1
|
Hamada Y, Yagi Y. Therapeutic drug monitoring of azole antifungal agents. J Infect Chemother 2025; 31:102535. [PMID: 39374735 DOI: 10.1016/j.jiac.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Deep-seated mycoses are generally opportunistic infections that are difficult to diagnose and treat. They are expected to increase with the spread of advanced medical care and aging populations, thus highlighting the need for safe, effective, and rapid drug-based treatments. Depending on a patient's age, sex, underlying diseases, and immune system status, therapeutic drug monitoring (TDM) may be important for assessing variable pharmacokinetic parameters, as well as preventing drug-drug interactions, adverse events, and breakthrough infections caused by fungal resistance. Azole antifungal agents play an important role in the prevention and treatment of deep-seated fungal infections, with each azoles having its own unique pharmacokinetic properties and specific adverse events. Therefore, it is necessary to use national and international guidelines to build evidence for the expansion of TDM indications. This review focuses on the clinical utility and future perspectives of TDM using azole antifungal agents, in the context of recent evidence in the literature.
Collapse
Affiliation(s)
- Yukihiro Hamada
- Department of Pharmacy, Kochi Medical School Hospital, Nankoku, Kochi, Japan.
| | - Yusuke Yagi
- Department of Pharmacy, Kochi Medical School Hospital, Nankoku, Kochi, Japan; Department of Infection Prevention and Control, Kochi Medical School Hospital, Nankoku, Kochi, Japan
| |
Collapse
|
2
|
Lebreton L, Boyer JC, Lafay-Chebassier C, Hennart B, Baklouti S, Cunat S, Vilquin P, Medard Y, Gautier-Veyret E, Laffitte-Redondo C, Verstuyft C, Ait Tayeb AEK, Haufroid V, Wils J, Lamoureux F, Evrard A, Davaze-Schneider J, Ben-Sassi M, Picard N, Quaranta S, Ayme-Dietrich E. French-Speaking Network of Pharmacogenetics (RNPGx) Recommendations for Clinical Use of Mavacamten. Clin Pharmacol Ther 2025; 117:387-397. [PMID: 39584620 DOI: 10.1002/cpt.3502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024]
Abstract
Mavacamten, the first drug in the class of β-cardiac myosin modulator, is used for the treatment of patients with hypertrophic cardiomyopathy. This orally administered drug demonstrates wide interpatient variability in pharmacokinetics parameters, due in part to variant CYP2C19 alleles. Individuals who are CYP2C19 poor metabolizers have increased exposure and are at increased risk of reduced cardiac hypercontractility. To ensure the safety of all patients, European Medicines Agency recommends CYP2C19 preemptive genotyping, and consecutively, to adapt maintenance and initial mavacamten doses, and to manage drug-drug interactions, according to CYP2C19 phenotype. In this article, we summarize evidence from the literature supporting the association between CYP2C19 phenotype and pharmacological features of mavacamten and provide, beyond biologic guidelines, therapeutic recommendations for the use of mavacamten based on CYP2C19 and CYP3A4/CYP3A5 genotype.
Collapse
Affiliation(s)
- Louis Lebreton
- Département de Biochimie, Hôpital Pellegrin, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Jean-Christophe Boyer
- Laboratoire de Biochimie et Biologie Moléculaire, Carémeau University Hospital, Nîmes, France
| | | | | | - Sarah Baklouti
- Laboratoire de Pharmacocinétique et Toxicologie, Institut Fédératif de Biologie, CHU de Toulouse, Toulouse, France
- INTHERES, Inrae, ENVT, Université de Toulouse, Toulouse, France
| | - Séverine Cunat
- Service d'Hématologie Biologique, CHU de Montpellier, Montpellier, France
| | - Paul Vilquin
- Department of Tumor Genomics and Pharmacology, Université Paris-Cité, INSERM UMR-S 976, Saint-Louis Hospital, AP-HP Paris, Paris, France
| | - Yves Medard
- Department of Tumor Genomics and Pharmacology, Université Paris-Cité, INSERM UMR-S 976, Saint-Louis Hospital, AP-HP Paris, Paris, France
| | | | - Clara Laffitte-Redondo
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
- MOODS Team, INSERM UMR 1018, CESP, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, France
| | - Céline Verstuyft
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
- MOODS Team, INSERM UMR 1018, CESP, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, France
| | - Abd El Kader Ait Tayeb
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
- INSERM UMR-S U1185, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, France
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UClouvain, Brussels, Belgium
- Clinical Chemistry Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Julien Wils
- Department of Pharmacology, UNIROUEN, INSERM U1096, CHU Rouen, Normandie University, Rouen, France
| | - Fabien Lamoureux
- Department of Pharmacology, UNIROUEN, INSERM U1096, CHU Rouen, Normandie University, Rouen, France
| | - Alexandre Evrard
- Institut du Cancer de Montpellier, ICM, Université de Montpellier, IRCM, Inserm U1194, Montpellier, France
- Laboratoire de Biochimie et Biologie Moléculaire, CHU Nîmes-Carémeau, Nîmes, France
| | - Julie Davaze-Schneider
- Département de Biochimie, Hôpital Pellegrin, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Mouna Ben-Sassi
- Department of Clinical Pharmacology, National Centre Chalbi Belkahia of Pharmacovigilance, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Nicolas Picard
- Service de Pharmacologie, Toxicologie et Pharmacovigilance, Centre de Biologie et de Recherche en Santé (CBRS), CHU de Limoges, Limoges, France
| | - Sylvie Quaranta
- Laboratoire de Biologie Moléculaire GENOPé, M2GM/Laboratoire de Pharmacocinétique et Toxicologie, PRISM, Hôpital de la Timone, AP-HM, Marseille, France
| | - Estelle Ayme-Dietrich
- Laboratoire de Pharmacologie et Toxicologie NeuroCardiovasculaire, UR7296, Hopitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
3
|
Li L, Zinger J, Sassen SDT, Juffermans NP, Koch BCP, Endeman H. The relation between inflammatory biomarkers and drug pharmacokinetics in the critically ill patients: a scoping review. Crit Care 2024; 28:376. [PMID: 39563441 PMCID: PMC11577668 DOI: 10.1186/s13054-024-05150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/26/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND The level of inflammation alters drug pharmacokinetics (PK) in critically ill patients. This might compromise treatment efficacy. Understanding the specific effects of inflammation, measured by biomarkers, on drug absorption, distribution, metabolism, and excretion is might help in optimizing dosing strategies. OBJECTIVES This review investigates the relationship between inflammatory biomarkers and PK parameters absorption, distribution, metabolism and excretion (ADME) in critically ill patients, providing insight in the complexity of dosing drugs in critically ill patients. METHOD Following PRISMA guidelines, we conducted a comprehensive search of Medline, Embase, Web of Science, and Cochrane databases (January 1946-November 2023). Studies examining inflammatory biomarkers, PK parameters, or drug exposure in critically ill patients were included. Records were screened by title, abstract, and full text, with any discrepancies resolved through discussion or consultation with a third reviewer. RESULTS Of the 4479 records screened, 31 met our inclusion criteria: 2 on absorption, 7 on distribution, 17 on metabolism, and 6 on excretion. In general, results are only available for a limited number of drugs, and most studies are done only looking at one of the components of ADME. Higher levels of inflammatory biomarkers may increase or decrease drug absorption depending on whether the drug undergoes hepatic first-pass elimination. For drug distribution, inflammation is negatively correlated with drug protein binding capacity, positively correlated with cerebrospinal fluid penetration, and negatively correlated with peritoneal penetration. Metabolizing capacity of most drugs was inversely correlated with inflammatory biomarkers. Regarding excretion, inflammation can lead to reduced drug clearance, except in the neonatal population. CONCLUSION Inflammatory biomarkers can offer valuable information regarding altered PK in critically ill patients. Our findings emphasize the need to consider inflammation-driven PK variability when individualizing drug therapy in this setting, at the same time research is limited to certain drugs and needs further research, also including pharmacodynamics.
Collapse
Affiliation(s)
- Letao Li
- Department of Hospital Pharmacy, Erasmus MC-University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Xinqiao Hospital, Army Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Julia Zinger
- Department of Hospital Pharmacy, Erasmus MC-University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Sebastiaan D T Sassen
- Department of Hospital Pharmacy, Erasmus MC-University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Nicole P Juffermans
- Department of Intensive Care, Erasmus MC-University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus MC-University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Henrik Endeman
- Department of Intensive Care, Erasmus MC-University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
- Department of Intensive Care, OLVG, Oosterpark 9, 1091 AC, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
de Jong LM, Harpal C, Berg DJVD, Hoekstra M, Peter NJ, Rissmann R, Swen JJ, Manson ML. CYP P450 and non-CYP P450 Drug Metabolizing Enzyme Families Exhibit Differential Sensitivities towards Proinflammatory Cytokine Modulation. Drug Metab Dispos 2024; 52:1429-1437. [PMID: 39349298 DOI: 10.1124/dmd.124.001867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/02/2024] Open
Abstract
Compromised hepatic drug metabolism in response to proinflammatory cytokine release is primarily attributed to downregulation of cytochrome P450 (CYP) enzymes. However, whether inflammation also affects other phase I and phase II drug metabolizing enzymes (DMEs), such as the flavin monooxygenases (FMOs), carboxylesterases (CESs), and UDP glucuronosyltransferases (UGTs), remains unclear. This study aimed to decipher the impact of physiologically relevant concentrations of proinflammatory cytokines on expression and activity of phase I and phase II enzymes, to establish a hierarchy of their sensitivity as compared with the CYPs. Hereto, HepaRG cells were exposed to interleukin-6 and interleukin-1β to measure alterations in DME gene expression (24 h) and activity (72 h). Sensitivity of DMEs toward proinflammatory cytokines was evaluated by determining IC50 (potency) and Imax (maximal inhibition) values from the concentration-response curves. Proinflammatory cytokine treatment led to nearly complete downregulation of CYP3A4 (∼98%) but was generally less efficacious at reducing gene expression of the non-CYP DME families. Importantly, FMO, CES, and UGT family members were less sensitive toward interleukin-6 induced inhibition in terms of potency, with IC50 values that were 4.3- to 7.4-fold higher than CYP3A4. Similarly, 18- to 31-fold more interleukin-1β was required to achieve 50% of the maximal downregulation of FMO3, FMO4, CES1, UGT2B4, and UGT2B7 expression. The differential sensitivity persisted at enzyme activity level, highlighting that alterations in DME gene expression during inflammation are predictive for subsequent alterations in enzyme activity. In conclusion, this study has shown that FMOs, CESs, and UGTs enzymes are less impacted by IL-6 and IL-1β treatment as compared with CYP enzymes. SIGNIFICANCE STATEMENT: While the impact of proinflammatory cytokines on CYP expression is well established, their effects on non-CYP phase I and phase II drug metabolism remains underexplored, particularly regarding alterations in drug metabolizing enzyme (DME) activity. This study provides a quantitative understanding of the sensitivity differences to inflammation between DME family members, suggesting that non-CYP DMEs may become more important for the metabolism of drugs during inflammatory conditions due to their lower sensitivity as compared with the CYPs.
Collapse
Affiliation(s)
- Laura M de Jong
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (L.M.J., C.H., D.-J.B., M.H., N.J.P, M.L.M); Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands (J.J.S); Centre for Human Drug Research, Leiden, Netherlands (R.R.); Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (R.R.); Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands (R.R.)
| | - Chandan Harpal
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (L.M.J., C.H., D.-J.B., M.H., N.J.P, M.L.M); Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands (J.J.S); Centre for Human Drug Research, Leiden, Netherlands (R.R.); Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (R.R.); Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands (R.R.)
| | - Dirk-Jan van den Berg
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (L.M.J., C.H., D.-J.B., M.H., N.J.P, M.L.M); Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands (J.J.S); Centre for Human Drug Research, Leiden, Netherlands (R.R.); Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (R.R.); Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands (R.R.)
| | - Menno Hoekstra
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (L.M.J., C.H., D.-J.B., M.H., N.J.P, M.L.M); Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands (J.J.S); Centre for Human Drug Research, Leiden, Netherlands (R.R.); Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (R.R.); Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands (R.R.)
| | - Nienke J Peter
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (L.M.J., C.H., D.-J.B., M.H., N.J.P, M.L.M); Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands (J.J.S); Centre for Human Drug Research, Leiden, Netherlands (R.R.); Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (R.R.); Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands (R.R.)
| | - Robert Rissmann
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (L.M.J., C.H., D.-J.B., M.H., N.J.P, M.L.M); Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands (J.J.S); Centre for Human Drug Research, Leiden, Netherlands (R.R.); Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (R.R.); Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands (R.R.)
| | - Jesse J Swen
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (L.M.J., C.H., D.-J.B., M.H., N.J.P, M.L.M); Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands (J.J.S); Centre for Human Drug Research, Leiden, Netherlands (R.R.); Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (R.R.); Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands (R.R.)
| | - Martijn L Manson
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (L.M.J., C.H., D.-J.B., M.H., N.J.P, M.L.M); Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands (J.J.S); Centre for Human Drug Research, Leiden, Netherlands (R.R.); Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (R.R.); Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands (R.R.)
| |
Collapse
|
5
|
Hu L, Su Y, Tang X, Li Y, Feng J, He G. Therapeutic drug monitoring and safety of voriconazole in patients with liver dysfunction. Antimicrob Agents Chemother 2024; 68:e0112624. [PMID: 39431818 PMCID: PMC11539214 DOI: 10.1128/aac.01126-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/22/2024] [Indexed: 10/22/2024] Open
Abstract
This study aims to describe the distribution characteristics of voriconazole (VRC) plasma trough concentrations (Ctrough) in patients with liver dysfunction, identify factors influencing VRC Ctrough, and provide recommendations for the use of VRC in this population. We retrospectively collected medical records of hospitalized patients with liver dysfunction who used VRC and underwent therapeutic drug monitoring (TDM) at the First Hospital of Changsha. The severity of liver dysfunction was assessed by the Child-Pugh (CP) score. Multiple linear regression was employed to explore factors affecting VRC Ctrough in these patients. A total of 147 Ctrough from 102 patients with liver dysfunction were analyzed. Patients were categorized into a control group (n = 40), CP-A (n = 39), CP-B (n = 11), and CP-C group (n = 12). The initial probability of target attainment of Ctrough was 70.6%, with 6.9% of patients obtaining subtherapeutic Ctrough and 22.5% obtaining supertherapeutic Ctrough. The initial Ctrough in CP-A and B were 5.05 (0.64-9.57) mg/L and 5.37 (0.26-10.01) mg/L, respectively, significantly higher than the control group (P = 0.021 and P = 0.010). The proportion of VRC Ctrough of >5.5 mg/L in CP-A and B was 33.3% and 45.5%, respectively. Multiple linear regression analysis revealed that factors such as age ≥70 years, CP class, C-reactive protein (CRP), and direct bilirubin were significantly related to the initial VRC Ctrough. Among all measurements, patients with severe inflammation (CRP >100 mg/L), aged ≥70 years, and albumin levels of <30 or <25 g/L had significantly higher VRC Ctrough. The treatment success rate of VRC was 69.6% (71 of 102), and the rate of VRC-related adverse drug reactions was 29.4% (30 of 102). The recommended half-maintenance dose may lead to elevated VRC Ctrough in patients with CP-A and CP-B. TDM is essential for patients with advanced age, severe infections, or hypoalbuminemia to prevent excessive VRC trough levels.
