastrophic for the patient; the development of biofilms exacerbates these infections. Over the past few decades, there has been a progressive development of antimicrobial resistance (AMR) in microorganisms across the board in healthcare sectors. Such resistant microorganisms have arisen primarily due to the misuse and overuse of antimicrobial treatments, and the subsequent ability of microorganisms to rapidly change and mutate as a defence mechanism against treatment (e.g., antibiotics). These resistant microorganisms are now at such a level that they are of grave concern to the World Health Organization (WHO), and are one of the leading causes of illness and mortality in the 21st century. Treatment of such infections becomes imperative but presents a significant challenge for the clinician in that treatment must be effective but not add to the development of new microbes with AMR. The strategy of antimicrobial stewardship (AMS) has stemmed from the need to counteract these resistant microorganisms and requires that current antimicrobial treatments be used wisely to prevent amplification of AMR. It also requires new, improved or alternative methods of treatment that will not worsen the situation. Thus, any antimicrobial treatment should be effective while not causing further development of resistance. Some antiseptics fall into this category and, in particular, polyhexamethylene hydrochloride biguanide (PHMB) has certain characteristics that make it an ideal solution to this problem of AMR, specifically within wound care applications. PHMB is a broad-spectrum antimicrobial that kills bacteria, fungi, parasites and certain viruses with a high therapeutic index, and is widely used in clinics, homes and industry. It has been used for many years and has not been shown to cause development of resistance; it is safe (non-cytotoxic), not causing damage to newly growing wound tissue. Importantly there is substantial evidence for its effective use in wound care applications, providing a sound basis for evidence-based practice. This review presents the evidence for the use of PHMB treatments in wound care and its alignment with AMS for the prevention and treatment of wound infection.
Collapse
Affiliation(s)
- Mark G Rippon
- Huddersfield University, Huddersfield, UK.,Dane River Consultancy Ltd, Cheshire, UK
| | | | - Karen Ousey
- University of Huddersfield Department of Nursing and Midwifery, Huddersfield, UK.,School of Nursing, Faculty of Health at the Queensland University of Technology, Australia.,RCSI, Dublin, Eire
| |
Collapse
|
11
|
Rathi B, Gupta S, Kumar P, Kesarwani V, Dhanda RS, Kushwaha SK, Yadav M. Anti-biofilm activity of caffeine against uropathogenic E. coli is mediated by curli biogenesis. Sci Rep 2022; 12:18903. [PMID: 36344808 PMCID: PMC9640630 DOI: 10.1038/s41598-022-23647-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Biofilms are assemblages of sessile microorganisms that form an extracellular matrix around themselves and mediate attachment to surfaces. The major component of the extracellular matrix of Uropathogenic E. coli and other Enterobacteriaceae are curli fibers, making biofilms robust and resistant to antimicrobials. It is therefore imperative to screen antibiofilm compounds that can impair biofilm formation. In the present study, we investigated the curli-dependent antibiofilm activity of caffeine against UPEC strain CFT073 and commensal strain E. coli K-12MG1655.Caffeine significantly reduced the biofilm formation of both UPEC and E. coli K-12 by 86.58% and 91.80% respectively at 48 mM caffeine as determined by Crystal Violet assay. These results were further confirmed by fluorescence microscopy and Scanning Electron Microscope (SEM). Caffeine significantly reduced the cytotoxicity and survivability of UPEC. Molecular docking analysis revealed a strong interaction between caffeine and curli regulator protein (Csg D) of E. coli. The qRT-PCR data also showed significant downregulation in the expression of CsgBA and the CsgDEFG operon at both 24 mM and 48 mM caffeine. The findings revealed that caffeine could inhibit E. coli biofilm formation by regulating curli assembly and thus may be used as an alternative therapeutic strategy for the treatment of chronic E. coli biofilm-related infections.
Collapse
Affiliation(s)
- Bhawna Rathi
- grid.8195.50000 0001 2109 4999Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi (North Campus), New Delhi, 110007 India
| | - Surbhi Gupta
- grid.8195.50000 0001 2109 4999Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi (North Campus), New Delhi, 110007 India
| | - Parveen Kumar
- grid.265892.20000000106344187Department of Urology, University of Alabama at Birmingham, Birmingham, AL USA
| | | | | | - Sandeep Kumar Kushwaha
- grid.508105.90000 0004 1798 2821DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Manisha Yadav
- grid.8195.50000 0001 2109 4999Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi (North Campus), New Delhi, 110007 India ,grid.4514.40000 0001 0930 2361Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
12
|
ALIMU YIKELAMU, KUSUYA YOKO, YAMAMOTO TAKAKO, ARITA KANA, SHIGEMUNE NAOFUMI, TAKAHASHI HIROKI, YAGUCHI TAKASHI. Mechanism of Polyhexamethylene Biguanide Resistance in <i>Purpureocillium lilacinum</i> Strains. Biocontrol Sci 2022; 27:117-130. [DOI: 10.4265/bio.27.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | | | | | - KANA ARITA
- R&D-Safety Science Research, Kao Corporation
| | | | | | | |
Collapse
|
13
|
Wound Antiseptics and European Guidelines for Antiseptic Application in Wound Treatment. Pharmaceuticals (Basel) 2021; 14:ph14121253. [PMID: 34959654 PMCID: PMC8708894 DOI: 10.3390/ph14121253] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 01/21/2023] Open
Abstract
Issues arising in wound healing are very common, and chronic wound infections affect approximately 1.5% of the population. The main substances used in wound washing, cleansing and treatment are antiseptics. Today, there are many compounds with a known antiseptic activity. Older antiseptics (e.g., boric acid, ethacridine lactate, potassium permanganate, hydrogen peroxide, iodoform, iodine and dyes) are not recommended for wound treatment due to a number of disadvantages. According to the newest guidelines of the Polish Society for Wound Treatment and the German Consensus on Wound Antisepsis, only the following antiseptics should be taken into account for wound treatment: octenidine (OCT), polihexanide (PHMB), povidone-iodine (PVP-I), sodium hypochlorite (NaOCl) and nanosilver. This article provides an overview of the five antiseptics mentioned above, their chemical properties, wound applications, side effects and safety.
Collapse
|
14
|
Leite R, Gonçalves J, Buanz A, Febraro C, Craig D, Van Winden S, Good L, Santos M. Antimicrobial activity of polyhexamethylene biguanide nanoparticles against mastitis-causing Staphylococcus aureus. JDS COMMUNICATIONS 2021; 2:262-265. [PMID: 36338383 PMCID: PMC9623792 DOI: 10.3168/jdsc.2021-0114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/13/2021] [Indexed: 06/16/2023]
Abstract
Postmilking teat disinfection is one of the main measures used to prevent mastitis caused by contagious pathogens, such as Staphylococcus aureus. The present study evaluated the antimicrobial activity of polyhexamethylene biguanide (PHMB) and PHMB nanoparticles (NP) against mastitis-causing Staph. aureus using a microdilution assay methodology. A total of 20 mastitis-causing Staph. aureus isolates were used to determine the minimum inhibitory concentrations (MIC) of PHMB and PHMB NP compared with 3 disinfectants commonly used for teat disinfection (chlorhexidine digluconate, povidone-iodine, and sodium dichloroisocyanurate). The MIC90 was defined at the concentrations required to inhibit the growth of 90% of Staph. aureus. Our results indicated that PHMB NP presented the lowest MIC value (<0.03 µg/mL) to inhibit 90% of Staph. aureus, followed by chlorhexidine digluconate (≥0.25 µg/mL) and PHMB (≥0.5 µg/mL). On the other hand, sodium dichloroisocyanurate (≥500 µg/mL) and povidone-iodine (≥8,000 µg/mL) presented the highest concentrations to inhibit the growth of most Staph. aureus. Our preliminary results suggested that both PHMB and PHMB NP have antimicrobial activity against mastitis-causing Staph. aureus, which indicates the potential for both to be used as a teat-dip disinfectant to prevent bovine mastitis.