Collapse
Affiliation(s)
- Lin Hu
- Department of Pharmacy, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pharmacy, The First Hospital of Changsha, Changsha, Hunan, China
| | - Yuan Su
- Department of Pharmacy, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pharmacy, The First Hospital of Changsha, Changsha, Hunan, China
| | - Xi Tang
- Department of Pharmacy, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pharmacy, The First Hospital of Changsha, Changsha, Hunan, China
| | - Yanfei Li
- Department of Pharmacy, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pharmacy, The First Hospital of Changsha, Changsha, Hunan, China
| | - Jinhui Feng
- Department of Pharmacy, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pharmacy, The First Hospital of Changsha, Changsha, Hunan, China
| | - Gefei He
- Department of Pharmacy, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pharmacy, The First Hospital of Changsha, Changsha, Hunan, China
| |
Collapse
|
6
|
Abdullah-Koolmees H, van den Nieuwendijk JF, Hoope SMKT, de Leeuw DC, Franken LGW, Said MM, Seefat MR, Swart EL, Hendrikse NH, Bartelink IH. Whole Body Physiologically Based Pharmacokinetic Model to Explain A Patient With Drug-Drug Interaction Between Voriconazole and Flucloxacillin. Eur J Drug Metab Pharmacokinet 2024; 49:689-699. [PMID: 39271639 PMCID: PMC11549138 DOI: 10.1007/s13318-024-00916-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND AND OBJECTIVES Voriconazole administered concomitantly with flucloxacillin may result in subtherapeutic plasma concentrations as shown in a patient with Staphylococcus aureus sepsis and a probable pulmonary aspergillosis. After switching our patient to posaconazole, therapeutic concentrations were reached. The aim of this study was to first test our hypothesis that flucloxacillin competes with voriconazole not posaconazole for binding to albumin ex vivo, leading to lower total concentrations in plasma. METHODS A physiologically based pharmacokinetic (PBPK) model was then applied to predict the mechanism of action of the drug-drug interaction (DDI). The model included non-linear hepatic metabolism and the effect of a severe infectious disease on cytochrome P450 (CYP) enzymes activity. RESULTS The unbound voriconazole concentration remained unchanged in plasma after adding flucloxacillin, thereby rejecting our hypothesis of albumin-binding site competition. The PBPK model was able to adequately predict the plasma concentration of both voriconazole and posaconazole over time in healthy volunteers. Upregulation of CYP3A4, CYP2C9, and CYP2C19 through the pregnane X receptor (PXR) gene by flucloxacillin resulted in decreased voriconazole plasma concentrations, reflecting the DDI observations in our patient. Posaconazole metabolism was not affected, or was only limitedly affected, by the changes through the PXR gene, which agrees with the observed plasma concentrations within the target range in our patient. CONCLUSIONS Ex vivo experiments reported that the unbound voriconazole plasma concentration remained unchanged after adding flucloxacillin. The PBPK model describes the potential mechanism driving the drug-drug and drug-disease interaction of voriconazole and flucloxacillin, highlighting the large substantial influence of flucloxacillin on the PXR gene and the influence of infection on voriconazole plasma concentrations, and suggests a more limited effect on other triazoles.
Collapse
Affiliation(s)
- Heshu Abdullah-Koolmees
- Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Julia F van den Nieuwendijk
- Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Simone M K Ten Hoope
- Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - David C de Leeuw
- Department of Haematology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Linda G W Franken
- Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Medhat M Said
- Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Maarten R Seefat
- Department of Haematology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Eleonora L Swart
- Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - N Harry Hendrikse
- Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location VUmc, The Netherlands, Amsterdam
- Cancer Treatment and Quality of Life, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Imke H Bartelink
- Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Zhou JX, Xiong CL, Chang ZS, Yin YC, Su KP, Zhang JH, Wu JC, Sun B. Association of procalcitonin with voriconazole concentrations: a retrospective cohort study. BMC Infect Dis 2024; 24:952. [PMID: 39256640 PMCID: PMC11389108 DOI: 10.1186/s12879-024-09862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
Inflammation is a potential risk factor of voriconazole (VCZ) overdose, procalcitonin (PCT) is reported to act as a diagnostic marker for bacterial infections. However, the association of PCT with VCZ trough serum concentrations (VCZ-Cmin) is not fully clear. Our study aims to investigate the associations between PCT and VCZ-Cmin. In this retrospective cohort study, we collected the clinical data of 147 patients who received VCZ and monitored the VCZ concentration of them in our hospital from August 2017 to August 2021. All patients underwent routine clinical examinations on the day or the day before VCZ administration. General information and clinical symptoms of these patients were recorded. Multivariate liner analysis showed that PCT was significantly associated with VCZ-Cmin (p < 0.001). Overall, it was shown that VCZ-Cmin was significantly increased by 0.32 µg/mL for each fold increment in PCT in crude model. In the minor adjusted model (Model 1, adjustment for sex, age, albumin, direct bi1irubin, WBC) and fully adjusted model (Model 2, adjustment for sex, age, albumin, direct bilirubin, WBC, AST and ALT), VCZ-Cmin was significantly increased by 0.23 µg/mL and 0.21 µg/mL, respectively, for each fold increment in PCT. In conclusion, this research reveals the correlation between PCT and VCZ-Cmin, indicating that PCT has the potential to serve as a valuable biomarker for drug monitoring in the treatment of VCZ.
Collapse
Affiliation(s)
- Ju-Xiang Zhou
- Department of Pharmacy, The Central Hospital of Shaoyang, Shaoyang, 422000, Hunan, China
| | - Chun-Lin Xiong
- Department of Pharmacy, The Central Hospital of Shaoyang, Shaoyang, 422000, Hunan, China
| | - Zao-Shang Chang
- Department of Physiology, Pu Ai Medical School, Shaoyang University, Shaoyang, 422000, Hunan, China
| | - You-Cong Yin
- Department of Pharmacy, The Central Hospital of Shaoyang, Shaoyang, 422000, Hunan, China
| | - Kai-Peng Su
- Department of Physiology, Pu Ai Medical School, Shaoyang University, Shaoyang, 422000, Hunan, China
| | - Ji-Hong Zhang
- Department of Pharmacy, The Central Hospital of Shaoyang, Shaoyang, 422000, Hunan, China.
| | - Ji-Chu Wu
- Department of gerontology, Shaoyang Central Hospital, Shaoyang, 422000, Hunan, China.
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, No. 139, People's Middle Street, Changsha, 410011, China.
| |
Collapse
|
8
|
Ling J, Yang X, Dong L, Jiang Y, Zou S, Hu N. Influence of C-reactive protein on the pharmacokinetics of voriconazole in relation to the CYP2C19 genotype: a population pharmacokinetics analysis. Front Pharmacol 2024; 15:1455721. [PMID: 39228522 PMCID: PMC11368715 DOI: 10.3389/fphar.2024.1455721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
Voriconazole is a broad-spectrum triazole antifungal agent. A number of studies have revealed that the impact of C-reactive protein (CRP) on voriconazole pharmacokinetics was associated with the CYP2C19 phenotype. However, the combined effects of CYP2C19 genetic polymorphisms and inflammation on voriconazole pharmacokinetics have not been considered in previous population pharmacokinetic (PPK) studies, especially in the Chinese population. This study aimed to analyze the impact of inflammation on the pharmacokinetics of voriconazole in patients with different CYP2C19 genotypes and optimize the dosage of administration. Data were obtained retrospectively from adult patients aged ≥16 years who received voriconazole for invasive fungal infections from October 2020 to June 2023. Plasma voriconazole levels were measured via high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). CYP2C19 genotyping was performed using the fluorescence in situ hybridization method. A PPK model was developed using the nonlinear mixed-effect model (NONMEM). The final model was validated using bootstrap, visual predictive check (VPC), and normalized prediction distribution error (NPDE). The Monte Carlo simulation was applied to evaluate and optimize the dosing regimens. A total of 232 voriconazole steady-state trough concentrations from 167 patients were included. A one-compartment model with first order and elimination adequately described the data. The typical clearance (CL) and the volume of distribution (V) of voriconazole were 3.83 L/h and 134 L, respectively. The bioavailability was 96.5%. Covariate analysis indicated that the CL of voriconazole was substantially influenced by age, albumin, gender, CRP, and CYP2C19 genetic variations. The V of voriconazole was significantly associated with body weight. An increase in the CRP concentration significantly decreased voriconazole CL in patients with the CYP2C19 normal metabolizer (NM) and intermediate metabolizer (IM), but it had no significant effect on patients with the CYP2C19 poor metabolizer (PM). The Monte Carlo simulation based on CRP levels indicated that patients with high CRP concentrations required a decreased dose to attain the therapeutic trough concentration and avoid adverse drug reactions in NM and IM patients. These results indicate that CRP affects the pharmacokinetics of voriconazole and is associated with the CYP2C19 phenotype. Clinicians dosing voriconazole should consider the patient's CRP level, especially in CYP2C19 NMs and IMs.
Collapse
Affiliation(s)
| | | | | | | | | | - Nan Hu
- Department of Pharmacy, The First People’s Hospital of Changzhou/The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
9
|
Kim Y, Bae S, Huh KY, Joo JS, Lee J, Song SH, Yu KS, Jang IJ, Oh J. Coadministration of Voriconazole and Rifabutin Can Increase the Risk of Adverse Drug Reactions in Patients with Multiple Infections. Ther Drug Monit 2024:00007691-990000000-00250. [PMID: 39023363 DOI: 10.1097/ftd.0000000000001241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/08/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Coinfection of tuberculosis or nontuberculous mycobacteria and Aspergillus presents a challenge in medication selection because of the pharmacokinetic interactions between rifampin and voriconazole. Some researchers have suggested the use of rifabutin as an alternative to rifampin because of its lower hepatic cytochrome P450 enzyme induction potency despite its contraindication to drug labels. This study presents clinical cases of voriconazole and rifabutin coadministration and their potential risks. METHODS This retrospective study was conducted using clinical data from patients who met the following criteria: (1) admitted to Seoul National University Hospital between July 2014 and August 2023 and (2) concurrently administered rifabutin and voriconazole for more than 5 days. RESULTS Among the 6 patients analyzed, 4 experienced adverse drug reactions (ADRs). Three patients experienced visual and auditory hallucinations, lower extremity numbness, or delirious behavior. Two patients had prolonged the time from the start of the Q wave to the end of the T wave intervals, and 1 had elevated aspartate aminotransferase and alanine aminotransferase levels. In addition, 2 patients experienced severe nausea, poor oral intake, and weight loss. Despite receiving 1.81-fold the recommended voriconazole dosage, a therapeutic concentration (1.0-5.5 mg/L) was not achieved because of cytochrome P450 induction by rifabutin. However, during septic shock, the voriconazole concentration increased by 13.7- to 36-fold. CONCLUSIONS Concurrent use of rifabutin and voriconazole was associated with ADRs, including the time from the start of the Q wave to the end of the T wave prolongation, hallucinations, and severe nausea. Moreover, initially, there was a significant decrease in voriconazole concentrations; however, these concentrations substantially increased during septic shock. Therefore, it is essential to monitor drug concentrations and ADRs during concurrent use of voriconazole and rifabutin.
Collapse
Affiliation(s)
- Yoonjin Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Sungyeun Bae
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Ki Young Huh
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Jong Sun Joo
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jikyo Lee
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; and
| | - Sang Hoon Song
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; and
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - In-Jin Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Jaeseong Oh
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
- Department of Pharmacology, Jeju National University College of Medicine, Jeju, Republic of Korea
- Jeju National University Hospital Clinical Research Institute, Jeju, Republic of Korea
| |
Collapse
|
10
|
Gatti M, Campoli C, Muratore E, Belotti T, Masetti R, Lanari M, Viale P, Pea F. Impact of Inflammatory Burden on Voriconazole Exposure in Oncohematological Pediatric Patients Receiving Antifungal Prophylaxis after Allogeneic HCT. Microorganisms 2024; 12:1388. [PMID: 39065156 PMCID: PMC11278995 DOI: 10.3390/microorganisms12071388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: The impact of inflammation on voriconazole exposure in oncohematological pediatric patients represents a debated issue. We aimed to investigate the impact of serum C-reactive protein (CRP), procalcitonin (PCT), and interleukin-6 (IL-6) levels on voriconazole exposure in oncohematological pediatric patients requiring allogeneic hematopoietic stem cell transplantation (HCT). (2) Methods: Pediatric patients undergoing allogeneic HCT and receiving therapeutic drug monitoring (TDM)-guided voriconazole as primary antifungal prophylaxis between January 2021 and December 2023 were included. The ratio between concentration and dose (C/D) of voriconazole was used as a surrogate marker of total clearance. A receiving operating characteristic curve analysis was performed by using CRP, PCT, or IL-6 values as the test variable and voriconazole C/D ratio > 0.188 or >0.375 (corresponding to a trough concentration value [Cmin] of 3 mg/L normalized to the maintenance dose of 16 mg/kg/day in patients of age < 12 years and of 8 mg/kg/day in those ≥12 years, respectively) as the state variable. Area under the curve (AUC) and 95% confidence interval (CI) were calculated. (3) Results: Overall, 39 patients were included. The median (IQR) voriconazole Cmin was 1.7 (0.7-3.0) mg/L. A CRP value > 8.49 mg/dL (AUC = 0.72; 95%CI 0.68-0.76; p < 0.0001), a PCT value > 2.6 ng/mL (AUC = 0.71; 95%CI 0.63-0.77; p < 0.0001), and an IL-6 value > 27.9 pg/mL (AUC = 0.80; 95%CI 0.71-0.88; p < 0.0001) were significantly associated with voriconazole overexposure. Consistent results were found in patients aged <12 and ≥12 years. (4) Conclusions: A single specific threshold of inflammatory biomarkers may be linked to a significantly higher risk of voriconazole exposure in oncohematological pediatric patients after HCT, irrespective of age. Adopting a TDM-guided strategy could be useful for minimizing the risk of voriconazole overexposure.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (R.M.); (M.L.); (P.V.); (F.P.)
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Caterina Campoli
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Edoardo Muratore
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.M.); (T.B.)
| | - Tamara Belotti
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.M.); (T.B.)
| | - Riccardo Masetti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (R.M.); (M.L.); (P.V.); (F.P.)
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.M.); (T.B.)
| | - Marcello Lanari
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (R.M.); (M.L.); (P.V.); (F.P.)
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (R.M.); (M.L.); (P.V.); (F.P.)
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (R.M.); (M.L.); (P.V.); (F.P.)
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
11
|
Klomp SD, Veringa A, Alffenaar JC, de Boer MGJ, Span LFR, Guchelaar H, Swen JJ. Inflammation altered correlation between CYP2C19 genotype and CYP2C19 activity in patients receiving voriconazole. Clin Transl Sci 2024; 17:e13887. [PMID: 39010708 PMCID: PMC11250525 DOI: 10.1111/cts.13887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
Voriconazole is the cornerstone of the treatment and prevention of fungal infections. While there is a good correlation between CYP2C19 genotype and voriconazole exposure during prophylactic treatment, no correlation was found in patients with invasive aspergillosis. Proinflammatory cytokines result in inhibition of CYP2C19 enzyme activity (and may result in phenoconversion). Here we investigated the relationship between inflammation, CYP2C19 genotype-predicted-phenotype, and CYP2C19 activity in patients receiving voriconazole. Data were obtained from two prospective studies investigating voriconazole treatment (NCT02074462 and NCT00893555). Dose-corrected voriconazole plasma concentration and C-reactive protein (CRP) were used as proxies for CYP2C19 activity and inflammation, respectively. After data extraction and synthesis, data from 39 patients with paired voriconazole and CRP measurements were available. The distribution of CYP2C19 genotype-predicted metabolizer phenotypes was 31% intermediate (IM), 41% normal (NM), and 28% rapid metabolizer (RM). During inflammation, dose-corrected voriconazole levels were increased by 245%, 278%, and 486% for CYP2C19 NMs IMs and RMs, respectively. Patients with moderate or high CRP levels (>50 mg/L) were phenoconverted to a lower metabolizer phenotype irrespective of their CYP2C19 genotype. In a subgroup analysis of eight patients with longitudinal data available with and without inflammation, the pattern of the dose-corrected voriconazole and CRP measurements were similar, with CYP2C19 activity following decreasing or increasing CRP levels. In conclusion, voriconazole plasma concentrations increase during inflammation due to downregulation of CYP2C19 activity. While this effect appears largest for CYP2C19 RMs, no clinically relevant differences were observed between the CYP2C19 genotypes.
Collapse
Affiliation(s)
- Sylvia D. Klomp
- Department of Clinical Pharmacy & ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - Anette Veringa
- Department of Clinical Pharmacy and PharmacologyUniversity Medical Center GroningenGroningenThe Netherlands
- Apotheek, OLVGAmsterdamThe Netherlands
| | - Jan‐Willem C. Alffenaar
- Department of Clinical Pharmacy and PharmacologyUniversity Medical Center GroningenGroningenThe Netherlands
- Faculty of Medicine and HealthSydney School of PharmacySydneyNew South WalesAustralia
- The University of Sydney Institute for Infectious DiseasesSydneyNew South WalesAustralia
- Westmead HospitalSydneyNew South WalesAustralia
| | - Mark G. J. de Boer
- Department of Infectious DiseasesLeiden University Medical CenterLeidenThe Netherlands
| | - Lambert F. R. Span
- Department of HematologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Henk‐Jan Guchelaar
- Department of Clinical Pharmacy & ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jesse J. Swen
- Department of Clinical Pharmacy & ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
12
|
Hu L, Huang J, Li Y, He G. Clinical application of voriconazole in pediatric patients: a systematic review. Ital J Pediatr 2024; 50:113. [PMID: 38853280 PMCID: PMC11163776 DOI: 10.1186/s13052-024-01684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024] Open
Abstract
The purpose of this study was to review the literature on the clinical use of voriconazole (VRC) in pediatric patients. MEDLINE, Embase, PubMed, Web of Science, and Cochrane Library were searched from January 1, 2000, to August 15, 2023 for relevant clinical studies on VRC use in pediatric patients. Data were collected based on inclusion and exclusion criteria, and a systematic review was performed on recent research related to the use of VRC in pediatric patients. This systematic review included a total of 35 observational studies among which there were 16 studies investigating factors influencing VRC plasma trough concentrations (Ctrough) in pediatric patients, 14 studies exploring VRC maintenance doses required to achieve target range of Ctrough, and 11 studies focusing on population pharmacokinetic (PPK) research of VRC in pediatric patients. Our study found that the Ctrough of VRC were influenced by both genetic and non-genetic factors. The optimal dosing of VRC was correlated with age in pediatric patients, and younger children usually required higher VRC doses to achieve target Ctrough compared to older children. Establishing a PPK model for VRC can assist in achieving more precise individualized dosing in children.
Collapse
Affiliation(s)
- Lin Hu
- Department of Pharmacy, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- Department of Pharmacy, The First Hospital of Changsha, Changsha, Hunan, China.
| | - Juanjuan Huang
- Department of Pharmacy, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pharmacy, The First Hospital of Changsha, Changsha, Hunan, China
| | - Yanfei Li
- Department of Pharmacy, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pharmacy, The First Hospital of Changsha, Changsha, Hunan, China
| | - Gefei He
- Department of Pharmacy, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- Department of Pharmacy, The First Hospital of Changsha, Changsha, Hunan, China.
| |
Collapse
|
13
|
Wang Y, Ye Q, Li P, Huang L, Qi Z, Chen W, Zhan Q, Wang C. Renal Replacement Therapy as a New Indicator of Voriconazole Clearance in a Population Pharmacokinetic Analysis of Critically Ill Patients. Pharmaceuticals (Basel) 2024; 17:665. [PMID: 38931333 PMCID: PMC11206427 DOI: 10.3390/ph17060665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
AIMS The pharmacokinetic (PK) profiles of voriconazole in intensive care unit (ICU) patients differ from that in other patients. We aimed to develop a population pharmacokinetic (PopPK) model to evaluate the effects of using extracorporeal membrane oxygenation (ECMO) and continuous renal replacement therapy (CRRT) and those of various biological covariates on the voriconazole PK profile. METHODS Modeling analyses of the PK parameters were conducted using the nonlinear mixed-effects modeling method (NONMEM) with a two-compartment model. Monte Carlo simulations (MCSs) were performed to observe the probability of target attainment (PTA) when receiving CRRT or not under different dosage regimens, different stratifications of quick C-reactive protein (qCRP), and different minimum inhibitory concentration (MIC) ranges. RESULTS A total of 408 critically ill patients with 746 voriconazole concentration-time data points were included in this study. A two-compartment population PK model with qCRP, CRRT, creatinine clearance rate (CLCR), platelets (PLT), and prothrombin time (PT) as fixed effects was developed using the NONMEM. CONCLUSIONS We found that qCRP, CRRT, CLCR, PLT, and PT affected the voriconazole clearance. The most commonly used clinical regimen of 200 mg q12h was sufficient for the most common sensitive pathogens (MIC ≤ 0.25 mg/L), regardless of whether CRRT was performed and the level of qCRP. When the MIC was 0.5 mg/L, 200 mg q12h was insufficient only when the qCRP was <40 mg/L and CRRT was performed. When the MIC was ≥2 mg/L, a dose of 300 mg q12h could not achieve ≥ 90% PTA, necessitating the evaluation of a higher dose.
Collapse
Affiliation(s)
- Yuqiong Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China; (Y.W.); (C.W.)
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (Q.Y.); (L.H.); (Z.Q.)
| | - Qinghua Ye
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (Q.Y.); (L.H.); (Z.Q.)
| | - Pengmei Li
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China;
| | - Linna Huang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (Q.Y.); (L.H.); (Z.Q.)
| | - Zhijiang Qi
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (Q.Y.); (L.H.); (Z.Q.)
| | - Wenqian Chen
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China;
| | - Qingyuan Zhan
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China; (Y.W.); (C.W.)
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (Q.Y.); (L.H.); (Z.Q.)
| | - Chen Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China; (Y.W.); (C.W.)
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (Q.Y.); (L.H.); (Z.Q.)
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
14
|
Teng JM, Qin S, Lu D, Gu Y, Tang SJ, Yan Q, Yao J, Zhang C. Evaluation of CYP2C19 Genetic Variant and Its Lack of Association with Valproic Acid Plasma Concentrations Among Zhuang and Han Schizophrenia Patients in Guangxi. Pharmgenomics Pers Med 2024; 17:225-236. [PMID: 38765788 PMCID: PMC11102100 DOI: 10.2147/pgpm.s457805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/27/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose To investigate the CYP2C19 genotype distribution and allelic frequency among the Zhuang and Han schizophrenic populations in Guangxi, examine the correlation between CYP2C19 genetic variants and standardized blood levels of Valproic Acid (VPA) in schizophrenic patients, and evaluate the effects of age, gender, and Body Mass Index (BMI) on standardized VPA blood concentrations. Patients and Methods Between February and December 2022, 192 Zhuang and Han schizophrenia patients treated with VPA were studied. Steady-state VPA concentrations were determined using homogeneous enzyme immunoassays, and CYP2C19 *1, *2, and *3 loci via q-PCR. CYP2C19 genotype distributions between Zhuang and Han groups in Nanning were compared using chi-square tests and contrasted with other ethnicities. Non-parametric tests analyzed VPA variations, identifying critical factors through multivariate stepwise regression. Results The study identified five CYP2C19 genotypes at the *2 and *3 loci, with the *3/*3 genotype absent in both cohorts. The CYP2C19 distribution in Guangxi Zhuang and Han mirrors, yet diverges significantly from Hui and Kazakh groups. Among 192 subjects, VPA blood levels remained consistent across metabolic types and ages 18-60 but varied significantly by gender. Multivariate analysis revealed gender and BMI as significant factors, overshadowing CYP2C19 genotype and age. Conclusion In Guangxi, CYP2C19 genetic variants in Zhuang and Han schizophrenia patients demonstrate statistically indistinguishable allelic and metabolic distributions. Gender and BMI can influence standardized VPA blood concentrations in schizophrenia patients. However, in our study cohort, the CYP2C19 genotype and age are not the primary determinants of standardized VPA blood levels.
Collapse
Affiliation(s)
- Jun Mei Teng
- Laboratory Department, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Shuiqing Qin
- Department of Science and Education, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Danyu Lu
- Laboratory Department, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Yefa Gu
- Department of Psychiatry, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Shi Jie Tang
- Department of Psychiatry, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Qiong Yan
- Laboratory Department, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Jiawei Yao
- Laboratory Department, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Chao Zhang
- Laboratory Department, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| |
Collapse
|
15
|
Smeets TJL, van der Sijs H, Janssens HM, Ruijgrok EJ, de Winter BCM. Subtherapeutic triazole concentrations as result of a drug-drug interaction with lumacaftor/ivacaftor. J Cyst Fibros 2024; 23:563-565. [PMID: 38281825 DOI: 10.1016/j.jcf.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/27/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Abstract
Lumacaftor/ivacaftor (Orkambi®, LUM/IVA) is indicated for the treatment of cystic fibrosis (CF) patients aged ≥ 2 years with homozygous F580del mutation in the CFTR gene. Triazole fungal agents are used to treat fungal disease in CF. The use of triazoles is limited by pharmacokinetic challenges, such as drug-drug interactions. The most notable drug-drug interaction between triazoles and LUM/IVA is due to strong induction of CYP3A4 and UGT by LUM. In this real-world retrospective observational study, we described the effect of LUM/IVA on the trough concentration of triazoles. Concomitant use of LUM/IVA with itraconazole, posaconazole or voriconazole resulted in subtherapeutic triazole levels in 76% of the plasma samples. In comparison, in patients with triazole agents without LUM/IVA only 30.6% of the plasma samples resulted in subtherapeutic concentrations. Subtherapeutic plasma concentrations of triazoles should be considered in CF patients on LUM/IVA and further research is warranted for other dosing strategies and alternative antifungal therapy.
Collapse
Affiliation(s)
- T J L Smeets
- Department of Hospital Pharmacy, Erasmus MC University Medical Center Rotterdam, PO Box 2040, Rotterdam 3015 GD, the Netherlands
| | - H van der Sijs
- Department of Hospital Pharmacy, Erasmus MC University Medical Center Rotterdam, PO Box 2040, Rotterdam 3015 GD, the Netherlands
| | - H M Janssens
- Department of Pediatric Pulmonology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - E J Ruijgrok
- Department of Hospital Pharmacy, Erasmus MC University Medical Center Rotterdam, PO Box 2040, Rotterdam 3015 GD, the Netherlands
| | - B C M de Winter
- Department of Hospital Pharmacy, Erasmus MC University Medical Center Rotterdam, PO Box 2040, Rotterdam 3015 GD, the Netherlands.
| |
Collapse
|
16
|
Li Y, Zhang Y, Zhao J, Bian J, Zhao Y, Hao X, Liu B, Hu L, Liu F, Yang C, Feng Y, Huang L. Combined impact of hypoalbuminemia and pharmacogenomic variants on voriconazole trough concentration: data from a real-life clinical setting in the Chinese population. J Chemother 2024; 36:179-189. [PMID: 37599449 DOI: 10.1080/1120009x.2023.2247208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/01/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
Voriconazole (VRC) displays highly variable pharmacokinetics impacting treatment efficacy and safety. To provide evidence for optimizing VRC therapy regimens, the authors set out to determine the factors impacting VRC steady-state trough concentration (Cmin) in patients with various albumin (Alb) level. A total of 275 blood samples of 120 patients and their clinical characteristics and genotypes of CYP2C19, CYP3A4, CYP3A5, CYP2C9, FMO3, ABCB1, POR, NR1I2 and NR1I3 were included in this study. Results of multivariate linear regression analysis demonstrated that C-reactive protein (CRP) and total bilirubin (T-Bil) were predictors of the VRC Cmin adjusted for dose in patients with hypoalbuminemia (Alb < 35 g/L) (R2 = 0.16, P < 0.001). Additionally, in patients with normal albumin level (Alb ≥ 35 g/L), it resulted in a significant model containing factors of the poor metabolizer (PM) CYP2C19 genotype and CRP level (R2 = 0.26, P < 0.001). Therefore, CRP and T-Bil levels ought to receive greater consideration than genetic factors in patients with hypoalbuminemia.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ying Zhang
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jinxia Zhao
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jialu Bian
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yinyu Zhao
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xu Hao
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Boyu Liu
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Lei Hu
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Fang Liu
- Department of Mathematics and Physics, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Changqing Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yufei Feng
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Lin Huang
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| |
Collapse
|
17
|
Hinze CA, Fuge J, Grote-Koska D, Brand K, Slevogt H, Cornberg M, Simon S, Joean O, Welte T, Rademacher J. Factors influencing voriconazole plasma level in intensive care patients. JAC Antimicrob Resist 2024; 6:dlae045. [PMID: 38500519 PMCID: PMC10946233 DOI: 10.1093/jacamr/dlae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
Background In clinical routine, voriconazole plasma trough levels (Cmin) out of target range are often observed with little knowledge about predisposing influences. Objectives To determine the distribution and influencing factors on voriconazole blood levels of patients treated on intensive- or intermediate care units (ICU/IMC). Patients and methods Data were collected retrospectively from patients with at least one voriconazole trough plasma level on ICU/IMC (n = 153) to determine the proportion of sub-, supra- or therapeutic plasma levels. Ordinal logistic regression analysis was used to assess factors hindering patients to reach voriconazole target range. Results Of 153 patients, only 71 (46%) reached the target range at the first therapeutic drug monitoring, whereas 66 (43%) patients experienced too-low and 16 (10%) too-high plasma levels. Ordinal logistic regression analysis identified the use of extra corporeal membrane oxygenation (ECMO), low international normalized ratio (INR) and aspartate-aminotransferase (AST) serum levels as predictors for too-low plasma levels. Conclusion Our data highlight an association of ECMO, INR and AST levels with voriconazole plasma levels, which should be considered in the care of critically ill patients to optimize antifungal therapy with voriconazole.
Collapse
Affiliation(s)
| | - Jan Fuge
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Denis Grote-Koska
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Korbinian Brand
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Hortense Slevogt
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Respiratory Infection Dynamics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Centre for Individualized Infection Medicine, Hannover, Germany
- German Center for Infection Research (DZIF), partner-site Hannover-Braunschweig, Hannover, Germany
| | - Susanne Simon
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Hannover, Germany
| | - Oana Joean
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Jessica Rademacher
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
18
|
Hao X, Li Y, Zhang Y, Bian J, Zhao J, Zhao Y, Hu L, Luo X, Yang C, Feng Y, Huang L. Individualized treatment with voriconazole in the Chinese population: Inflammation level as a novel marker for dose optimization. Br J Clin Pharmacol 2024; 90:440-451. [PMID: 37766511 DOI: 10.1111/bcp.15916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023] Open
Abstract
AIMS The aim of this study was to explore the influence and possible mechanisms of pharmacokinetics-related gene polymorphisms, especially CYP2C19 polymorphisms, and non-genetic factors combined with the inflammatory status on the voriconazole (VRC) metabolism of the Chinese population. METHODS Clinical studies were performed by collecting more than one VRC trough concentration and C-reactive protein (CRP) level. A total of 265 blood samples were collected from 120 patients. RESULTS Results of multiple regression analyses demonstrated that CYP2C19 genotypes and albumin (Alb) level remained predictors of Cmin ss/D in patients with no to mild inflammation (R2 = 0.12, P < .001). In addition, in patients with moderate to severe inflammation, it resulted in a significant model containing factors of CRP and total bilirubin (T-Bil) levels (R2 = 0.19, P < .001). In non-clinical studies, 32 rats were divided into control and inflammatory groups, and it was found that the mean residence time (MRT(0-t) ) of VRC in the inflammatory group was significantly longer than that in the control group (P < .001), which may be due to down-regulation of mRNA and protein expression of CYP2C19 (CYP2C6 in rats) through interleukin (IL)-6/signal transducer and activator of transcription (STAT) 3 pathway. CONCLUSIONS Therefore, the effect of CYP2C19 polymorphisms on VRC metabolism may be masked by inflammatory status, which should be of more concern than CYP2C19 polymorphisms in patients with moderate to severe inflammation. Additionally, the impact of Alb and T-Bil on VRC metabolism should not be disregarded.