Collapse
Affiliation(s)
- R.F. Leite
- Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo, Pirassununga, SP, Brazil, 13635-900
| | - J.L. Gonçalves
- Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo, Pirassununga, SP, Brazil, 13635-900
| | - A. Buanz
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, London, WC1N 1AX, United Kingdom
| | - C. Febraro
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, NW1 0TU, United Kingdom
| | - D. Craig
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, London, WC1N 1AX, United Kingdom
| | - S. Van Winden
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, NW1 0TU, United Kingdom
| | - L. Good
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, NW1 0TU, United Kingdom
| | - M.V. Santos
- Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo, Pirassununga, SP, Brazil, 13635-900
| |
Collapse
|
15
|
Yang L, Niyazi G, Qi Y, Yao Z, Huang L, Wang Z, Guo L, Liu D. Plasma-Activated Saline Promotes Antibiotic Treatment of Systemic Methicillin-Resistant Staphylococcus aureus Infection. Antibiotics (Basel) 2021; 10:antibiotics10081018. [PMID: 34439068 PMCID: PMC8388904 DOI: 10.3390/antibiotics10081018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 12/31/2022] Open
Abstract
Systemic infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are life-threatening due to their strong multidrug resistance, especially since the biofilms formed by MRSA are more difficult to inactivate by antibiotics, causing long term recurrence of infection. Plasma-activated saline (PAS), a derived form of cold atmospheric-pressure plasma, can effectively inactivate bacteria and cancer cells and has been applied to sterilization and cancer treatment. Previous studies have demonstrated that the pretreatment of MRSA with PAS could promote the action of antibiotics. Here, the PAS was used as an antibiotic adjuvant to promote the inactivation of MRSA biofilms by rifampicin and vancomycin, and the combined treatment reduced approximately 6.0-log10 MRSA cells in biofilms. The plasma-activated saline and rifampicin synergistically and effectively reduced the systemic infection in the murine model. The histochemical analysis and the blood hematological and biochemical test demonstrated that the combined treatment with plasma-activated saline and rifampicin improved the blood hematological and biochemical parameters of infected mice by reducing the infection. Therefore, PAS based on plasma technology represents a new strategy for the treatment of infectious disease caused by multidrug-resistant bacteria and alleviating antibiotic resistance.
Collapse
Affiliation(s)
- Lu Yang
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (L.Y.); (G.N.)
| | - Gulimire Niyazi
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (L.Y.); (G.N.)
| | - Yu Qi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (Y.Q.); (Z.Y.); (L.H.); (Z.W.)
| | - Zhiqian Yao
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (Y.Q.); (Z.Y.); (L.H.); (Z.W.)
| | - Lingling Huang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (Y.Q.); (Z.Y.); (L.H.); (Z.W.)
| | - Zifeng Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (Y.Q.); (Z.Y.); (L.H.); (Z.W.)
| | - Li Guo
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (Y.Q.); (Z.Y.); (L.H.); (Z.W.)
- Correspondence: (L.G.); (D.L.)
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (Y.Q.); (Z.Y.); (L.H.); (Z.W.)
- Correspondence: (L.G.); (D.L.)
| |
Collapse
|
16
|
Antibiofilm Efficacy of Polihexanide, Octenidine and Sodium Hypochlorite/Hypochlorous Acid Based Wound Irrigation Solutions against Staphylococcus aureus, Pseudomonas aeruginosa and a Multispecies Biofilm. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1369:53-67. [PMID: 34173213 DOI: 10.1007/5584_2021_645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Infection and the formation of biofilms have been shown to have a significant role in increased inflammation and delayed wound healing. Wound irrigation solutions are used to debride wounds, removing cell debris and infecting microorganisms, therefore preventing infection. The aim of this study was to evaluate a Polihexanide (PHMB) based wound irrigation solution, Octenidine HCl based wound irrigation solution and electrolysed water based wound care solution for antibiofilm efficacy against Staphylococcus aureus, Pseudomonas aeruginosa and a multispecies biofilm in several models to gain a broad understanding of ability. The PHMB based wound irrigation solution demonstrated broad range antibiofilm efficacy against P. aeruginosa, S. aureus and the multispecies biofilm. The Octenidine HCl based wound irrigation solution and the electrolysed water based wound care solution demonstrated potent antibiofilm efficacy against S. aureus and to a lesser extent P. aeruginosa. Overall, less efficacy was observed in the drip flow bioreactor model for all 3 test solutions, which may be attributed to the continuous flow of nutrients during treatment, which may have diluted or washed away the solution. The data presented also highlights the importance of testing antibiofilm activity in a range of biofilm models and against different bacterial strains to get an overall representation of efficacy.
Collapse
|
17
|
Han H, Teng D, Mao R, Hao Y, Yang N, Wang Z, Li T, Wang X, Wang J. Marine Peptide-N6NH2 and Its Derivative-GUON6NH2 Have Potent Antimicrobial Activity Against Intracellular Edwardsiella tarda in vitro and in vivo. Front Microbiol 2021; 12:637427. [PMID: 33767681 PMCID: PMC7985170 DOI: 10.3389/fmicb.2021.637427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/10/2021] [Indexed: 12/03/2022] Open
Abstract
Edwardsiella tarda is a facultative intracellular pathogen in humans and animals. There is no effective way except vaccine candidates to eradicate intracellular E. tarda. In this study, four derivatives of marine peptide-N6NH2 were designed by an introduction of unnatural residues or substitution of natural ones, and their intracellular activities against E. tarda were evaluated in macrophages and in mice, respectively. The minimum inhibitory concentration (MIC) value of N6NH2 and GUON6NH2 against E. tarda was 8 μg/mL. GUON6NH2 showed higher stability to trypsin, lower toxicity (<1%) and longer post-antibiotic effect (PAE) than N6NH2 and other derivatives. Antibacterial mechanism results showed that GUON6NH2 could bind to LPS and destroyed outer/inner cell membranes of E. tarda, superior to N6NH2 and norfloxacin. Both N6NH2 and GUON6NH2 were internalized into macrophages mainly via lipid rafts, micropinocytosis, and microtubule polymerization, respectively, and distributed in the cytoplasm. The intracellular inhibition rate of GUON6NH2 against E. tarda was 97.05–100%, higher than that in case of N6NH2 (96.82–100%). In the E. tarda-induced peritonitis mouse model, after treatment with of 1 μmol/kg N6NH2 and GUON6NH2, intracellular bacterial numbers were reduced by 1.54- and 1.97-Log10 CFU, respectively, higher than norfloxacin (0.35-Log10 CFU). These results suggest that GUON6NH2 may be an excellent candidate for novel antimicrobial agents to treat infectious diseases caused by intracellular E. tarda.
Collapse
Affiliation(s)
- Huihui Han
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhenlong Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ting Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China.,Chinese Herbal Medicine Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
18
|
Potent intracellular antibacterial activity of a marine peptide-N6NH 2 and its D-enantiomer against multidrug-resistant Aeromonas veronii. Appl Microbiol Biotechnol 2021; 105:2351-2361. [PMID: 33635357 DOI: 10.1007/s00253-021-11176-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/31/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Aeromonas veronii can cause a variety of diseases such as sepsis in humans and animals. However, there has been no effective way to eradicate A. veronii. In this study, the intracellular antibacterial activities of the C-terminal aminated marine peptide N6 (N6NH2) and its D-enantiomer (DN6NH2) against A. veronii were investigated in macrophages and in mice, respectively. The result showed that DN6NH2 with the minimum inhibitory concentration (MIC) of 1.62 μM is more resistant to cathepsin B than N6NH2 (3.23 μM). The penetration percentages of the cells treated with 4-200 μg/mL fluorescein isothiocyanate (FITC)-DN6NH2 were 52.5-99.6%, higher than those of FITC-N6NH2 (27.0-99.1%). Both N6NH2 and DN6NH2 entered macrophages by macropinocytosis and an energy-dependent manner. DN6NH2 reduced intracellular A. veronii by 34.57%, superior to N6NH2 (19.52%). After treatment with 100 μg/mL DN6NH2, the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β were reduced by 53.45%, 58.54%, and 44.62%, respectively, lower than those of N6NH2 (15.65%, 12.88%, and 14.10%, respectively); DN6NH2 increased the IL-10 level (42.94%), higher than N6NH2 (7.67%). In the mice peritonitis model, 5 μmol/kg DN6NH2 reduced intracellular A. veronii colonization by 73.22%, which was superior to N6NH2 (32.45%) or ciprofloxacin (45.67%). This suggests that DN6NH2 may be used as the candidate for treating intracellular multidrug-resistant (MDR) A. veronii. KEY POINTS: • DN6NH2 improved intracellular antibacterial activity against MDR A. veronii. • DN6NH2 entered macrophages by micropinocytosis and enhanced the internalization rates. • DN6NH2 effectively protected the mice from infection with A. veronii.