Collapse
Affiliation(s)
- Xu Hao
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuanyuan Li
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ying Zhang
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jialu Bian
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jinxia Zhao
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yinyu Zhao
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Lei Hu
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Xingxian Luo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Changqing Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yufei Feng
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Lin Huang
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| |
Collapse
|
19
|
Howard A, Reza N, Aston S, Woods B, Gerada A, Buchan I, Hope W, Märtson AG. Antimicrobial treatment imprecision: an outcome-based model to close the data-to-action loop. THE LANCET. INFECTIOUS DISEASES 2024; 24:e47-e58. [PMID: 37660712 DOI: 10.1016/s1473-3099(23)00367-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 09/05/2023]
Abstract
Health-care systems, food supply chains, and society in general are threatened by the inexorable rise of antimicrobial resistance. This threat is driven by many factors, one of which is inappropriate antimicrobial treatment. The ability of policy makers and leaders in health care, public health, regulatory agencies, and research and development to deliver frameworks for appropriate, sustainable antimicrobial treatment is hampered by a scarcity of tangible outcome-based measures of the damage it causes. In this Personal View, a mathematically grounded, outcome-based measure of antimicrobial treatment appropriateness, called imprecision, is proposed. We outline a framework for policy makers and health-care leaders to use this metric to deliver more effective antimicrobial stewardship interventions to future patient pathways. This will be achieved using learning antimicrobial systems built on public and practitioner engagement; solid implementation science; advances in artificial intelligence; and changes to regulation, research, and development. The outcomes of this framework would be more ecologically and organisationally sustainable patterns of antimicrobial development, regulation, and prescribing. We discuss practical, ethical, and regulatory considerations involved in the delivery of novel antimicrobial drug development, and policy and patient pathways built on artificial intelligence-augmented measures of antimicrobial treatment imprecision.
Collapse
Affiliation(s)
- Alex Howard
- Department of Antimicrobial Pharmacodynamics and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Department of Infection and Immunity, Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Royal Liverpool Site, Liverpool, UK.
| | - Nada Reza
- Department of Antimicrobial Pharmacodynamics and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Stephen Aston
- Department of Antimicrobial Pharmacodynamics and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Beth Woods
- Centre for Health Economics, University of York, Heslington, York, UK
| | - Alessandro Gerada
- Department of Antimicrobial Pharmacodynamics and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Department of Infection and Immunity, Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Royal Liverpool Site, Liverpool, UK
| | - Iain Buchan
- Department of Public Health, Policy & Systems, Institute of Population Health, University of Liverpool, Liverpool, UK
| | - William Hope
- Department of Antimicrobial Pharmacodynamics and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Department of Infection and Immunity, Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Royal Liverpool Site, Liverpool, UK
| | - Anne-Grete Märtson
- Department of Antimicrobial Pharmacodynamics and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
20
|
Schoretsanitis G, Strømmen M, Krabseth HM, Helland A, Spigset O. Effects of Sleeve Gastrectomy and Roux-en-Y Gastric Bypass on Escitalopram Pharmacokinetics: A Cohort Study. Ther Drug Monit 2023; 45:805-812. [PMID: 37363832 PMCID: PMC10635340 DOI: 10.1097/ftd.0000000000001114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/03/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Changes in the gastrointestinal physiology after bariatric surgery may affect the pharmacokinetics of medications. Data on the impact of different surgical techniques on the pharmacokinetics of commonly prescribed antidepressants such as escitalopram are limited. METHODS This case-only prospective study investigated escitalopram-treated patients who underwent bariatric surgery at hospitals in Central Norway. Escitalopram concentrations were assessed using serial blood samples obtained during a dose interval of 24 hours preoperatively and at 1, 6, and 12 months, postoperatively. The primary outcomes were changes in the area under the time-concentration curve (AUC 0-24 ) with secondary outcomes, including full pharmacokinetic profiling. We performed repeated-measures analysis of variance for the AUC 0-24 and secondary outcomes. RESULTS Escitalopram-treated obese patients who underwent sleeve gastrectomy (n = 5) and Roux-en-Y gastric bypass (n = 4) were included. Compared with preoperative baseline, dose-adjusted AUC 0-24 values were within ±20% at all time points, postoperatively in the sleeve gastrectomy and oux-en-Y gastric bypass groups, with the largest changes occurring 1 month postoperatively (+14.5 and +17.2%, respectively). No statistically significant changes in any pharmacokinetic variables over time were reported; however, there was a trend toward increased maximum concentrations after surgery ( P = 0.069). CONCLUSIONS Our findings suggest that bariatric surgery has no systematic effect on the pharmacokinetics of escitalopram. However, because of the substantial interindividual variation, therapeutic drug monitoring can be considered to guide postoperative dose adjustments.
Collapse
Affiliation(s)
- Georgios Schoretsanitis
- The Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, New York
- Department of Psychiatry at the Donald and Barbara Zucker School of Medicine at Northwell/Hofstra, Hempstead, New York
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - Magnus Strømmen
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Centre for Obesity Research, Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway; and
| | - Hege-Merete Krabseth
- Department of Clinical Pharmacology, Clinic of Laboratory Medicine, St. Olav University Hospital, Trondheim, Norway
| | - Arne Helland
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical Pharmacology, Clinic of Laboratory Medicine, St. Olav University Hospital, Trondheim, Norway
| | - Olav Spigset
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical Pharmacology, Clinic of Laboratory Medicine, St. Olav University Hospital, Trondheim, Norway
| |
Collapse
|
21
|
Boglione-Kerrien C, Zerrouki S, Le Bot A, Camus C, Marchand T, Bellissant E, Tron C, Verdier MC, Gangneux JP, Lemaitre F. Can we predict the influence of inflammation on voriconazole exposure? An overview. J Antimicrob Chemother 2023; 78:2630-2636. [PMID: 37796931 DOI: 10.1093/jac/dkad293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Voriconazole is a triazole antifungal indicated for invasive fungal infections that exhibits a high degree of inter-individual and intra-individual pharmacokinetic variability. Voriconazole pharmacokinetics is non-linear, making dosage adjustments more difficult. Therapeutic drug monitoring is recommended by measurement of minimum plasma concentrations. Several factors are responsible for the high pharmacokinetic variability of voriconazole: age, feeding (which decreases absorption), liver function, genetic polymorphism of the CYP2C19 gene, drug interactions and inflammation. Invasive fungal infections are indeed very frequently associated with inflammation, which engenders a risk of voriconazole overexposure. Many studies have reviewed this topic in both the adult and paediatric populations, but few studies have focused on the specific point of the prediction, to evaluate the influence of inflammation on voriconazole pharmacokinetics. Predicting the impact of inflammation on voriconazole pharmacokinetics could help optimize antifungal therapy and improve patient management. This review summarizes the existing data on the influence of inflammation on voriconazole pharmacokinetics in adult populations. We also evaluate the role of C-reactive protein, the impact of inflammation on patient metabolic phenotypes, and the tools that can be used to predict the effect of inflammation on voriconazole pharmacokinetics.
Collapse
Affiliation(s)
- Christelle Boglione-Kerrien
- Rennes University Hospital, Department of Biological Pharmacology, 2, rue Henri le Guilloux, F-35000 Rennes, France
| | - Selim Zerrouki
- Rennes University Hospital, Department of Biochemistry, Rennes, France
| | - Audrey Le Bot
- Rennes University Hospital, Department of Infectious Diseases, Rennes, France
| | - Christophe Camus
- Rennes University Hospital, Department of Intensive Care Medicine, Rennes, France
| | - Tony Marchand
- Rennes University Hospital, Department of Clinical Haematology, Rennes, France
| | - Eric Bellissant
- Rennes University Hospital, Department of Biological Pharmacology, 2, rue Henri le Guilloux, F-35000 Rennes, France
- INSERM, CIC-P 1414 Clinical Investigation Centre, Rennes, France
- Rennes University Hospital, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) -UMR_S 1085, F-35000 Rennes, France
| | - Camille Tron
- Rennes University Hospital, Department of Biological Pharmacology, 2, rue Henri le Guilloux, F-35000 Rennes, France
- INSERM, CIC-P 1414 Clinical Investigation Centre, Rennes, France
- Rennes University Hospital, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) -UMR_S 1085, F-35000 Rennes, France
| | - Marie-Clémence Verdier
- Rennes University Hospital, Department of Biological Pharmacology, 2, rue Henri le Guilloux, F-35000 Rennes, France
- INSERM, CIC-P 1414 Clinical Investigation Centre, Rennes, France
- Rennes University Hospital, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) -UMR_S 1085, F-35000 Rennes, France
| | - Jean-Pierre Gangneux
- Rennes University Hospital, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) -UMR_S 1085, F-35000 Rennes, France
- Rennes University Hospital, Department of Parasitology and Mycology, National Reference Centre for Mycoses and Antifungals (LA Asp-C) and European Excellence Centre in Medical Mycology (ECMM EC), Rennes, France
| | - Florian Lemaitre
- Rennes University Hospital, Department of Biological Pharmacology, 2, rue Henri le Guilloux, F-35000 Rennes, France
- INSERM, CIC-P 1414 Clinical Investigation Centre, Rennes, France
- Rennes University Hospital, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) -UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
22
|
Kluwe F, Michelet R, Huisinga W, Zeitlinger M, Mikus G, Kloft C. Towards Model-Informed Precision Dosing of Voriconazole: Challenging Published Voriconazole Nonlinear Mixed-Effects Models with Real-World Clinical Data. Clin Pharmacokinet 2023; 62:1461-1477. [PMID: 37603216 PMCID: PMC10520167 DOI: 10.1007/s40262-023-01274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND AND OBJECTIVES Model-informed precision dosing (MIPD) frequently uses nonlinear mixed-effects (NLME) models to predict and optimize therapy outcomes based on patient characteristics and therapeutic drug monitoring data. MIPD is indicated for compounds with narrow therapeutic range and complex pharmacokinetics (PK), such as voriconazole, a broad-spectrum antifungal drug for prevention and treatment of invasive fungal infections. To provide guidance and recommendations for evidence-based application of MIPD for voriconazole, this work aimed to (i) externally evaluate and compare the predictive performance of a published so-called 'hybrid' model for MIPD (an aggregate model comprising features and prior information from six previously published NLME models) versus two 'standard' NLME models of voriconazole, and (ii) investigate strategies and illustrate the clinical impact of Bayesian forecasting for voriconazole. METHODS A workflow for external evaluation and application of MIPD for voriconazole was implemented. Published voriconazole NLME models were externally evaluated using a comprehensive in-house clinical database comprising nine voriconazole studies and prediction-/simulation-based diagnostics. The NLME models were applied using different Bayesian forecasting strategies to assess the influence of prior observations on model predictivity. RESULTS The overall best predictive performance was obtained using the aggregate model. However, all NLME models showed only modest predictive performance, suggesting that (i) important PK processes were not sufficiently implemented in the structural submodels, (ii) sources of interindividual variability were not entirely captured, and (iii) interoccasion variability was not adequately accounted for. Predictive performance substantially improved by including the most recent voriconazole observations in MIPD. CONCLUSION Our results highlight the potential clinical impact of MIPD for voriconazole and indicate the need for a comprehensive (pre-)clinical database as basis for model development and careful external model evaluation for compounds with complex PK before their successful use in MIPD.
Collapse
Affiliation(s)
- Franziska Kluwe
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
- Graduate Research Training Program PharMetrX, Berlin/Potsdam, Germany
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
| | - Wilhelm Huisinga
- Institute of Mathematics, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Gerd Mikus
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Im Neuenheimer Feld 419, 69120 Heidelberg, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
| |
Collapse
|
23
|
Cheng L, Zhao Y, Liang Z, You X, Jia C, Liu X, Wang Q, Sun F. Prediction of plasma trough concentration of voriconazole in adult patients using machine learning. Eur J Pharm Sci 2023; 188:106506. [PMID: 37356464 DOI: 10.1016/j.ejps.2023.106506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVE Plasma trough concentration of voriconazole (VCZ) was associated with its toxicity and efficacy. However, the nonlinear pharmacokinetic characteristics of VCZ make it difficult to determine the relationship between clinical characteristics and its concentration. We intended to present a machine learning (ML)-based method to predict toxic plasma trough concentration of VCZ (>5 μg/mL). METHODS A single center retrospective study was conducted. Three ML algorithms were used to estimate the concentration in adult patients, including random forest (RF), gradient boosting (GB), and extreme gradient boosting (XGBoost). The importance of variables was recognized by the SHapley Additive exPlanations (SHAP) method. In addition, an external validation set was used to validate the robustness of models. RESULTS A total of 1318 VCZ plasma concentration were included, with 33 variables enrolled in the model. Nine classification models were developed using the RF, GB, and XGBoost algorithms. Most models performed well for both the training set and test set, with an average balanced accuracy (BA) of 0.704 and an average accuracy (ACC) of 0.788. In addition, the average Matthews correlation coefficient value reached 0.484, which indicated the predicted values are meaningful. Based on the average BA and ACC values, the predictive ability of the models can be ranked from best to worst as follows: younger adult models > mixed models > elderly models, and XGBoost models > GBT models > RF models. The SHAP results showed that the top five influencing factors in younger adult patients (<60 years) were albumin, total bile acid (TBA), platelets count, age, and inflammation, while the top five influencing factors in elderly patients were albumin, TBA, aspartate aminotransferase, creatinine, and alanine aminotransferase. Furthermore, the prediction of external validation set for VCZ concentrations verified the high reliability of the models, for the ACC value of 0.822 by the best model. CONCLUSIONS The ML models can be reliable tools for predicting toxic concentration exposure of VCZ. The SHAP results may provide useful guidelines for dosage adjustment of VCZ.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Pharmacy, the First Affiliated Hospital of Army Medical University (Third Military Medical University), Gao Tanyan Street 29#, Sha Pingba, Chongqing 400038, PR China
| | - Yue Zhao
- Department of Pharmacy, the First Affiliated Hospital of Army Medical University (Third Military Medical University), Gao Tanyan Street 29#, Sha Pingba, Chongqing 400038, PR China
| | - Zaiming Liang
- Department of Pharmacy, the First Affiliated Hospital of Army Medical University (Third Military Medical University), Gao Tanyan Street 29#, Sha Pingba, Chongqing 400038, PR China
| | - Xi You
- Department of Pharmacy, the First Affiliated Hospital of Army Medical University (Third Military Medical University), Gao Tanyan Street 29#, Sha Pingba, Chongqing 400038, PR China
| | - Changsheng Jia
- Department of Pharmacy, the First Affiliated Hospital of Army Medical University (Third Military Medical University), Gao Tanyan Street 29#, Sha Pingba, Chongqing 400038, PR China
| | - Xiuying Liu
- Department of Pharmacy, the First Affiliated Hospital of Army Medical University (Third Military Medical University), Gao Tanyan Street 29#, Sha Pingba, Chongqing 400038, PR China
| | - Qian Wang
- Department of Pharmacy, the First Affiliated Hospital of Army Medical University (Third Military Medical University), Gao Tanyan Street 29#, Sha Pingba, Chongqing 400038, PR China.
| | - Fengjun Sun
- Department of Pharmacy, the First Affiliated Hospital of Army Medical University (Third Military Medical University), Gao Tanyan Street 29#, Sha Pingba, Chongqing 400038, PR China.
| |
Collapse
|
24
|
Lin L, Fu X, Hong M. Lower Prealbumin and Higher CRP Increase the Risk of Voriconazole Overexposure and Adverse Reactions. Cureus 2023; 15:e46107. [PMID: 37900477 PMCID: PMC10611983 DOI: 10.7759/cureus.46107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Voriconazole (VRZ) is a commonly used antifungal drug. However, the drug has nonlinear metabolic kinetic characteristics. Many factors can affect the plasma drug concentration, thus affecting the safety and effectiveness of VRZ. OBJECTIVE The aim of this study is to characterize the correlation between prealbumin (PA) or CRP and VRZ overexposure and adverse reactions. METHODS Patients who received VRZ as a treatment and performed therapeutic drug monitoring (TDM) were included. Biomarkers and combined medications were analyzed to find out factors that were related to VRZ trough concentrations (Cmin) and overexposure (Cmin >5.0 mg/L). Receiver operating characteristic (ROC) curves were used to determine the cut-off levels. Patients were divided into three groups according to different PA and CRP levels. Then, the incidence rate of VRZ adverse reactions between groups was analyzed. RESULTS A total of 123 patients were included in the study. PA was negatively correlated, while CRP was positively correlated with VRZ concentrations. Lower PA or higher CRP was related to VRZ overexposure with a cut-off level of 145.5 mg/L and 102.23 mg/L, respectively. Patients in Group 2 (PA <145.5 mg/L and CRP >102.23 mg/L) had an incidence rate of adverse reactions up to 70.27%, while the incidence rates in Group 1 (PA >145.5 mg/L and CRP <102.23 mg/L) and Group 3 (PA <145.5 mg/L and CRP <102.23 mg/L or PA >145.5 mg/L and CRP >102.23 mg/L) were 15.38% and 32.43%, respectively. CONCLUSIONS PA and CRP were both related to VRZ concentrations and overexposure. The risk of VRZ overexposure and adverse reactions significantly increased in patients with PA <145.5 mg/L and CRP >102.23 mg/L at the same time.
Collapse
Affiliation(s)
- Liangmo Lin
- Pharmacy, Hainan General Hospital, Haikou, CHN
| | - Xiangjun Fu
- Hematology, Hainan General Hospital, Haikou, CHN
| | | |
Collapse
|
25
|
Yamamoto T, Ishida M, Kodama N, Saiki Y, Fujiyoshi M, Shimada M. Development of a New Method for Simultaneous Quantitation of Plasma Concentrations of Voriconazole and Voriconazole N-Oxide Using Column-Switching LC-MS/MS and Its Application in Therapeutic Drug Monitoring. Yonago Acta Med 2023; 66:365-374. [PMID: 37621974 PMCID: PMC10444587 DOI: 10.33160/yam.2023.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
Background Voriconazole therapy for fungal infections usually continues for several years and is often administered on an outpatient basis. Maintaining the voriconazole plasma concentration in the therapeutic range is highly important for effective therapy; however, it is difficult to obtain sufficient information to assess the voriconazole concentration in outpatients. Therefore, we developed a method to simultaneously measure the plasma concentrations of voriconazole and its major metabolite, voriconazole N-oxide, to obtain rapid results after outpatient blood collection and before medical consultation and to attain a better understanding of adherence and the drug-drug interactions of voriconazole. Methods Fifty microliters of patient plasma was deproteinized with methanol, injected into the liquid chromatography-tandem mass spectrometry system, and purified using an online column. Separation was achieved on an InertSustain C18 column (2.1 mm id × 50 mm, 2 μm) with a mobile phase of 30:70 (0.1% formic acid in water:methanol) at a flow rate of 0.2 mL/min. Detection was performed using electrospray ionization in positive ion multiple reaction monitoring mode. Results The analysis time was 4 min. The calibration curve was linear, in the range of 0.1 μg/mL to 20 μg/mL for voriconazole and 0.05 μg/mL to 10 μg/mL for voriconazole N-oxide, with a coefficient of determination at R2 > 0.999. Conclusion There is no need to dilute the patient's plasma even if the concentration of voriconazole is near the upper limit of measurement. Furthermore, the short measurement-time could immediately inform physicians of the patient's voriconazole concentration during ambulatory medical care. Simultaneous measurement of voriconazole and voriconazole N-oxide may also be useful for the immediate adjustment of voriconazole dosage in outpatients and would help us to understand adherence or drug-drug interactions in plasma voriconazole concentrations.
Collapse
Affiliation(s)
- Tatsuro Yamamoto
- Department of Pharmacy, Tottori University Hospital, Yonago 683-8504, Japan
| | - Masako Ishida
- Department of Pharmacy, Tottori University Hospital, Yonago 683-8504, Japan
| | - Nao Kodama
- Department of Pharmacy, Tottori University Hospital, Yonago 683-8504, Japan
| | - Yusuke Saiki
- Department of Pharmacy, Tottori University Hospital, Yonago 683-8504, Japan
| | | | - Miki Shimada
- Department of Pharmacy, Tottori University Hospital, Yonago 683-8504, Japan
| |
Collapse
|
26
|
Veringa A, Brüggemann RJ, Alffenaar JWC. In reply to comment on 'Therapeutic drug monitoring-guided treatment versus standard dosing of voriconazole for invasive aspergillosis in haematological patients: a multicenter, prospective, cluster randomised, crossover clinical trial'. Int J Antimicrob Agents 2023; 62:106854. [PMID: 37209957 DOI: 10.1016/j.ijantimicag.2023.106854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Affiliation(s)
- Anette Veringa
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands; Department of Clinical Pharmacy, OLVG, Oosterpark 9, 1091 AC, Amsterdam, the Netherlands.
| | - Roger J Brüggemann
- Department of Pharmacy, Centre of Expertise in Mycology Radboudumc/CWZ and Radboud Institute of Health Science, University of Nijmegen, Radboudumc Nijmegen, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Jan-Willem C Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands; Faculty of Medicine and Health, Sydney Pharmacy School, University of Sydney, Camperdown NSW 2006, Sydney, Australia; Westmead Hospital, Westmead, NSW, 2145, Sydney, Australia
| |
Collapse
|
27
|
Suzuki Y, Naito T, Shibata K, Hosokawa S, Kawakami J. Associations of plasma aprepitant and its N-dealkylated metabolite with cachexia status and clinical responses in head and neck cancer patients. Cancer Chemother Pharmacol 2023; 91:481-490. [PMID: 37140601 DOI: 10.1007/s00280-023-04537-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/23/2023] [Indexed: 05/05/2023]
Abstract
PURPOSE Oral aprepitant has a large interindividual variation in clinical responses in advanced cancer. This study aimed to characterize plasma aprepitant and its N-dealkylated metabolite (ND-AP) based on the cachexia status and clinical responses in head and neck cancer patients. METHODS Fifty-three head and neck cancer patients receiving cisplatin-based chemotherapy with oral aprepitant were enrolled. Plasma concentrations of total and free aprepitant and ND-AP were determined at 24 h after a 3-day aprepitant treatment. The clinical responses to aprepitant and degrees of cachexia status were assessed using a questionnaire and Glasgow Prognostic Score (GPS). RESULTS Serum albumin level was negatively correlated with the plasma concentrations of total and free aprepitant but not ND-AP. The serum albumin level had a negative correlation with the metabolic ratio of aprepitant. The patients with GPS 1 or 2 had higher plasma concentrations of total and free aprepitant than those with GPS 0. No difference was observed in the plasma concentration of ND-AP between the GPS classifications. The plasma interleukin-6 level was higher in patients with GPS 1 or 2 than 0. The absolute plasma concentration of free ND-AP was higher in patients without the delayed nausea, and its concentration to determine the occurrence was 18.9 ng/mL. The occurrence of delayed nausea had no relation with absolute plasma aprepitant. CONCLUSION Cancer patients with a lower serum albumin and progressive cachectic condition had a higher plasma aprepitant level. In contrast, plasma free ND-AP but not aprepitant was related to the antiemetic efficacy of oral aprepitant.
Collapse
Affiliation(s)
- Yusuke Suzuki
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Takafumi Naito
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan.
- Department of Pharmacy, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.
| | - Kaito Shibata
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Seiji Hosokawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Junichi Kawakami
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| |
Collapse
|
28
|
Gatti M, Fornaro G, Pasquini Z, Zanoni A, Bartoletti M, Viale P, Pea F. Impact of Inflammation on Voriconazole Exposure in Critically ill Patients Affected by Probable COVID-19-Associated Pulmonary Aspergillosis. Antibiotics (Basel) 2023; 12:antibiotics12040764. [PMID: 37107125 PMCID: PMC10134964 DOI: 10.3390/antibiotics12040764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
(1) Background: To explore the impact of the degree of inflammation on voriconazole exposure in critically ill patients affected by COVID-associated pulmonary aspergillosis (CAPA); (2) Methods: Critically ill patients receiving TDM-guided voriconazole for the management of proven or probable CAPA between January 2021 and December 2022 were included. The concentration/dose ratio (C/D) was used as a surrogate marker of voriconazole total clearance. A receiving operating characteristic (ROC) curve analysis was performed by using C-reactive protein (CRP) or procalcitonin (PCT) values as the test variable and voriconazole C/D ratio > 0.375 (equivalent to a trough concentration [Cmin] value of 3 mg/L normalized to the maintenance dose of 8 mg/kg/day) as the state variable. Area under the curve (AUC) and 95% confidence interval (CI) were calculated; (3) Results: Overall, 50 patients were included. The median average voriconazole Cmin was 2.47 (1.75-3.33) mg/L. The median (IQR) voriconazole concentration/dose ratio (C/D) was 0.29 (0.14-0.46). A CRP value > 11.46 mg/dL was associated with the achievement of voriconazole Cmin > 3 mg/L, with an AUC of 0.667 (95% CI 0.593-0.735; p < 0.001). A PCT value > 0.3 ng/mL was associated with the attainment of voriconazole Cmin > 3 mg/L (AUC 0.651; 95% CI 0.572-0.725; p = 0.0015). (4) Conclusions: Our findings suggest that in critically ill patients with CAPA, CRP and PCT values above the identified thresholds may cause the downregulation of voriconazole metabolism and favor voriconazole overexposure, leading to potentially toxic concentrations.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giacomo Fornaro
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Zeno Pasquini
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Andrea Zanoni
- Division of Anesthesiology, Department of Anesthesia and Intensive Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Michele Bartoletti
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20089 Milan, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
29
|
Miyakawa-Tanaka K, Suzuki J, Hirasawa Y, Nakamura S, Takeda K, Narumoto O, Matsui H. Positive correlation between voriconazole trough concentrations and C-reactive protein levels in patients with chronic pulmonary aspergillosis: A retrospective cohort study. J Infect Chemother 2023; 29:683-687. [PMID: 36965708 DOI: 10.1016/j.jiac.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023]
Abstract
BACKGROUND Voriconazole (VRCZ) is the first-line treatment for chronic pulmonary aspergillosis (CPA). VRCZ trough concentration monitoring is recommended for adequate therapy because VRCZ concentrations vary widely. However, factors associated with variations in VRCZ concentrations, especially in the same patient at different time points, have not been identified. The objective of this study was to identify factors influencing VRCZ trough concentrations. PATIENTS AND METHODS This single-center retrospective study conducted at our institute between April 2014 and August 2016 included patients with CPA who received VRCZ. Patient trough concentrations were measured more than twice while the patients received the same dose using the same administration route (defined as one series). A step-wise method and multiple regression analysis were used to test the effects of patient characteristics on VRCZ trough concentrations. RESULTS Sixty-nine series in 49 patients were analyzed. VRCZ was administered orally in 59 series, intravenously in 7 series, and by dry syrup in 3 series. The median VRCZ trough concentration and the median variation in VRCZ concentrations were 1.68 and 0.99 μg/ml, respectively. In the simple regression analysis, creatinine, alkaline phosphatase, C-reactive protein (CRP), and creatinine clearance significantly correlated with VRCZ concentrations. Multiple regression analysis demonstrated a significant positive correlation between CRP and VRCZ concentration (P < 0.0001). CONCLUSION In patients with CPA, VRCZ concentration correlated with CRP levels in the same patients receiving the same dose of VRCZ at different time points.
Collapse
Affiliation(s)
- Kazuko Miyakawa-Tanaka
- Center for Pulmonary Disease, National Hospital Organization, Tokyo National Hospital, Tokyo, Japan.
| | - Junko Suzuki
- Center for Pulmonary Disease, National Hospital Organization, Tokyo National Hospital, Tokyo, Japan.
| | - Yasutaka Hirasawa
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| | - Sumie Nakamura
- Center for Pulmonary Disease, National Hospital Organization, Tokyo National Hospital, Tokyo, Japan.
| | - Keita Takeda
- Center for Pulmonary Disease, National Hospital Organization, Tokyo National Hospital, Tokyo, Japan.
| | - Osamu Narumoto
- Center for Pulmonary Disease, National Hospital Organization, Tokyo National Hospital, Tokyo, Japan.
| | - Hirotoshi Matsui
- Center for Pulmonary Disease, National Hospital Organization, Tokyo National Hospital, Tokyo, Japan.
| |
Collapse
|
30
|
Cheng L, Liang Z, Liu F, Lin L, Zhang J, Xie L, Yu M, Sun F. Factors influencing plasma concentration of voriconazole and voriconazole- N-oxide in younger adult and elderly patients. Front Pharmacol 2023; 14:1126580. [PMID: 36860301 PMCID: PMC9969092 DOI: 10.3389/fphar.2023.1126580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Background: Voriconazole (VCZ) metabolism is influenced by many factors. Identifying independent influencing factors helps optimize VCZ dosing regimens and maintain its trough concentration (C0) in the therapeutic window. Methods: We conducted a prospective study investigating independent factors influencing VCZ C0 and the VCZ C0 to VCZ N-oxide concentration ratio (C0/CN) in younger adults and elderly patients. A stepwise multivariate linear regression model, including the IL-6 inflammatory marker, was used. The receiver operating characteristic (ROC) curve analysis was used to evaluate the predictive effect of the indicator. Results: A total of 463 VCZ C0 were analyzed from 304 patients. In younger adult patients, the independent factors that influenced VCZ C0 were the levels of total bile acid (TBA) and glutamic-pyruvic transaminase (ALT) and the use of proton-pump inhibitors. The independent factors influencing VCZ C0/CN were IL-6, age, direct bilirubin, and TBA. The TBA level was positively associated with VCZ C0 (ρ = 0.176, p = 0.019). VCZ C0 increased significantly when the TBA levels were higher than 10 μmol/L (p = 0.027). ROC curve analysis indicated that when the TBA level ≥4.05 μmol/L, the incidence of a VCZ C0 greater than 5 μg/ml (95% CI = 0.54-0.74) (p = 0.007) increased. In elderly patients, the influencing factors of VCZ C0 were DBIL, albumin, and estimated glomerular filtration rate (eGFR). The independent factors that affected VCZ C0/CN were eGFR, ALT, γ-glutamyl transferase, TBA, and platelet count. TBA levels showed a positive association with VCZ C0 (ρ = 0.204, p = 0.006) and C0/CN (ρ = 0.342, p < 0.001). VCZ C0/CN increased significantly when TBA levels were greater than 10 μmol/L (p = 0.025). ROC curve analysis indicated that when the TBA level ≥14.55 μmol/L, the incidence of a VCZ C0 greater than 5 μg/ml (95% CI = 0.52-0.71) (p = 0.048) increased. Conclusion: TBA level may serve as a novel marker for VCZ metabolism. eGFR and platelet count should also be considered when using VCZ, especially in elderly patients.