Collapse
|
19
|
Kanth S, Nagaraja A, Puttaiahgowda YM. Polymeric approach to combat drug-resistant methicillin-resistant Staphylococcus aureus. JOURNAL OF MATERIALS SCIENCE 2021; 56:7265-7285. [PMID: 33518799 PMCID: PMC7831626 DOI: 10.1007/s10853-021-05776-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/03/2021] [Indexed: 05/10/2023]
Abstract
ABSTRACT The current global death rate has threatened humans due to increase in deadly unknown infections caused by pathogenic microorganisms. On the contrary, the emergence of multidrug-resistant bacteria is also increasing which is leading to elevated lethality rate worldwide. Development of drug-resistant bacteria has become one of the daunting global challenges due to failure in approaching to combat against them. Methicillin-resistant Staphylococcus aureus (MRSA) is one of those drug-resistant bacteria which has led to increase in global mortality rate causing various lethal infections. Polymer synthesis can be one of the significant approaches to combat MRSA by fabricating polymeric coatings to prevent the spread of infections. This review provides last decade information in the development of various polymers against MRSA. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Shreya Kanth
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104 India
| | - Akshatha Nagaraja
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104 India
| | - Yashoda Malgar Puttaiahgowda
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104 India
| |
Collapse
|
20
|
Bai S, Wang J, Yang K, Zhou C, Xu Y, Song J, Gu Y, Chen Z, Wang M, Shoen C, Andrade B, Cynamon M, Zhou K, Wang H, Cai Q, Oldfield E, Zimmerman SC, Bai Y, Feng X. A polymeric approach toward resistance-resistant antimicrobial agent with dual-selective mechanisms of action. SCIENCE ADVANCES 2021; 7:eabc9917. [PMID: 33571116 PMCID: PMC7840121 DOI: 10.1126/sciadv.abc9917] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 12/08/2020] [Indexed: 05/19/2023]
Abstract
Antibiotic resistance is now a major threat to human health, and one approach to combating this threat is to develop resistance-resistant antibiotics. Synthetic antimicrobial polymers are generally resistance resistant, having good activity with low resistance rates but usually with low therapeutic indices. Here, we report our solution to this problem by introducing dual-selective mechanisms of action to a short amidine-rich polymer, which can simultaneously disrupt bacterial membranes and bind to bacterial DNA. The oligoamidine shows unobservable resistance generation but high therapeutic indices against many bacterial types, such as ESKAPE strains and clinical isolates resistant to multiple drugs, including colistin. The oligomer exhibited excellent effectiveness in various model systems, killing extracellular or intracellular bacteria in the presence of mammalian cells, removing all bacteria from Caenorhabditis elegans, and rescuing mice with severe infections. This "dual mechanisms of action" approach may be a general strategy for future development of antimicrobial polymers.
Collapse
Affiliation(s)
- Silei Bai
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jianxue Wang
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Kailing Yang
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Cailing Zhou
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yangfan Xu
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Junfeng Song
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yuanxin Gu
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Zheng Chen
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Min Wang
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Carolyn Shoen
- Veterans Affairs Medical Center, Syracuse, NY 13210, USA
| | - Brenda Andrade
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Kai Zhou
- Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, Guangdong 518035, China
- The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, China
| | - Hui Wang
- Department of Clinical Laboratories, Peking University People's Hospital, Beijing, 100044, China
| | - Qingyun Cai
- School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Steven C Zimmerman
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yugang Bai
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China.
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xinxin Feng
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China.
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
21
|
Adebowale O, Good L. Development of a fixation-free fluorescence in situ hybridization for the detection of Salmonella species. Biol Methods Protoc 2020; 5:bpaa024. [PMID: 33381652 PMCID: PMC7756007 DOI: 10.1093/biomethods/bpaa024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 11/13/2022] Open
Abstract
Salmonella is one of the most important infectious bacteria causing severe gastroenteritis and deaths in humans and animals, and the prompt diagnosis is crucial for effective control and treatment. The detection of Salmonella still depends principally on culture-based methods, which is time-consuming and laborious. Recently, polyhexamethylene biguanide (PHMB) was discovered to have cellular delivery properties and its combination with the fluorescence in situ hybridization (FISH) method was exploited for oligomer delivery and the rapid detection of Salmonella spps in this study. Cell-associated fluorescence was quantified using Volocity® 3-D image analysis software (Volocity 6.3, PerkinElmer, Inc.). PHMB complexed with fluorophore-labelled species-specific oligomers permeabilized freshly grown viable strains of Salmonella cells and mediated strong cell-associated fluorescence signals. This strategy further enabled a fixation-free protocol and hybridization in a single reaction. Using the modified FISH method, monoculture Salmonella strains were validated as well as detected in artificially contaminated water and milk within a turnaround period of 5 h. The method was observed to be comparable with the standard FISH technique (sFISH; P > 0.05). The findings suggest that fixation-free delivery and hybridization of oligomers using PHMB can provide a simplified and prompt strategy for Salmonella detection at the species level, and promote early management responses to the disease and appropriate antimicrobial therapy.
Collapse
Affiliation(s)
- Oluwawemimo Adebowale
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Liam Good
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK
| |
Collapse
|
22
|
Adebowale OO, Goh S, Good L. The development of species-specific antisense peptide nucleic acid method for the treatment and detection of viable Salmonella. Heliyon 2020; 6:e04110. [PMID: 32566778 PMCID: PMC7298406 DOI: 10.1016/j.heliyon.2020.e04110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/20/2020] [Accepted: 05/27/2020] [Indexed: 11/25/2022] Open
Abstract
Genotypic based detection methods using specific target sites in the pathogen genome can complement phenotypic identification. We report the development of species-specific antisense peptide nucleic acid (PNA) combined with selective and differential enrichment growth conditions for Salmonella treatment and detection. An antisense PNA oligomer targeting the Salmonella ftsZ gene and conjugated with a cell-penetrating peptide ((KFF)3K) was exploited to probe bacteria cultured in three different growth media (Muller Hinton broth (MHB), Rappaport-Vassiliadis Soya Peptone Broth (RVS, Oxoid), and in-house modified Rappaport-Vassiliadis Soya Peptone Broths (mRVSs). Also, water and milk artificially contaminated with bacteria were probed. Antisense PNA provided detectable changes in Salmonella growth and morphology in all media and artificially contaminated matrices except RVS. Salmonella was detected as elongated cells. On the contrary, treated Escherichia coli did not elongate, providing evidence of differentiation and selectivity for Salmonella. Similarly, Salmonella probed with mismatched PNAs did not elongate. Antisense oligomers targeted ftsZ mRNA in combination with selective growth conditions can provide a detection strategy for viable Salmonella in a single reaction, and act as a potential tool for bacteria detection in real food and environmental samples.
Collapse
|
23
|
Liu Y, Jia Y, Yang K, Wang Z. Heterogeneous Strategies to Eliminate Intracellular Bacterial Pathogens. Front Microbiol 2020; 11:563. [PMID: 32390959 PMCID: PMC7192003 DOI: 10.3389/fmicb.2020.00563] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
Antibiotic tolerance in bacterial pathogens that are genetically susceptible, but phenotypically tolerant to treatment, represents a growing crisis for public health. In particular, the intracellular bacteria-mediated antibiotic tolerance by acting as “Trojan horses” play a critical and underappreciated role in the disease burden of bacterial infections. Thus, more intense efforts are required to tackle this problem. In this review, we firstly provide a brief overview of modes of action of bacteria invasion and survival in macrophage or non-professional phagocytic cells. Furthermore, we summarize our current knowledge about promising strategies to eliminate these intracellular bacterial pathogens, including direct bactericidal agents, antibiotic delivery to infection sites by various carriers, and activation of host immune functions. Finally, we succinctly discuss the challenges faced by bringing them into clinical trials and our constructive perspectives.
Collapse
Affiliation(s)
- Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Yuqian Jia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Kangni Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
24
|
Keirouz A, Radacsi N, Ren Q, Dommann A, Beldi G, Maniura-Weber K, Rossi RM, Fortunato G. Nylon-6/chitosan core/shell antimicrobial nanofibers for the prevention of mesh-associated surgical site infection. J Nanobiotechnology 2020; 18:51. [PMID: 32188479 PMCID: PMC7081698 DOI: 10.1186/s12951-020-00602-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
The state-of-the-art hernia meshes, used in hospitals for hernia repair, are predominantly polymeric textile-based constructs that present high mechanical strength, but lack antimicrobial properties. Consequently, preventing bacterial colonization of implanted prosthetic meshes is of major clinical relevance for patients undergoing hernia repair. In this study, the co-axial electrospinning technique was investigated for the development of a novel mechanically stable structure incorporating dual drug release antimicrobial action. Core/shell structured nanofibers were developed, consisting of Nylon-6 in the core, to provide the appropriate mechanical stability, and Chitosan/Polyethylene oxide in the shell to provide bacteriostatic action. The core/shell structure consisted of a binary antimicrobial system incorporating 5-chloro-8-quinolinol in the chitosan shell, with the sustained release of Poly(hexanide) from the Nylon-6 core of the fibers. Homogeneous nanofibers with a "beads-in-fiber" architecture were observed by TEM, and validated by FTIR and XPS. The composite nanofibrous meshes significantly advance the stress-strain responses in comparison to the counterpart single-polymer electrospun meshes. The antimicrobial effectiveness was evaluated in vitro against two of the most commonly occurring pathogenic bacteria; S. aureus and P. aeruginosa, in surgical site infections. This study illustrates how the tailoring of core/shell nanofibers can be of interest for the development of active antimicrobial surfaces.
Collapse
Affiliation(s)
- Antonios Keirouz
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, UK
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, UK
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
| | - Alex Dommann
- Center for X-Ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland
| | - Guido Beldi
- Department of Visceral Surgery and Medicine, Visceral Surgery, Inselspital University Hospital Bern and University Bern, Freiburgstrasse 18, CH-3010, Bern, Switzerland
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
| | - René M Rossi
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
| | - Giuseppino Fortunato
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland.
| |
Collapse
|
25
|
Kramer A, Eberlein T, Müller G, Dissemond J, Assadian O. Re-evaluation of polihexanide use in wound antisepsis in order to clarify ambiguities of two animal studies. J Wound Care 2019; 28:246-255. [PMID: 30975054 DOI: 10.12968/jowc.2019.28.4.246] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Due to classification of the agent polihexanide (PHMB) in category 2 'may cause cancer' by the Committee for Risk Assessment of the European Chemicals Agency in 2011, the users of wound antiseptics may be highly confused. In 2017, this statement was updated, defining PHMB up to 0.1% as a preservative safe in all cosmetic products. In the interest of patient safety, a scientific clarification of the potential carcinogenicity of PHMB is necessary. METHODS A multidisciplinary team (MDT) of microbiologists, surgeons, dermatologists and biochemists conducted a benefit-risk assessment to clarify the hazard of antiseptic use of PHMB. RESULTS In two animal studies, from which the assessment of a carcinogenic risk was derived, PHMB was administered orally over two years in extremely high concentrations far above the NO(A)EL (no-observed-(adverse-) effect level) in rats and mice. Feeding in the NO(A)EL range resulted in no abnormal effects. In one male in the highest dose group of 4000ppm PHMB, an adenocarcinoma was found, which the author attributed to chronic inflammation of the colon with systemic atypical exposure. The increasing incidence of hemangiosarcomas highly probably resulted from increased endothelial proliferation, triggered by the exceedingly high dosage fed, because PHMB is not genotoxic and there is no evidence for epigenetic effects. DISCUSSION It is well known that PHMB is not absorbed when applied topically. Considering the absence of genotoxicity and epigenetic effects together with the interpretation of the animal studies, it is the consensus of the multidisciplinary experts that a carcinogenic risk from PHMB-use for wound antisepsis can be ruled out. CONCLUSION On this basis and considering their effectiveness, tolerability and clinical evidence, the indications for PHMB based wound antiseptics are justified.
Collapse
Affiliation(s)
- Axel Kramer
- Consultant Clinical Microbiology and Infection Control, Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Germany
| | - Thomas Eberlein
- Consultant Wound Management, College of Medicine and Medical Science, Arabian Gulf University Manama, Kingdom of Bahrain
| | - Gerald Müller
- Biochemist, Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Germany
| | - Joachim Dissemond
- Medical Dermatologist, Department of Dermatology, Venerology and Allergology, University Hospital Essen, Germany
| | - Ojan Assadian
- Consultant Clinical Microbiology and Infection Control, Consultant Infectious Diseases and Tropical Medicine, Department for Hospital Epidemiology and Infection Control, Medical University of Vienna, Austria.,Consultant Clinical Microbiology and Infection Control, Consultant Infectious Diseases and Tropical Medicine, Institute for Skin Integrity and Infection Prevention, University of Huddersfield, UK
| |
Collapse
|
26
|
Kuroki A, Kengmo Tchoupa A, Hartlieb M, Peltier R, Locock KES, Unnikrishnan M, Perrier S. Targeting intracellular, multi-drug resistant Staphylococcus aureus with guanidinium polymers by elucidating the structure-activity relationship. Biomaterials 2019; 217:119249. [PMID: 31279102 DOI: 10.1016/j.biomaterials.2019.119249] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/20/2019] [Accepted: 06/05/2019] [Indexed: 11/29/2022]
Abstract
Intracellular persistence of bacteria represents a clinical challenge as bacteria can thrive in an environment protected from antibiotics and immune responses. Novel targeting strategies are critical in tackling antibiotic resistant infections. Synthetic antimicrobial peptides (SAMPs) are interesting candidates as they exhibit a very high antimicrobial activity. We first compared the activity of a library of ammonium and guanidinium polymers with different sequences (statistical, tetrablock and diblock) synthesized by RAFT polymerization against methicillin-resistant S. aureus (MRSA) and methicillin-sensitive strains (MSSA). As the guanidinium SAMPs were the most potent, they were used to treat intracellular S. aureus in keratinocytes. The diblock structure was the most active, reducing the amount of intracellular MSSA and MRSA by two-fold. We present here a potential treatment for intracellular, multi-drug resistant bacteria, using a simple and scalable strategy.