Collapse
Affiliation(s)
| | | | - Fang Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Third Military Medical University, Chongqing, China
| | - Ling Lin
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Third Military Medical University, Chongqing, China
| | - Jiao Zhang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Third Military Medical University, Chongqing, China
| | - Linli Xie
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Third Military Medical University, Chongqing, China
| | - Mingjie Yu
- *Correspondence: Mingjie Yu, ; Fengjun Sun,
| | | |
Collapse
|
31
|
Voriconazole exposure is influenced by inflammation: A population pharmacokinetic model. Int J Antimicrob Agents 2023; 61:106750. [PMID: 36758777 DOI: 10.1016/j.ijantimicag.2023.106750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Voriconazole is an antifungal drug used for the treatment of invasive fungal infections. Due to highly variable drug exposure, therapeutic drug monitoring (TDM) has been recommended. TDM may be helpful to predict exposure accurately, but covariates, such as severe inflammation, that influence the metabolism of voriconazole have not been included in the population pharmacokinetic (popPK) models suitable for routine TDM. OBJECTIVES To investigate whether the effect of inflammation, reflected by C-reactive protein (CRP), could improve a popPK model that can be applied in clinical care. PATIENTS AND METHODS Data from two previous studies were included in the popPK modelling. PopPK modelling was performed using Edsim++. Different popPK models were compared using Akaike Information Criterion and goodness-of-fit plots. RESULTS In total, 1060 voriconazole serum concentrations from 54 patients were included in this study. The final model was a one-compartment model with non-linear elimination. Only CRP was a significant covariate, and was included in the final model and found to affect the maximum rate of enzyme activity (Vmax). For the final popPK model, the mean volume of distribution was 145 L [coefficient of variation percentage (CV%)=61%], mean Michaelis-Menten constant was 5.7 mg/L (CV%=119%), mean Vmax was 86.4 mg/h (CV%=99%) and mean bioavailability was 0.83 (CV%=143%). Internal validation using bootstrapping resulted in median values close to the population parameter estimates. CONCLUSIONS This one-compartment model with non-linear elimination and CRP as a covariate described the pharmacokinetics of voriconazole adequately.
Collapse
|
32
|
Veringa A, Brüggemann RJ, Span LFR, Biemond BJ, de Boer MGJ, van den Heuvel ER, Klein SK, Kraemer D, Minnema MC, Prakken NHJ, Rijnders BJA, Swen JJ, Verweij PE, Wondergem MJ, Ypma PF, Blijlevens N, Kosterink JGW, van der Werf TS, Alffenaar JWC. Therapeutic drug monitoring-guided treatment versus standard dosing of voriconazole for invasive aspergillosis in haematological patients: a multicentre, prospective, cluster randomised, crossover clinical trial. Int J Antimicrob Agents 2023; 61:106711. [PMID: 36642232 DOI: 10.1016/j.ijantimicag.2023.106711] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/27/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023]
Abstract
OBJECTIVES Voriconazole therapeutic drug monitoring (TDM) is recommended based on retrospective data and limited prospective studies. This study aimed to investigate whether TDM-guided voriconazole treatment is superior to standard treatment for invasive aspergillosis. METHODS A multicentre (n = 10), prospective, cluster randomised, crossover clinical trial was performed in haematological patients aged ≥18 years treated with voriconazole. All patients received standard voriconazole dose at the start of treatment. Blood/serum/plasma was periodically collected after treatment initiation of voriconazole and repeated during treatment in both groups. The TDM group had measured voriconazole concentrations reported back, with dose adjustments made as appropriate, while the non-TDM group had voriconazole concentrations measured only after study completion. The composite primary endpoint included response to treatment and voriconazole treatment discontinuation due to an adverse drug reaction related to voriconazole within 28 days after treatment initiation. RESULTS In total, 189 patients were enrolled in the study. For the composite primary endpoint, 74 patients were included in the non-TDM group and 68 patients in the TDM group. Here, no significant difference was found between both groups (P = 0.678). However, more trough concentrations were found within the generally accepted range of 1-6 mg/L for the TDM group (74.0%) compared with the non-TDM group (64.0%) (P < 0.001). CONCLUSIONS In this trial, TDM-guided dosing of voriconazole did not show improved treatment outcome compared with standard dosing. We believe that these findings should open up the discussion for an approach to voriconazole TDM that includes drug exposure, pathogen susceptibility and host defence. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov registration no. NCT00893555.
Collapse
Affiliation(s)
- Anette Veringa
- Department of Clinical Pharmacy, OLVG, Amsterdam, the Netherlands; Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.
| | - Roger J Brüggemann
- Department of Pharmacy, Centre of Expertise in Mycology Radboudumc/CWZ and Radboud Institute of Health Science, University of Nijmegen, Radboudumc Nijmegen, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Lambert F R Span
- Department of Haematology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Bart J Biemond
- Department of Haematology, Amsterdam University Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Mark G J de Boer
- Department of Infectious Diseases, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Edwin R van den Heuvel
- Department of Mathematics and Computer Science, Eindhoven University of Technology, 5612 AZ, Eindhoven, the Netherlands
| | - Saskia K Klein
- Department of Haematology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands; Department of Haematology, Meander Medical Centre Amersfoort, Maatweg 3, 3813 TZ, Amersfoort, the Netherlands
| | - Doris Kraemer
- Department of Oncology and Haematology, Oldenburg Clinic, Rahel-Straus-Straße 10, 26133, Oldenburg, Germany
| | - Monique C Minnema
- Department of Haematology, University Medical Centre Utrecht, University Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherland
| | - Niek H J Prakken
- Department of Radiology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Bart J A Rijnders
- Department of Internal Medicine and Infectious Diseases, Erasmus University Medical Centre, Doctor Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Paul E Verweij
- Department of Medical Microbiology, Radboudumc Nijmegen, the Netherlands; Centre of Expertise in Mycology Radboudumc/CWZ, Radboud University, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Mariëlle J Wondergem
- Department of Haematology, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Paula F Ypma
- Department of Haematology, Haga Hospital, Els Borst-Eilersplein 275, 2545 AA, The Hague, the Netherlands
| | - Nicole Blijlevens
- Department of Haematology, Radboudumc Nijmegen, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands; Radboud Institute of Health Sciences, Geert Grooteplein Zuid 21, 6525 EZ, Nijmegen, the Netherlands
| | - Jos G W Kosterink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands; Groningen Research Institute of Pharmacy, Pharmacotherapy, Epidemiology & Economics, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Tjip S van der Werf
- Department of Internal Medicine and Department of Pulmonary Diseases and Tuberculosis Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Jan-Willem C Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands; Faculty of Medicine and Health, Sydney Pharmacy School, University of Sydney, Camperdown NSW 2006, Sydney, Australia; Westmead Hospital, Westmead, Sydney, NSW 2145, Australia
| |
Collapse
|
33
|
Boglione-Kerrien C, Morcet J, Scailteux LM, Bénézit F, Camus C, Mear JB, Gangneux JP, Bellissant E, Tron C, Verdier MC, Lemaitre F. Contribution of voriconazole N-oxide plasma concentration measurements to voriconazole therapeutic drug monitoring in patients with invasive fungal infection. Mycoses 2023; 66:396-404. [PMID: 36698317 DOI: 10.1111/myc.13570] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND Voriconazole (VRC), a widely used triazole antifungal, exhibits significant inter- and intra-individual pharmacokinetic variability. The main metabolite voriconazole N-oxide (NOX) can provide information on the patient's drug metabolism capacity. OBJECTIVES Our objectives were to implement routine measurement of NOX concentrations and to describe the metabolic ratio (MR), and the contribution of the MR to VRC therapeutic drug monitoring (TDM) by proposing a suggested dosage-adjustment algorithm. PATIENTS AND METHODS Sixty-one patients treated with VRC were prospectively included in the study, and VRC and NOX levels were assayed by LC-MS/MS. A mixed logistic model on repeated measures was implemented to analyse risk factors for the patient's concentration to be outside the therapeutic range. RESULTS Based on 225 measurements, the median and interquartile range were 2.4 μg/ml (1.2; 4.2), 2.1 μg/ml (1.5; 3.0) and 1.0 (0.6; 1.9) for VRC, NOX and the MR, respectively. VRC Cmin <2 μg/ml were associated with a higher MR during the previous visit. MR values >1.15 and <0.48 were determined to be the best predictors for having a VRC Cmin lower than 2 μg/ml and above 5.5 μg/ml, respectively, at the next visit. CONCLUSIONS Measurement of NOX resulted useful for TDM of patients treated with VRC. The MR using NOX informed interpretation and clinical decision-making and is very interesting for complex patients. VRC phenotyping based on the MR is now performed routinely in our institution. A dosing algorithm has been suggested from these results.
Collapse
Affiliation(s)
| | - Jeff Morcet
- Inserm, CIC-P 1414 Clinical Investigation Centre, Rennes, France
| | - Lucie-Marie Scailteux
- Department of Clinical Pharmacology, Rennes University Hospital, Pharmacovigilance, Pharmacoepidemiology and Drug Information Centre, Rennes, France
| | - François Bénézit
- Department of Infectious Diseases, Rennes University Hospital, Rennes, France
| | - Christophe Camus
- Department of Intensive Care Medicine, Rennes University Hospital, Rennes, France
| | - Jean-Baptiste Mear
- Department of Clinical Haematology, Rennes University Hospital, Rennes, France
| | - Jean-Pierre Gangneux
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Rennes, France
| | - Eric Bellissant
- Department of Biological Pharmacology, CHU Rennes, Rennes, France.,Inserm, CIC-P 1414 Clinical Investigation Centre, Rennes, France
| | - Camille Tron
- Department of Biological Pharmacology, CHU Rennes, Rennes, France.,Inserm, CIC-P 1414 Clinical Investigation Centre, Rennes, France
| | - Marie-Clémence Verdier
- Department of Biological Pharmacology, CHU Rennes, Rennes, France.,Inserm, CIC-P 1414 Clinical Investigation Centre, Rennes, France
| | - Florian Lemaitre
- Department of Biological Pharmacology, CHU Rennes, Rennes, France.,Inserm, CIC-P 1414 Clinical Investigation Centre, Rennes, France
| |
Collapse
|
34
|
Wang T, Miao L, Shao H, Wei X, Yan M, Zuo X, Zhang J, Hai X, Fan G, Wang W, Hu L, Zhou J, Zhao Y, Xie Y, Wang J, Guo S, Jin L, Li H, Liu H, Wang Q, Chen J, Li S, Dong Y. Voriconazole therapeutic drug monitoring and hepatotoxicity in critically ill patients: A nationwide multi-centre retrospective study. Int J Antimicrob Agents 2022; 60:106692. [PMID: 36372345 DOI: 10.1016/j.ijantimicag.2022.106692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/01/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES To characterize trough concentrations (Cmin) of voriconazole and associated hepatotoxicity, and to determine predictors of hepatotoxicity and identify high-risk groups in critically ill patients. METHODS This was a nationwide, multi-centre, retrospective study. Cmin and hepatotoxicity were studied from 2015 to 2020 in 363 critically ill patients who received voriconazole treatment. Logistic regression and classification and regression tree (CART) models were used to identify high-risk patients. RESULTS Large interindividual variability was observed in initial voriconazole Cmin and concentrations ranged from 0.1 mg/L to 18.72 mg/L. Voriconazole-related grade ≥2 hepatotoxicity developed in 101 patients, including 48 patients with grade ≥3 hepatotoxicity. The median time to hepatotoxicity was 3 days (range 1-24 days), and 83.2% of cases of hepatotoxicity occurred within 7 days of voriconazole initiation. Voriconazole Cmin was significantly associated with hepatotoxicity. The CART model showed that significant predictors of grade ≥2 hepatotoxicity were Cmin >3.42 mg/L, concomitant use of trimethoprim-sulfamethoxazole or tigecycline, and septic shock. The model predicted that the incidence of grade ≥2 hepatotoxicity among these high-risk patients was 48.3-63.4%. Significant predictors of grade ≥3 hepatotoxicity were Cmin >6.87 mg/L, concomitant use of at least three hepatotoxic drugs, and septic shock; the predictive incidence among these high-risk patients was 22.7-36.8%. CONCLUSION Higher voriconazole Cmin, septic shock and concomitant use of hepatotoxic drugs were the strongest predictors of hepatotoxicity. Plasma concentrations of voriconazole should be monitored early (as soon as steady state is achieved) to avoid hepatotoxicity.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liyan Miao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Shao
- Department of Pharmacy, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xiaohua Wei
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaocong Zuo
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jun Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xin Hai
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangjun Fan
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Wang
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Linlin Hu
- Department of Pharmacy, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jian Zhou
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yichang Zhao
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yueliang Xie
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jingjing Wang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Sixun Guo
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liu Jin
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China; Department of Pharmacy, Liyang Hospital of Chinese Medicine, Changzhou, China
| | - Hao Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hui Liu
- Department of Biobank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Quanfang Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiaojiao Chen
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Sihan Li
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
35
|
High-Performance Liquid Chromatography for Ultra-Simple Determination of Plasma Voriconazole Concentration. J Fungi (Basel) 2022; 8:jof8101035. [PMID: 36294600 PMCID: PMC9604553 DOI: 10.3390/jof8101035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Voriconazole is an antifungal drug used to treat invasive aspergillosis. Voriconazole exhibits nonlinear behavior and considerable individual variability in its pharmacokinetic profile. Invasive aspergillosis has a poor prognosis, and failure of treatment owing to low voriconazole blood levels is undesirable. Thus, therapeutic drug monitoring (TDM) of voriconazole is recommended. However, plasma voriconazole concentration is rarely measured in hospitals, and the TDM of voriconazole is not widely practiced in Japan. We aimed to develop an ultra-simple method to measure plasma voriconazole concentration. Ten microliters of plasma sample was extracted, and proteins were precipitated using methanol extraction. Voriconazole and ketoconazole (internal standard) were separated using high-performance liquid chromatography. A calibration curve was prepared, which was linear over plasma voriconazole concentrations of 0.125−12.5 µg/mL, with a coefficient of determination of 0.9999. The intra-day and inter-day validation coefficients were 0.9−2.2% and 1.3−6.1%, respectively. The assay accuracy was −4.2% to 1.6%, and recovery was >97.8%. Our ultra-simple, sensitive, and inexpensive high-performance liquid chromatography ultraviolet method to determine plasma voriconazole concentration will help improve the voriconazole TDM implementation rate and contribute to effective and safe voriconazole use.