Collapse
Affiliation(s)
- Agnès Kuroki
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Matthias Hartlieb
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Raoul Peltier
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Katherine E S Locock
- CSIRO Manufacturing, Clayton, Victoria, 3168, Australia; Department of Chemical and Biomolecular Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | | | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK; Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK; Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
27
|
Kamaruzzaman NF, Tan LP, Hamdan RH, Choong SS, Wong WK, Gibson AJ, Chivu A, Pina MDF. Antimicrobial Polymers: The Potential Replacement of Existing Antibiotics? Int J Mol Sci 2019; 20:E2747. [PMID: 31167476 PMCID: PMC6600223 DOI: 10.3390/ijms20112747] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial resistance is now considered a major global challenge; compromising medical advancements and our ability to treat infectious disease. Increased antimicrobial resistance has resulted in increased morbidity and mortality due to infectious diseases worldwide. The lack of discovery of novel compounds from natural products or new classes of antimicrobials, encouraged us to recycle discontinued antimicrobials that were previously removed from routine use due to their toxicity, e.g., colistin. Since the discovery of new classes of compounds is extremely expensive and has very little success, one strategy to overcome this issue could be the application of synthetic compounds that possess antimicrobial activities. Polymers with innate antimicrobial properties or that have the ability to be conjugated with other antimicrobial compounds create the possibility for replacement of antimicrobials either for the direct application as medicine or implanted on medical devices to control infection. Here, we provide the latest update on research related to antimicrobial polymers in the context of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens. We summarise polymer subgroups: compounds containing natural peptides, halogens, phosphor and sulfo derivatives and phenol and benzoic derivatives, organometalic polymers, metal nanoparticles incorporated into polymeric carriers, dendrimers and polymer-based guanidine. We intend to enhance understanding in the field and promote further work on the development of polymer based antimicrobial compounds.
Collapse
Affiliation(s)
- Nor Fadhilah Kamaruzzaman
- Faculty of Veterinary Medicine, Locked bag 36, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Li Peng Tan
- Faculty of Veterinary Medicine, Locked bag 36, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Ruhil Hayati Hamdan
- Faculty of Veterinary Medicine, Locked bag 36, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Siew Shean Choong
- Faculty of Veterinary Medicine, Locked bag 36, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Weng Kin Wong
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia.
| | - Amanda Jane Gibson
- Royal Veterinary College, Pathobiology and Population Sciences, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK.
| | - Alexandru Chivu
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK.
| | - Maria de Fatima Pina
- Medicines and Healthcare Regulatory Products Agency, 10 South Colonnade, Canary Wharf, London E14 4PU, UK.
| |
Collapse
|
28
|
Internalization, distribution, and activity of peptide H2 against the intracellular multidrug-resistant bovine mastitis-causing bacterium Staphylococcus aureus. Sci Rep 2019; 9:7968. [PMID: 31138863 PMCID: PMC6538662 DOI: 10.1038/s41598-019-44459-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022] Open
Abstract
Bovine mastitis is mainly caused by Staphylococcus aureus, which is difficult to eliminate, prone to escape from antibacterial agents, and may cause recurring infections due to the intracellular nature of its infection and multidrug resistance. In this study, the intracellular activities of the NZ2114 derivative peptide H18R (H2) against methicillin-resistant S. aureus (MRSA) and multidrug-resistant bovine S. aureus strains were investigated in bovine mammary epithelial MAC-T cells and mouse mammary glands. The minimum inhibitory concentrations of H2 against S. aureus were 0.5‒1 μg/ml; H2 displayed a lower cytotoxicity than its parental peptide NZ2114 (survival rates of MAC-T cells: 100% [H2 treatment] vs 60.7% [NZ2114 (256 μg/ml) treatment]). H2 was internalized into MAC-T cells mainly via clathrin-mediated endocytosis, and distributed in the cytoplasm. The intracellular inhibition rates against MRSA ATCC43300, the mastitis isolates S. aureus CVCC 3051 and E48 were above 99%, 99%, and 94%, respectively; these were higher than those in case of vancomycin (23-47%). In the mouse model of S. aureus E48-induced mastitis, after treatment with 100 μg of H2 and vancomycin, bacterial numbers in each mammary gland were reduced by 3.96- and 1.59-log CFU, respectively. Additionally, similar to NZ2114 and vancomycin, H2 alleviated the histopathological damage of the mammary tissue and polymorphonuclear neutrophil infiltration in the alveoli. These results suggest that H2 can be used as a safe and effective candidate for treating S. aureus-induced mastitis.
Collapse
|
29
|
Selan L, Vrenna G, Ettorre E, Papa R, Artini M. Virulence of MRSA USA300 is enhanced by sub-inhibitory concentration of two different classes of antibiotics. J Chemother 2019; 30:384-388. [PMID: 30663546 DOI: 10.1080/1120009x.2018.1533085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) USA300 is responsible of many kinds of infections of skin and soft-tissue. Antibiotic resistance, biofilm formation and the ability to adhere and invade are virulence factors that contribute to MRSA pathogenesis. In some cases, decreased bioavailability of antibiotics in systemic circulation could result; in these conditions sub-therapeutic levels of the antibiotics may be established, exposing bacteria to sub-inhibitory concentrations. On the basis of several published scientific data it is fair to assume that all these events could induce an increase of bacterial virulence. In the present study, we investigated this process by measuring the effects of low doses of two different classes of antibiotics on some virulence features of MRSA USA300 isolate, like the ability to adhere and invade eukaryotic cells. Results obtained strongly support the importance of the respect of a correct dosage of antibiotic in therapy to escape the insurgence of more virulent phenotypes.
Collapse
Affiliation(s)
- Laura Selan
- a Department of Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| | - Gianluca Vrenna
- a Department of Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| | - Evaristo Ettorre
- b Division of Gerontology, Department of Cardiovascular, Respiratory, Nephrologic, Anesthesiologic, and Geriatric Sciences , Sapienza University , Rome , Italy
| | - Rosanna Papa
- a Department of Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| | - Marco Artini
- a Department of Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| |
Collapse
|
30
|
Bueno CZ, Moraes ÂM. Influence of the incorporation of the antimicrobial agent polyhexamethylene biguanide on the properties of dense and porous chitosan-alginate membranes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:671-678. [DOI: 10.1016/j.msec.2018.07.076] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 07/07/2018] [Accepted: 07/27/2018] [Indexed: 01/05/2023]
|
31
|
Kamaruzzaman NF, Tan LP, Mat Yazid KA, Saeed SI, Hamdan RH, Choong SS, Wong WK, Chivu A, Gibson AJ. Targeting the Bacterial Protective Armour; Challenges and Novel Strategies in the Treatment of Microbial Biofilm. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1705. [PMID: 30217006 PMCID: PMC6164881 DOI: 10.3390/ma11091705] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 02/07/2023]
Abstract
Infectious disease caused by pathogenic bacteria continues to be the primary challenge to humanity. Antimicrobial resistance and microbial biofilm formation in part, lead to treatment failures. The formation of biofilms by nosocomial pathogens such as Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa), and Klebsiella pneumoniae (K. pneumoniae) on medical devices and on the surfaces of infected sites bring additional hurdles to existing therapies. In this review, we discuss the challenges encountered by conventional treatment strategies in the clinic. We also provide updates on current on-going research related to the development of novel anti-biofilm technologies. We intend for this review to provide understanding to readers on the current problem in health-care settings and propose new ideas for new intervention strategies to reduce the burden related to microbial infections.
Collapse
Affiliation(s)
- Nor Fadhilah Kamaruzzaman
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Li Peng Tan
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Khairun Anisa Mat Yazid
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Shamsaldeen Ibrahim Saeed
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Ruhil Hayati Hamdan
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Siew Shean Choong
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Weng Kin Wong
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia.
| | - Alexandru Chivu
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK.
| | - Amanda Jane Gibson
- Royal Veterinary College, Pathobiology and Population Sciences, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK.
| |
Collapse
|
32
|
Polyhexamethylene Biguanide and Nadifloxacin Self-Assembled Nanoparticles: Antimicrobial Effects against Intracellular Methicillin-Resistant Staphylococcus aureus. Polymers (Basel) 2018; 10:polym10050521. [PMID: 30966555 PMCID: PMC6415416 DOI: 10.3390/polym10050521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/29/2018] [Accepted: 05/09/2018] [Indexed: 01/20/2023] Open
Abstract
The treatment of skin and soft tissue infections caused by methicillin-resistant Staphylococcus aureus (MRSA) remains a challenge, partly due to localization of the bacteria inside the host’s cells, where antimicrobial penetration and efficacy is limited. We formulated the cationic polymer polyhexamethylene biguanide (PHMB) with the topical antibiotic nadifloxacin and tested the activities against intracellular MRSA in infected keratinocytes. The PHMB/nadifloxacin nanoparticles displayed a size of 291.3 ± 89.6 nm, polydispersity index of 0.35 ± 0.04, zeta potential of +20.2 ± 4.8 mV, and drug encapsulation efficiency of 58.25 ± 3.4%. The nanoparticles killed intracellular MRSA, and relative to free polymer or drugs used separately or together, the nanoparticles displayed reduced toxicity and improved host cell recovery. Together, these findings show that PHMB/nadifloxacin nanoparticles are effective against intracellular bacteria and could be further developed for the treatment of skin and soft tissue infections.
Collapse
|
33
|
Abstract
Treatment of Staphylococcus aureus infections remains very difficult due to its capacity to survive intracellularly and its multidrug resistance. In this study, the extracellular/intracellular activities of plectasin derivatives-MP1102/NZ2114 were investigated against three methicillin-susceptible/-resistant S. aureus (MSSA/MRSA) strains in RAW 264.7 macrophages and mice to overcome poor intracellular activity. Antibacterial activities decreased 4–16-fold under a mimic phagolysosomal environment. MP1102/NZ2114 were internalized into the cells via clathrin-mediated endocytosis and macropinocytosis and distributed in the cytoplasm; they regulated tumor necrosis factor-α, interleukin-1β and interleukin-10 levels. The extracellular maximal relative efficacy (Emax) values of MP1102/NZ2114 towards the three S. aureus strains were >5-log decrease in colony forming units (CFU). In the methicillin-resistant and virulent strains, MP1102/NZ2114 exhibited intracellular bacteriostatic efficacy with an Emax of 0.42–1.07-log CFU reduction. In the MSSA ATCC25923 mouse peritonitis model, 5 mg/kg MP1102/NZ2114 significantly reduced the bacterial load at 24 h, which was superior to vancomycin. In MRSA ATCC43300, their activity was similar to that of vancomycin. The high virulent CVCC546 strain displayed a relatively lower efficiency, with log CFU decreases of 2.88–2.91 (total), 3.41–3.50 (extracellular) and 2.11–2.51 (intracellular) compared with vancomycin (3.70). This suggests that MP1102/NZ2114 can be used as candidates for treating intracellular S. aureus.
Collapse
|
34
|
Gao W, Chen Y, Zhang Y, Zhang Q, Zhang L. Nanoparticle-based local antimicrobial drug delivery. Adv Drug Deliv Rev 2018; 127:46-57. [PMID: 28939377 PMCID: PMC5860926 DOI: 10.1016/j.addr.2017.09.015] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/09/2017] [Accepted: 09/14/2017] [Indexed: 12/16/2022]
Abstract
Despite the wide success of antibiotics in modern medicine, the treatment of bacterial infections still faces critical challenges, especially due to the rapid emergence of antibiotic resistance. As a result, local antimicrobial treatment aimed at enhancing drug concentration at the site of infection while avoiding systemic exposure is becoming increasingly attractive, as it may alleviate resistance development. Meanwhile, therapeutic nanoparticles, especially liposomes, polymeric nanoparticles, dendrimers, and inorganic nanoparticles, are gaining traction to improve the therapeutic efficacy with many applications specifically focused on local antimicrobial treatment. This review highlights topics where nanoparticle-based strategies hold significant potential to advance treatment against local bacterial infections, including (1) promoting antibiotic localization to the pathogen, (2) modulating drug-pathogen interaction against antibiotic resistance, and (3) enabling novel anti-virulence approaches for 'drug-free' antimicrobial activity. In each area, we highlight the innovative antimicrobial strategies tailored for local applications and review the progress made for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Weiwei Gao
- Department of Nanoengineering, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yijie Chen
- Department of Nanoengineering, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yue Zhang
- Department of Nanoengineering, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Qiangzhe Zhang
- Department of Nanoengineering, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of Nanoengineering, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
35
|
Kramer A, Dissemond J, Kim S, Willy C, Mayer D, Papke R, Tuchmann F, Assadian O. Consensus on Wound Antisepsis: Update 2018. Skin Pharmacol Physiol 2017; 31:28-58. [PMID: 29262416 DOI: 10.1159/000481545] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/15/2017] [Indexed: 02/03/2023]
Abstract
Wound antisepsis has undergone a renaissance due to the introduction of highly effective wound-compatible antimicrobial agents and the spread of multidrug-resistant organisms (MDROs). However, a strict indication must be set for the application of these agents. An infected or critically colonized wound must be treated antiseptically. In addition, systemic antibiotic therapy is required in case the infection spreads. If applied preventively, the Wounds-at-Risk Score allows an assessment of the risk for infection and thus appropriateness of the indication. The content of this updated consensus recommendation still largely consists of discussing properties of octenidine dihydrochloride (OCT), polihexanide, and iodophores. The evaluations of hypochlorite, taurolidine, and silver ions have been updated. For critically colonized and infected chronic wounds as well as for burns, polihexanide is classified as the active agent of choice. The combination 0.1% OCT/phenoxyethanol (PE) solution is suitable for acute, contaminated, and traumatic wounds, including MRSA-colonized wounds due to its deep action. For chronic wounds, preparations with 0.05% OCT are preferable. For bite, stab/puncture, and gunshot wounds, polyvinylpyrrolidone (PVP)-iodine is the first choice, while polihexanide and hypochlorite are superior to PVP-iodine for the treatment of contaminated acute and chronic wounds. For the decolonization of wounds colonized or infected with MDROs, the combination of OCT/PE is preferred. For peritoneal rinsing or rinsing of other cavities with a lack of drainage potential as well as the risk of central nervous system exposure, hypochlorite is the superior active agent. Silver-sulfadiazine is classified as dispensable, while dyes, organic mercury compounds, and hydrogen peroxide alone are classified as obsolete. As promising prospects, acetic acid, the combination of negative pressure wound therapy with the instillation of antiseptics (NPWTi), and cold atmospheric plasma are also subjects of this assessment.
Collapse
Affiliation(s)
- Axel Kramer
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang H, Yao C, Qian K, Guo Q, Shu W, Chen P, Song W, Wang Y. Balance of disinfection and cytotoxicity of hydroxypropyltrimethyl ammonium chloride chitosan with polyhexamethylene biguanide at low concentrations. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2017. [DOI: 10.1080/10601325.2017.1381922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Huafu Wang
- Chemistry and Chemical Engineering Department, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, P.R. China
| | - Chen Yao
- Chemistry and Chemical Engineering Department, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, P.R. China
| | - Kun Qian
- Chemistry and Chemical Engineering Department, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, P.R. China
| | - Qing Guo
- Chemistry and Chemical Engineering Department, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, P.R. China
| | - Weixia Shu
- Research and Development Department, Hydron contact lens co., LTD, Danyang, P.R. China
| | - Ping Chen
- Research and Development Department, Hydron contact lens co., LTD, Danyang, P.R. China
| | - Wei Song
- Chemistry and Chemical Engineering Department, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, P.R. China
| | - Yihong Wang
- Chemistry and Chemical Engineering Department, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, P.R. China
| |
Collapse
|
37
|
Huai W, Deng Z, Lin W, Chen Q. Enhanced killing of Escherichia coli using a combination of polyhexamethylene biguanide hydrochloride and 1-bromo-3-chloro-5,5- dimethylimidazolidine-2,4-dione. FEMS Microbiol Lett 2017; 364:4329275. [PMID: 29029044 DOI: 10.1093/femsle/fnx210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 09/29/2017] [Indexed: 11/15/2022] Open
Abstract
The bactericidal activities of polyhexamethylene biguanide hydrochloride (PHMB), 1-bromo-3-chloro-5,5-dimethylimidazolidine-2,4-dione (BCDMH) and the combination of the two (designated as PB) were compared using Escherichia coli as the test organism. PB exhibited strong bactericidal activity: 10 mg/L PHMB combined with 8 mg/L BCDMH resulted in approximately 5.74 log10 reduction (LR), whereas 320 mg/L PHMB or 20 mg/L BCDMH was about 5.53 and 6.56 LR, respectively. Analyses using scanning electron microscopy, flow cytometry and atomic absorption spectroscopy indicated that PB, PHMB and BCDMH disrupted cell membranes and changed membrane structure and permeability, resulting in the leakage of intracellular soluble proteins and ions. PB exerted stronger effects on potassium and magnesium leakage, membrane potential and permeability than BCDMH did. PB caused less protein leakage than PHMB did. These results suggest that at a relatively low concentration, PB exhibited good bactericidal activity and physiological effect on E. coli.