Collapse
|
36
|
Bolcato L, Thiebaut-Bertrand A, Stanke-Labesque F, Gautier-Veyret E. Variability of Isavuconazole Trough Concentrations during Longitudinal Therapeutic Drug Monitoring. J Clin Med 2022; 11:jcm11195756. [PMID: 36233624 PMCID: PMC9573296 DOI: 10.3390/jcm11195756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Isavuconazole (ISA), a triazole antifungal agent, is licensed for the treatment of invasive aspergillosis and mucormycosis. Therapeutic drug monitoring (TDM) is a cornerstone of treatment efficacy for triazole antifungals due to their pharmacokinetic variability, except for ISA, for which the utility of TDM is still uncertain. We performed a retrospective study that aimed to assess the inter- and intra-individual variability of ISA trough concentrations (Cmin) and to identify the determinants involved in such variability. ISA Cmin measured in adult patients at the Grenoble Alpes University Hospital between January 2018 and August 2020 were retrospectively analyzed. In total, 304 ISA Cmin for 33 patients were analyzed. The median ISA Cmin was 2.8 [25th−75th percentiles: 2.0−3.7] mg/L. The inter- and intra-individual variability was 41.5% and 30.7%, respectively. Multivariate analysis showed independent covariate effects of dose (β = 0.004 ± 3.56 × 10−4, p < 0.001), Aspartate aminotransférase (ASAT) (β = 0.002 ± 5.41 × 10−4, p = 0.002), and protein levels (β = 0.022 ± 0.004, p < 0.001) on ISA Cmin, whereas C reactive protein levels did not show any association. This study, conducted on a large number of ISA Cmin, shows that ISA exposure exhibits variability, explained in part by the ISA dose, and ASAT and protein levels.
Collapse
Affiliation(s)
- Léa Bolcato
- Laboratory of Pharmacology, Pharmacogenetics and Toxicology, Grenoble Alpes University Hospital, 38000 Grenoble, France
| | - Anne Thiebaut-Bertrand
- Clinical Hematology Department, Grenoble Alpes University Hospital, 38000 Grenoble, France
| | - Françoise Stanke-Labesque
- Laboratory of Pharmacology, Pharmacogenetics and Toxicology, Grenoble Alpes University Hospital, 38000 Grenoble, France
- Faculty of Medicine, University Grenoble Alpes, Inserm, U1300, CHU Grenoble Alpes, 38000 Grenoble, France
| | - Elodie Gautier-Veyret
- Laboratory of Pharmacology, Pharmacogenetics and Toxicology, Grenoble Alpes University Hospital, 38000 Grenoble, France
- Faculty of Medicine, University Grenoble Alpes, Inserm, U1300, CHU Grenoble Alpes, 38000 Grenoble, France
- Correspondence: ; Tel.: +33-476-765492; Fax: +33-476-764664
| |
Collapse
|
37
|
Jiang Z, Wei Y, Huang W, Li B, Zhou S, Liao L, Li T, Liang T, Yu X, Li X, Zhou C, Cao C, Liu T. Population pharmacokinetics of voriconazole and initial dosage optimization in patients with talaromycosis. Front Pharmacol 2022; 13:982981. [PMID: 36225581 PMCID: PMC9549404 DOI: 10.3389/fphar.2022.982981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/30/2022] [Indexed: 01/08/2023] Open
Abstract
The high variability and unpredictability of the plasma concentration of voriconazole (VRC) pose a major challenge for clinical administration. The aim of this study was to develop a population pharmacokinetics (PPK) model of VRC and identify the factors influencing VRC PPK in patients with talaromycosis. Medical records and VRC medication history of patients with talaromycosis who were treated with VRC as initial therapy were collected. A total of 233 blood samples from 69 patients were included in the study. A PPK model was developed using the nonlinear mixed-effects models (NONMEM). Monte Carlo simulation was applied to optimize the initial dosage regimens with a therapeutic range of 1.0–5.5 mg/L as the target plasma trough concentration. A one-compartment model with first-order absorption and elimination adequately described the data. The typical voriconazole clearance was 4.34 L/h, the volume of distribution was 97.4 L, the absorption rate constant was set at 1.1 h-1, and the bioavailability was 95.1%. Clearance was found to be significantly associated with C-reactive protein (CRP). CYP2C19 polymorphisms had no effect on voriconazole pharmacokinetic parameters. Monte Carlo simulation based on CRP levels showed that a loading dose of 250 mg/12 h and a maintenance dose of 100 mg/12 h are recommended for patients with CRP ≤ 96 mg/L, whereas a loading dose of 200 mg/12 h and a maintenance dose of 75 mg/12 h are recommended for patients with CRP > 96 mg/L. The average probability of target attainment of the optimal dosage regimen in CRP ≤ 96 mg/L and CRP > 96 mg/L groups were 61.3% and 13.6% higher than with empirical medication, and the proportion of Cmin > 5.5 mg/L decreased by 28.9%. In conclusion, the VRC PPK model for talaromycosis patients shows good robustness and predictive performance, which can provide a reference for the clinical individualization of VRC. Adjusting initial dosage regimens based on CRP may promote the rational use of VRC.
Collapse
Affiliation(s)
- Zhiwen Jiang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Lab of Fungi and Mycosis Research and Prevention, Nanning, China
| | - Yinyi Wei
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weie Huang
- Department of Infectious Diseases, Baise People’s Hospital, Baise, China
| | - Bingkun Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Lab of Fungi and Mycosis Research and Prevention, Nanning, China
| | - Siru Zhou
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liuwei Liao
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Lab of Fungi and Mycosis Research and Prevention, Nanning, China
| | - Tiantian Li
- Guangxi Health Commission Key Lab of Fungi and Mycosis Research and Prevention, Nanning, China
| | - Tianwei Liang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Lab of Fungi and Mycosis Research and Prevention, Nanning, China
| | - Xiaoshu Yu
- Department of Infectious Diseases, Baise People’s Hospital, Baise, China
| | - Xiuying Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Lab of Fungi and Mycosis Research and Prevention, Nanning, China
| | - Changjing Zhou
- Department of Infectious Diseases, Baise People’s Hospital, Baise, China
- *Correspondence: Changjing Zhou, ; Cunwei Cao, ; TaoTao Liu,
| | - Cunwei Cao
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Lab of Fungi and Mycosis Research and Prevention, Nanning, China
- *Correspondence: Changjing Zhou, ; Cunwei Cao, ; TaoTao Liu,
| | - TaoTao Liu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Changjing Zhou, ; Cunwei Cao, ; TaoTao Liu,
| |
Collapse
|
38
|
Impact of cytochrome P450 2C19 polymorphisms on the clinical efficacy and safety of voriconazole: an update systematic review and meta-analysis. Pharmacogenet Genomics 2022; 32:257-267. [PMID: 35947050 DOI: 10.1097/fpc.0000000000000470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To assess the impact of cytochrome P450 (CYP) 2C19 polymorphisms on the clinical efficacy and safety of voriconazole. METHODS We systematically searched PubMed, EMBASE, CENTRAL, ClinicalTrials.gov, and three Chinese databases from their inception to 18 March 2021 using a predefined search algorithm to identify relevant studies. Studies that reported voriconazole-treated patients and information on CYP2C19 polymorphisms were included. The efficacy outcome was success rate. The safety outcomes included overall adverse events, hepatotoxicity, and neurotoxicity. RESULTS A total of 20 studies were included. Intermediate metabolizers (IMs) and poor metabolizers (PMs) were associated with increased success rates compared with normal metabolizers (NMs) [risk ratio (RR), 1.18; 95% confidence interval (CI), 1.03-1.34; I2 = 0%; P = 0.02; RR, 1.28; 95% CI, 1.06-1.54; I2 = 0%; P = 0.01]. PMs were at increased risk of overall adverse events in comparison with NMs and IMs (RR, 2.18; 95% CI, 1.35-3.53; I2 = 0%; P = 0.001; RR, 1.80; 95% CI, 1.23-2.64; I2 = 0%; P = 0.003). PMs demonstrated a trend towards an increased incidence of hepatotoxicity when compared with NMs (RR, 1.60; 95% CI, 0.94-2.74; I2 = 27%; P = 0.08), although there was no statistically significant difference. In addition, there was no significant association between CYP2C19 polymorphisms and neurotoxicity. CONCLUSION IMs and PMs were at a significant higher success rate in comparison with NMs. PMs were significantly associated with an increased incidence of all adverse events compared with NMs and IMs. Researches are expected to further confirm these findings. Additionally, the relationship between hepatotoxicity and CYP2C19 polymorphisms deserves clinical attention.
Collapse
|
39
|
Li X, Lai F, Jiang Z, Li M, Chen Z, Cheng J, Cui H, Wen F. Effects of inflammation on voriconazole levels: a systematic review. Br J Clin Pharmacol 2022; 88:5166-5182. [PMID: 35973037 DOI: 10.1111/bcp.15495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
AIMS This study aimed to review the studies evaluating the effect of the inflammatory state on voriconazole (VRZ) levels. METHODS The study included randomized clinical trials, cohort studies, and case-control studies that focused on the influence of the inflammatory state on VRZ levels. Following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines, relevant articles published until 2021 were searched in several databases, including PubMed, Embase, Web of Science, and the Cochrane Library. RESULTS Twenty studies were included in this review, of which 15 described adult populations, 3 described pediatric populations, and 2 included both adult and pediatric populations. Seventeen studies used C-reactive protein (CRP) as an indicator of inflammation, 6 described a dose-response relationship for the effect of inflammation represented by CRP on VRZ concentrations, and 4 examined the effect of CRP on the metabolic rate of VRZ. CONCLUSIONS Our findings showed that the level of inflammation can significantly affect VRZ levels. However, the effect of inflammation on VRZ concentrations in children is controversial and must be analyzed along with age. Clinicians dosing VRZ should take into account the patient's inflammatory state. The impact of inflammation on genotype-based dosing decisions requires further study to explain the high pharmacokinetic variability of VRZ.
Collapse
Affiliation(s)
- Xuejuan Li
- Shenzhen Children's Hospital of China Medical University, Shenzhen, China.,Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, China
| | - Fangyuan Lai
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, China
| | - Zhaohui Jiang
- Department of Oncology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Meng Li
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, China
| | - Zebin Chen
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, China
| | - Junjie Cheng
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, China
| | - Hao Cui
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, China
| | - Feiqiu Wen
- Shenzhen Children's Hospital of China Medical University, Shenzhen, China
| |
Collapse
|
40
|
Challenges in the Treatment of Invasive Aspergillosis in Immunocompromised Children. Antimicrob Agents Chemother 2022; 66:e0215621. [PMID: 35766509 PMCID: PMC9295552 DOI: 10.1128/aac.02156-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Invasive aspergillosis (IA) is associated with significant morbidity and mortality. Voriconazole remains the drug of choice for the treatment of IA in children; however, the complex kinetics of voriconazole in children make dosing challenging and therapeutic drug monitoring (TDM) essential for treatment success. The overarching goal of this review is to discuss the role of voriconazole, posaconazole, isavuconazole, liposomal amphotericin B, echinocandins, and combination antifungal therapy for the treatment of IA in children. We also provide a detailed discussion of antifungal TDM in children.
Collapse
|
41
|
Smeets TJL, Valkenburg AJ, van der Jagt M, Koch BCP, Endeman H, Gommers DAMPJ, Sassen SDT, Hunfeld NGM. Hyperinflammation Reduces Midazolam Metabolism in Critically Ill Adults with COVID-19. Clin Pharmacokinet 2022; 61:973-983. [PMID: 35397768 PMCID: PMC8994846 DOI: 10.1007/s40262-022-01122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVE Many patients treated for COVID-19 related acute respiratory distress syndrome in the intensive care unit are sedated with the benzodiazepine midazolam. Midazolam undergoes extensive metabolism by CYP3A enzymes, which may be inhibited by hyperinflammation. Therefore, an exaggerated proinflammatory response, as often observed in COVID-19, may decrease midazolam clearance. To develop a population pharmacokinetic model for midazolam in adult intensive care unit patients infected with COVID-19 and to assess the effect of inflammation, reflected by IL-6, on the pharmacokinetics of midazolam. METHODS Midazolam blood samples were collected once a week between March 31 and April 30 2020. Patients were excluded if they concomitantly received CYP3A4 inhibitors, CYP3A4 inducers and/or continuous renal replacement therapy. Midazolam and metabolites were analyzed with an ultra-performance liquid chromatography-tandem mass spectrometry method. A population pharmacokinetic model was developed, using nonlinear mixed effects modelling. IL-6 and CRP, markers of inflammation, were analyzed as covariates. RESULTS The data were described by a one-compartment model for midazolam and the metabolites 1-OH-midazolam and 1-OH-midazolam-glucuronide. The population mean estimate for midazolam clearance was 6.7 L/h (4.8-8.5 L/h). Midazolam clearance was reduced by increased IL-6 and IL-6 explained more of the variability within our patients than CRP. The midazolam clearance was reduced by 24% (6.7-5.1 L/h) when IL-6 increases from population median 116 to 300 pg/mL. CONCLUSIONS Inflammation, reflected by high IL-6, reduces midazolam clearance in critically ill patients with COVID-19. This knowledge may help avoid oversedation, but further research is warranted.
Collapse
Affiliation(s)
- Tim J L Smeets
- Department of Hospital Pharmacy, Erasmus MC University Medical Center Rotterdam, Doctor Molewaterplein 40, PO Box 2040, 3015 GD, Rotterdam, The Netherlands.
| | - Abraham J Valkenburg
- Department of Intensive Care Adults, Erasmus MC University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Mathieu van der Jagt
- Department of Intensive Care Adults, Erasmus MC University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus MC University Medical Center Rotterdam, Doctor Molewaterplein 40, PO Box 2040, 3015 GD, Rotterdam, The Netherlands
| | - Henrik Endeman
- Department of Intensive Care Adults, Erasmus MC University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Diederik A M P J Gommers
- Department of Intensive Care Adults, Erasmus MC University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Sebastian D T Sassen
- Department of Hospital Pharmacy, Erasmus MC University Medical Center Rotterdam, Doctor Molewaterplein 40, PO Box 2040, 3015 GD, Rotterdam, The Netherlands
| | - Nicole G M Hunfeld
- Department of Hospital Pharmacy, Erasmus MC University Medical Center Rotterdam, Doctor Molewaterplein 40, PO Box 2040, 3015 GD, Rotterdam, The Netherlands
- Department of Intensive Care Adults, Erasmus MC University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
42
|
Liang Z, Yu M, Liu Z, Liu F, Jia C, Xiong L, Dai Q, Qin S, Cheng L, Sun F. Inflammation Affects Liver Function and the Metabolism of Voriconazole to Voriconazole-N-Oxide in Adult and Elderly Patients. Front Pharmacol 2022; 13:835871. [PMID: 35462904 PMCID: PMC9019686 DOI: 10.3389/fphar.2022.835871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The inner association of inflammation with voriconazole (VCZ) metabolism has not been fully investigated. We intend to investigate the effects of inflammation on liver function, VCZ trough concentration (C0), C0/dose ratio and the ratio of VCZ to VCZ-N-oxide concentration (C0/CN) in adult and elderly patients. Methods: A single-center retrospective study was conducted among patients who were treated in our hospital between January 2018 and December 2021. For each eligible patient, demographic details, medical history, laboratory parameters, procalcitonin (PCT), C reactive protein (CRP), and interleukin-6 (IL-6) were collected from the medical chart. VCZ CN, TNF-α, IL-1β, IL-8, and IL-10 concentrations were detected in blood samples. Results: A total of 356 patients were included in our study, with 195 patients in the adult cohort (<60 years) and 161 patients in the elderly cohort (≥60 years). In adult patients, CRP and IL-8 levels showed moderate association with VCZ C0/CN ratio (CRP: r = 0.512, p < 0.001; IL-8: r = 0.476, p = 0.002). IL-6 level shallowly associated with VCZ C0/CN ratio both in adult and elderly patients (r = 0.355, p = 0.003; r = 0.386, p = 0.001). A significantly higher VCZ C0, C0/dose ratio and C0/CN ratio was observed in adult patients with severe inflammation compared with patients with moderate inflammation and no to mild inflammation, as reflected by PCT levels (p < 0.05). However, there was no significant difference observed among different inflammation degrees in elderly patients. Lower albumin (AL) and higher total bilirubin (TBIL) were observed along with the degree of inflammation in both adult and elderly patients, as reflected by CRP and PCT levels (p < 0.05). Conclusion: Inflammation may affect the metabolism of VCZ to VCZ-N-oxide both in adult and elderly patients, and decreased plasma AL levels and increased TBIL levels under inflammatory conditions may also alter VCZ metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lin Cheng
- *Correspondence: Lin Cheng, ; Fengjun Sun,
| | | |
Collapse
|
43
|
Aiuchi N, Nakagawa J, Sakuraba H, Takahata T, Kamata K, Saito N, Ueno K, Ishiyama M, Yamagata K, Kayaba H, Niioka T. Impact of polymorphisms of pharmacokinetics-related genes and the inflammatory response on the metabolism of voriconazole. Pharmacol Res Perspect 2022; 10:e00935. [PMID: 35199485 PMCID: PMC8866912 DOI: 10.1002/prp2.935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
The effects of inflammatory responses and polymorphisms of the genes encoding cytochrome P450 (CYP) (CYP2C19 and CYP3A5), flavin-containing monooxygenase 3 (FMO3), pregnane X receptor (NR1I2), constitutive androstane receptor (NR1I3), and CYP oxidoreductase (POR) on the ratio of voriconazole (VRCZ) N-oxide to VRCZ (VNO/VRCZ) and steady-state trough concentrations (C0h ) of VRCZ were investigated. A total of 56 blood samples were collected from 36 Japanese patients. Results of multiple linear regression analyses demonstrated that the presence of the extensive metabolizer CYP2C19 genotype, the dose per administration, and the presence of the NR1I2 rs3814057 C/C genotype were independent factors influencing the VNO/VRCZ ratio in patients with CRP levels of less than 40 mg/L (standardized regression coefficients (SRC) = 0.448, -0.301, and 0.390, respectively; all p < .05). With regard to the concentration of VRCZ itself, in addition to the above factors, the presence of the NR1I2 rs7643645 G/G and rs3814055 T/T genotypes were found to be independent factors influencing the VRCZ C0h in these patients (SRC = -0.430, 0.424, -0.326, 0.406 and -0.455, respectively; all p < .05). On the contrary, in patients with CRP levels of at least 40 mg/L, no independent factors were found to affect VNO/VRCZ and VRCZ C0h . Inflammatory responses, and CYP2C19 and NR1I2 polymorphisms may be useful information for the individualization of VRCZ dosages.