Collapse
Affiliation(s)
- Wan Huai
- School of Life Sciences, Shanghai University, No. 333, Nanchen Road, Shanghai 200444, PR China
| | - Zhirui Deng
- School of Life Sciences, Shanghai University, No. 333, Nanchen Road, Shanghai 200444, PR China
| | - Wenshu Lin
- School of Life Sciences, Shanghai University, No. 333, Nanchen Road, Shanghai 200444, PR China
| | - Qin Chen
- School of Life Sciences, Shanghai University, No. 333, Nanchen Road, Shanghai 200444, PR China
| |
Collapse
|
38
|
Impact of Exposure of Methicillin-Resistant Staphylococcus aureus to Polyhexanide In Vitro and In Vivo. Antimicrob Agents Chemother 2017; 61:AAC.00272-17. [PMID: 28784678 DOI: 10.1128/aac.00272-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/18/2017] [Indexed: 01/13/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) resistant to decolonization agents such as mupirocin and chlorhexidine increases the need for development of alternative decolonization molecules. The absence of reported severe adverse reactions and bacterial resistance to polyhexanide makes it an excellent choice as a topical antiseptic. In the present study, we evaluated the in vitro and in vivo capacity to generate strains with reduced polyhexanide susceptibility and cross-resistance with chlorhexidine and/or antibiotics currently used in clinic. Here we report the in vitro emergence of reduced susceptibility to polyhexanide by prolonged stepwise exposure to low concentrations in broth culture. Reduced susceptibility to polyhexanide was associated with genomic changes in the mprF and purR genes and with concomitant decreased susceptibility to daptomycin and other cell wall-active antibiotics. However, the in vitro emergence of reduced susceptibility to polyhexanide did not result in cross-resistance to chlorhexidine. During in vivo polyhexanide clinical decolonization treatment, neither reduced polyhexanide susceptibility nor chlorhexidine cross-resistance was observed. Together, these observations suggest that polyhexanide could be used safely for decolonization of carriers of chlorhexidine-resistant S. aureus strains; they also highlight the need for careful use of polyhexanide at low antiseptic concentrations.
Collapse
|
39
|
Kamaruzzaman NF, Chong SQY, Edmondson-Brown KM, Ntow-Boahene W, Bardiau M, Good L. Bactericidal and Anti-biofilm Effects of Polyhexamethylene Biguanide in Models of Intracellular and Biofilm of Staphylococcus aureus Isolated from Bovine Mastitis. Front Microbiol 2017; 8:1518. [PMID: 28848527 PMCID: PMC5554503 DOI: 10.3389/fmicb.2017.01518] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/28/2017] [Indexed: 01/19/2023] Open
Abstract
Staphylococcus aureus infection is a common cause of mastitis, reducing milk yield, affecting animal welfare and causing huge economic losses within the dairy industry. In addition to the problem of acquired drug resistance, bacterial invasion into udder cells and the formation of surface biofilms are believed to reduce antibiotic efficacy, leading to treatment failure. Here, we investigated the antimicrobial activities of enrofloxacin, an antibiotic that is commonly used in mastitis therapy and polyhexamethylene biguanide (PHMB), an antimicrobial polymer. The antimicrobial activities were tested against intracellular S. aureus in infected Mac-T cells (host cells). Also, fluorescein-tagged PHMB was used to study PHMB uptake and localization with S. aureus within the infected Mac-T cells. Anti-biofilm activities were tested by treating S. aureus biofilms and measuring effects on biofilm mass in vitro. Enrofloxacin and PHMB at 15 mg/L killed between 42 to 92 and 99.9% of intracellular S. aureus, respectively. PHMB-FITC entered and colocalized with the intracellular S. aureus, suggesting direct interaction of the drug with the bacteria inside the host cells. Enrofloxacin and PHMB at 15 mg/L reduced between 10 to 27% and 28 to 37% of biofilms' mass, respectively. The half-maximal inhibitory concentrations (IC50) obtained from a cytotoxicity assay were 345 ± 91 and 21 ± 2 mg/L for enrofloxacin and PHMB, respectively; therefore, both compounds were tolerated by the host cells at high concentrations. These findings suggest that both antimicrobials are effective against intracellular S. aureus and can disrupt biofilm structures, with PHMB being more potent against intracellular S. aureus, highlighting the potential application of PHMB in mastitis therapy.
Collapse
Affiliation(s)
- Nor F Kamaruzzaman
- Department of Pathology and Pathogen Biology, Royal Veterinary CollegeLondon, United Kingdom
| | - Stacy Q Y Chong
- Department of Pathology and Pathogen Biology, Royal Veterinary CollegeLondon, United Kingdom
| | | | - Winnie Ntow-Boahene
- Department of Pathology and Pathogen Biology, Royal Veterinary CollegeLondon, United Kingdom
| | - Marjorie Bardiau
- Centre for Expertise in the Treatment and Management of Water (CEBEDEAU)Liège, Belgium
| | - Liam Good
- Department of Pathology and Pathogen Biology, Royal Veterinary CollegeLondon, United Kingdom
| |
Collapse
|
40
|
Kamaruzzaman NF, Kendall S, Good L. Targeting the hard to reach: challenges and novel strategies in the treatment of intracellular bacterial infections. Br J Pharmacol 2017; 174:2225-2236. [PMID: 27925153 PMCID: PMC5481648 DOI: 10.1111/bph.13664] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/20/2016] [Accepted: 10/06/2016] [Indexed: 12/22/2022] Open
Abstract
Infectious diseases continue to threaten human and animal health and welfare globally, impacting millions of lives and causing substantial economic loss. The use of antibacterials has been only partially successful in reducing disease impact. Bacterial cells are inherently resilient, and the therapy challenge is increased by the development of antibacterial resistance, the formation of biofilms and the ability of certain clinically important pathogens to invade and localize within host cells. Invasion into host cells provides protection from both antibacterials and the host immune system. Poor delivery of antibacterials into host cells causes inadequate bacterial clearance, resulting in chronic and unresolved infections. In this review, we discuss the challenges associated with existing antibacterial therapies with a focus on intracellular pathogens. We consider the requirements for successful treatment of intracellular infections and novel platforms currently under development. Finally, we discuss novel strategies to improve drug penetration into host cells. As an example, we discuss our recent demonstration that the cell penetrating cationic polymer polyhexamethylene biguanide has antibacterial activity against intracellular Staphylococcus aureus. LINKED ARTICLES This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc.
Collapse
Affiliation(s)
- Nor Fadhilah Kamaruzzaman
- Department of Pathology and Pathogen BiologyRoyal Veterinary College, University of LondonNW10TUUK
- Faculty of Veterinary MedicineUniversiti Malaysia KelantanLocked Bag 36, Pengkalan Chepa16100Kota BharuKelantanMalaysia
| | - Sharon Kendall
- Department of Pathology and Pathogen BiologyRoyal Veterinary College, University of LondonNW10TUUK
| | - Liam Good
- Department of Pathology and Pathogen BiologyRoyal Veterinary College, University of LondonNW10TUUK
| |
Collapse
|
41
|
Zhi Z, Su Y, Xi Y, Tian L, Xu M, Wang Q, Pandidan S, Padidan S, Li P, Huang W. Dual-Functional Polyethylene Glycol-b-polyhexanide Surface Coating with in Vitro and in Vivo Antimicrobial and Antifouling Activities. ACS APPLIED MATERIALS & INTERFACES 2017; 9:10383-10397. [PMID: 28263055 DOI: 10.1021/acsami.6b12979] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In recent years, microbial colonization on the surface of biomedical implants/devices has become a severe threat to human health. Herein, surface-immobilized guanidine derivative block copolymers create an antimicrobial and antifouling dual-functional coating. We report the preparation of an antimicrobial and antifouling block copolymer by the conjugation of polyhexanide (PHMB) with either allyl glycidyl ether or allyloxy polyethylene glycol (APEG; MW 1200 and 2400). The allyl glycidyl ether modified PHMB (A-PHMB) and allyloxy polyethylene glycol1200/2400 modified PHMB (APEG1200/2400-PHMB) copolymers were grafted onto a silicone rubber surface as a bottlebrush-like coating, respectively, using a plasma-UV-assisted surface-initiated polymerization. Both A-PHMB and APEG1200/2400-PHMB coatings exhibited excellent broad-spectrum antimicrobial properties against Gram-negative/positive bacteria and fungi. The APEG2400-PHMB coating displayed an improved antibiofilm as well as antifouling properties and a long reusable cycle, compared with two other coatings, due to its abundant PEG blocks among those copolymers. Also, the APEG2400-PHMB-coated silicone coupons were biocompatible toward mammalian cells, as revealed by in vitro hemocompatibile and cytotoxic assays. An in vivo study showed a significant decline of Escherichia coli colonies with a 5-log reduction, indicating the APEG2400-PHMB coating surface worked effectively in the rodent subcutaneous infection model. This PHMB-based block copolymer coating is believed to be an effective strategy to prevent biomaterial-associated infections.
Collapse
Affiliation(s)
- Zelun Zhi
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , Nanjing 211816, China
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria 3086, Australia
| | - Yajuan Su
- Center for Biomedical Engineering and Regenerative Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an 710049, China
| | - Yuewei Xi
- Center for Biomedical Engineering and Regenerative Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an 710049, China
| | - Liang Tian
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , Nanjing 211816, China
| | - Miao Xu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , Nanjing 211816, China
| | - Qianqian Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , Nanjing 211816, China
| | | | - Sara Padidan
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria 3086, Australia
| | - Peng Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , Nanjing 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , Nanjing 211816, China
| |
Collapse
|
42
|
Zhang Y, Zhang J, Chen W, Angsantikul P, Spiekermann KA, Fang RH, Gao W, Zhang L. Erythrocyte membrane-coated nanogel for combinatorial antivirulence and responsive antimicrobial delivery against Staphylococcus aureus infection. J Control Release 2017; 263:185-191. [PMID: 28087406 DOI: 10.1016/j.jconrel.2017.01.016] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/29/2016] [Accepted: 01/08/2017] [Indexed: 12/30/2022]
Abstract
We reported an erythrocyte membrane-coated nanogel (RBC-nanogel) system with combinatorial antivirulence and responsive antibiotic delivery for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infection. RBC membrane was coated onto the nanogel via a membrane vesicle templated in situ gelation process, whereas the redox-responsiveness was achieved by using a disulfide bond-based crosslinker. We demonstrated that the RBC-nanogels effectively neutralized MRSA-associated toxins in extracellular environment and the toxin neutralization in turn promoted bacterial uptake by macrophages. In intracellular reducing environment, the RBC-nanogels showed an accelerated drug release profile, which resulted in more effective bacterial inhibition. When added to the macrophages infected with intracellular MRSA bacteria, the RBC-nanogels significantly inhibited bacterial growth compared to free antibiotics and non-responsive nanogel counterparts. These results indicate the great potential of the RBC-nanogel system as a new and effective antimicrobial agent against MRSA infection.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Nanoengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jianhua Zhang
- Department of Nanoengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wansong Chen
- Department of Nanoengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Pavimol Angsantikul
- Department of Nanoengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin A Spiekermann
- Department of Nanoengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Department of Nanoengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Weiwei Gao
- Department of Nanoengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of Nanoengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
43
|
Saleh K, Sonesson A, Persson K, Riesbeck K, Schmidtchen A. Can dressings soaked with polyhexanide reduce bacterial loads in full-thickness skin grafting? A randomized controlled trial. J Am Acad Dermatol 2016; 75:1221-1228.e4. [PMID: 27692497 DOI: 10.1016/j.jaad.2016.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/06/2016] [Accepted: 07/10/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Polyhexamethylene biguanide (PHMB)-based antiseptic solutions can reduce bacterial loads in different clinical settings and are believed to lower risk of infections. OBJECTIVE We sought to assess the efficacy of a PHMB-based solution in lowering bacterial loads of full-thickness skin grafting wounds and the risk of surgical site infections (SSIs). METHODS In this double-blinded clinical trial, 40 patients planned for facial full-thickness skin grafting were randomized 1:1 to receive tie-over dressings soaked with either PHMB-based solution or sterile water. Quantitative and qualitative bacterial analysis was performed on all wounds before surgery, at the end of surgery, and 7 days postoperatively. In addition, all patients were screened for nasal colonization of Staphylococcus aureus. RESULTS Analysis of wounds showed no statistically significant difference in bacterial reductions between the groups. The SSI rates were significantly higher in the intervention group (8/20) than in the control group (2/20) (P = .028). Higher postoperative bacterial loads were a common finding in SSIs (P = .011). This was more frequent when S aureus was present postoperatively (P = .034), intraoperatively (P = .03), and in patients with intranasal S aureus colonization (P = .007). LIMITATIONS Assessment of SSIs is largely subjective. In addition, this was a single-center study and the total number of participants was 40. CONCLUSION Soaking tie-over dressings with PHMB solution in full-thickness skin grafting had no effect on postoperative bacterial loads and increased the risk of SSI development. The presence of S aureus intranasally and in wounds preoperatively and postoperatively increased postoperative bacterial loads, which in turn resulted in significantly more SSIs.
Collapse
Affiliation(s)
- Karim Saleh
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Skane University Hospital, Lund, Sweden.
| | - Andreas Sonesson
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Skane University Hospital, Lund, Sweden
| | - Kerstin Persson
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Skane University Hospital, Lund, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Skane University Hospital, Lund, Sweden; LKCMedicine, Nanyang Technological University, Singapore
| |
Collapse
|
44
|
The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes. Sci Rep 2016; 6:23121. [PMID: 26996206 PMCID: PMC4800398 DOI: 10.1038/srep23121] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 02/29/2016] [Indexed: 11/08/2022] Open
Abstract
To combat infection and antimicrobial resistance, it is helpful to elucidate drug mechanism(s) of action. Here we examined how the widely used antimicrobial polyhexamethylene biguanide (PHMB) kills bacteria selectively over host cells. Contrary to the accepted model of microbial membrane disruption by PHMB, we observed cell entry into a range of bacterial species, and treated bacteria displayed cell division arrest and chromosome condensation, suggesting DNA binding as an alternative antimicrobial mechanism. A DNA-level mechanism was confirmed by observations that PHMB formed nanoparticles when mixed with isolated bacterial chromosomal DNA and its effects on growth were suppressed by pairwise combination with the DNA binding ligand Hoechst 33258. PHMB also entered mammalian cells, but was trapped within endosomes and excluded from nuclei. Therefore, PHMB displays differential access to bacterial and mammalian cellular DNA and selectively binds and condenses bacterial chromosomes. Because acquired resistance to PHMB has not been reported, selective chromosome condensation provides an unanticipated paradigm for antimicrobial action that may not succumb to resistance.
Collapse
|