Collapse
Affiliation(s)
- Naoya Aiuchi
- Department of PharmacyHirosaki University HospitalHirosakiAomoriJapan
| | - Junichi Nakagawa
- Department of PharmacyHirosaki University HospitalHirosakiAomoriJapan
| | - Hirotake Sakuraba
- Department of Gastroenterology and HematologyHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| | - Takenori Takahata
- Department of Gastroenterology and HematologyHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| | - Kosuke Kamata
- Department of Gastroenterology and HematologyHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| | - Norihiro Saito
- Department of Clinical Laboratory MedicineHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| | - Kayo Ueno
- Department of PharmacyHirosaki University HospitalHirosakiAomoriJapan
| | - Masahiro Ishiyama
- Department of Clinical LaboratoryHirosaki University HospitalHirosakiAomoriJapan
| | - Kazufumi Yamagata
- Department of Bioscience and Laboratory MedicineHirosaki University Graduate School of Health SciencesHirosakiJapan
| | - Hiroyuki Kayaba
- Department of Clinical Laboratory MedicineHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| | - Takenori Niioka
- Department of PharmacyHirosaki University HospitalHirosakiAomoriJapan
- Department of Pharmaceutical ScienceHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| |
Collapse
|
44
|
Kably B, Launay M, Derobertmasure A, Lefeuvre S, Dannaoui E, Billaud EM. Antifungal Drugs TDM: Trends and Update. Ther Drug Monit 2022; 44:166-197. [PMID: 34923544 DOI: 10.1097/ftd.0000000000000952] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE The increasing burden of invasive fungal infections results in growing challenges to antifungal (AF) therapeutic drug monitoring (TDM). This review aims to provide an overview of recent advances in AF TDM. METHODS We conducted a PubMed search for articles during 2016-2020 using "TDM" or "pharmacokinetics" or "drug-drug-interaction" with "antifungal," consolidated for each AF. Selection was limited to English language articles with human data on drug exposure. RESULTS More than 1000 articles matched the search terms. We selected 566 publications. The latest findings tend to confirm previous observations in real-life clinical settings. The pharmacokinetic variability related to special populations is not specific but must be considered. AF benefit-to-risk ratio, drug-drug interaction (DDI) profiles, and minimal inhibitory concentrations for pathogens must be known to manage at-risk situations and patients. Itraconazole has replaced ketoconazole in healthy volunteers DDI studies. Physiologically based pharmacokinetic modeling is widely used to assess metabolic azole DDI. AF prophylactic use was studied more for Aspergillus spp. and Mucorales in oncohematology and solid organ transplantation than for Candida (already studied). Emergence of central nervous system infection and severe infections in immunocompetent individuals both merit special attention. TDM is more challenging for azoles than amphotericin B and echinocandins. Fewer TDM requirements exist for fluconazole and isavuconazole (ISZ); however, ISZ is frequently used in clinical situations in which TDM is recommended. Voriconazole remains the most challenging of the AF, with toxicity limiting high-dose treatments. Moreover, alternative treatments (posaconazole tablets, ISZ) are now available. CONCLUSIONS TDM seems to be crucial for curative and/or long-term maintenance treatment in highly variable patients. TDM poses fewer cost issues than the drugs themselves or subsequent treatment issues. The integration of clinical pharmacology into multidisciplinary management is now increasingly seen as a part of patient care.
Collapse
Affiliation(s)
- Benjamin Kably
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Européen Georges Pompidou, AP-HP Centre
- Faculté de Médecine, Université de Paris, Paris, France
| | - Manon Launay
- Laboratoire de Pharmacologie-Toxicologie-Gaz du sang, Hôpital Nord-CHU Saint Etienne, Saint-Etienne
| | - Audrey Derobertmasure
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Européen Georges Pompidou, AP-HP Centre
| | - Sandrine Lefeuvre
- Laboratoire de Toxicologie et Pharmacocinétique, CHU de Poitiers, Poitiers; and
| | - Eric Dannaoui
- Faculté de Médecine, Université de Paris, Paris, France
- Unité de Parasitologie-Mycologie, Laboratoire de Microbiologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Eliane M Billaud
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Européen Georges Pompidou, AP-HP Centre
- Faculté de Médecine, Université de Paris, Paris, France
| |
Collapse
|
45
|
Kim HY, Byashalira KC, Heysell SK, Märtson AG, Mpagama SG, Rao P, Sturkenboom MG, Alffenaar JWC. Therapeutic Drug Monitoring of Anti-infective Drugs: Implementation Strategies for 3 Different Scenarios. Ther Drug Monit 2022; 44:3-10. [PMID: 34686647 PMCID: PMC8755585 DOI: 10.1097/ftd.0000000000000936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/14/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Therapeutic drug monitoring (TDM) supports personalized treatment. For successful implementation, TDM must have a turnaround time suited to the clinical needs of patients and their health care settings. Here, the authors share their views of how a TDM strategy can be tailored to specific settings and patient groups. METHODS The authors selected distinct scenarios for TDM: high-risk, complex, and/or critically ill patient population; outpatients; and settings with limited laboratory resources. In addition to the TDM scenario approach, they explored potential issues with the legal framework governing dose escalation. RESULTS The most important issues identified in the different scenarios are that critically ill patients require rapid turnaround time, outpatients require an easy sampling procedure for the sample matrix and sample collection times, settings with limited laboratory resources necessitate setting-specific analytic techniques, and all scenarios warrant a legal framework to capture the use of escalated dosages, ideally with the use of trackable dosing software. CONCLUSIONS To benefit patients, TDM strategies need to be tailored to the intended population. Strategies can be adapted for rapid turnaround time for critically ill patients, convenient sampling for outpatients, and feasibility for those in settings with limited laboratory resources.
Collapse
Affiliation(s)
- Hannah Yejin Kim
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
- Westmead Hospital, Sydney, NSW 2145, Australia
- Marie Bashir Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
| | | | - Scott K. Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Virginia, USA
| | - Anne-Grete Märtson
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands
| | | | - Prakruti Rao
- Division of Infectious Diseases and International Health, University of Virginia, Virginia, USA
| | - Marieke G.G. Sturkenboom
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands
| | - Jan-Willem C. Alffenaar
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
- Westmead Hospital, Sydney, NSW 2145, Australia
- Marie Bashir Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
46
|
Chen J, Wu Y, He Y, Feng X, Ren Y, Liu S. Combined Effect of CYP2C19 Genetic Polymorphisms and C-Reactive Protein on Voriconazole Exposure and Dosing in Immunocompromised Children. Front Pediatr 2022; 10:846411. [PMID: 35386257 PMCID: PMC8978631 DOI: 10.3389/fped.2022.846411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/09/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Pediatric patients have significant interindividual variability in voriconazole exposure. The aim of the study was to identify factors associated with voriconazole concentrations and dose requirements to achieve therapeutic concentrations in pediatric patients. METHODS Medical records of pediatric patients were retrospectively reviewed. Covariates associated with voriconazole plasma concentrations and dose requirements were adjusted by using generalized linear mixed-effect models. RESULTS A total of 682 voriconazole steady-state trough concentrations from 91 Chinese pediatric patients were included. Voriconazole exposure was lower in the CYP2C19 normal metabolizer (NM) group compared with the intermediate metabolizer (IM) group and the poor metabolizer (PM) group (p = 0.0016, p < 0.0001). The median daily dose of voriconazole required to achieve therapeutic range demonstrated a significant phenotypic dose effect: 20.8 mg/kg (range, 16.2-26.8 mg/kg) for the CYP2C19 NM group, 18.2 mg/kg (range, 13.3-21.8 mg/kg) for the CYP2C19 IM group, and 15.2 mg/kg (range, 10.7-19.1 mg/kg) for the CYP2C19 PM group, respectively. The extent of impact of C-reactive protein (CRP) levels on voriconazole trough concentrations and dose requirements varied between CYP2C19 phenotypes. Increases of 20, 120, 245, and 395 mg/L from 5 mg/L in CRP levels were associated with increases in voriconazole trough concentration by 22.22, 50, 64.81, and 75% respectively, in the NM group; by 39.26, 94.48, 123.93, and 146.63%, respectively, in the IM group; and by 17.17, 37.34, 46.78, and 53.65%, respectively, in the PM group. Meanwhile, increases of 20, 120, 245, and 395 mg/L from 5 mg/L in CRP levels were associated with increases in voriconazole dose requirements by 7.15, 14.23, 17.35, and 19.43%, respectively, in the PM group; with decreases in voriconazole dose requirements by 3.71, 7.38, 8.97, and 10.03%, respectively, in the NM group; and with decreases by 4, 9.10, 11.05, and 12.35%, respectively, in the IM group. In addition, age and presence of immunosuppressants had significant effects on voriconazole exposure. CONCLUSIONS Our study suggests that CYP2C19 phenotypes, CRP concentrations, age, and the presence of immunosuppressants were factors associated with the pharmacokinetic changes in voriconazole. There was heterogeneity in the effect of CRP on voriconazole plasma concentrations across different CYP2C19 genotypes. Combining relevant factors with dose adaptation strategies in therapeutic drug monitoring may help to reduce the incidence of subtherapeutic and supratherapeutic concentrations in clinical practice.
Collapse
Affiliation(s)
- Juan Chen
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Wu
- Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuelin He
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoqin Feng
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuqiong Ren
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shiting Liu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
47
|
Gatti M, Pea F. The Cytokine Release Syndrome and/or the Proinflammatory Cytokines as Underlying Mechanisms of Downregulation of Drug Metabolism and Drug Transport: A Systematic Review of the Clinical Pharmacokinetics of Victim Drugs of this Drug-Disease Interaction Under Different Clinical Conditions. Clin Pharmacokinet 2022; 61:1519-1544. [PMID: 36059001 PMCID: PMC9441320 DOI: 10.1007/s40262-022-01173-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND OBJECTIVE An ever-growing body of evidence supports the impact of cytokine modulation on the patient's phenotypic drug response. The aim of this systematic review was to analyze the clinical studies that assessed the pharmacokinetics of victim drugs of this drug-disease interaction in the presence of different scenarios of cytokine modulation in comparison with baseline conditions. METHODS We conducted a systematic review by searching the PubMed-MEDLINE database from inception until February 2022 to retrieve prospective and/or retrospective observational studies, population pharmacokinetic studies, phase I studies, and/or case series/reports that investigated the impact of cytokine modulation on the pharmacokinetic behavior of victim drugs. Only studies providing quantitative pharmacokinetic data of victim drugs by comparing normal status versus clinical conditions with documented cytokine modulation or by assessing the influence of anti-inflammatory biological agents on metabolism and/or transport of victim drugs were included. RESULTS Overall, 26 studies were included. Rheumatoid arthritis (6/26; 23.1%) and sepsis (5/26; 19.2%) were the two most frequently investigated pro-inflammatory clinical scenarios. The victim drug most frequently assessed was midazolam (14/26; 53.8%; as a probe for cytochrome P450 [CYP] 3A4). Cytokine modulation showed a moderate inhibitory effect on CYP3A4-mediated metabolism (area under the concentration-time curve increase and/or clearance decrease between 1.98-fold and 2.59-fold) and a weak-to-moderate inhibitory effect on CYP1A2, CYP2C9, and CYP2C19-mediated metabolism (in the area under the concentration-time curve increase or clearance decrease between 1.29-fold and 1.97-fold). Anti-interleukin-6 agents showed remarkable activity in counteracting downregulation of CYP3A4-mediated activity (increase in the area under the concentration-time curve between 1.75-fold and 2.56-fold). CONCLUSIONS Cytokine modulation may cause moderate or weak-to-moderate downregulation of metabolism/transport of victim drugs, and this may theoretically have relevant clinical consequences.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy ,Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy ,Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| |
Collapse
|
48
|
Maeda Y, Tanaka R, Tatsuta R, Takano K, Hashimoto T, Ogata M, Hiramatsu K, Itoh H. Impact of Inflammation on Intra-individual Variation in Trough Voriconazole Concentration in Patients with Hematological Malignancies. Biol Pharm Bull 2022; 45:1084-1090. [PMID: 35908890 DOI: 10.1248/bpb.b22-00097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The pharmacokinetics of voriconazole shows large intra-individual and inter-individual variability and is affected by various factors. Recently, inflammation has been focused as a significant factor affecting the variability. This study aimed to compare the influence of C-reactive protein (CRP) and other clinical laboratory parameters on intra-individual variability in trough voriconazole concentration and examine the impact of inflammation in patients with hematological malignancies. We conducted a retrospective, single-center, observational cohort study. Forty-two patients with hematological malignancy who received oral voriconazole for prophylaxis against deep mycosis and underwent multiple measurements of trough plasma voriconazole concentration were recruited. Quantitative changes in pharmacological and clinical laboratory parameters (Δ) were calculated as the difference between the current and preceding measurements. Voriconazole concentration/maintenance dose per weight (C/D) was found to correlate positively with CRP level (n = 202, rs = 0.314, p < 0.001). Furthermore, ΔC/D correlated positively with ΔCRP level (n = 160, rs = 0.442, p < 0.001), and ΔCRP showed the highest correlation coefficient among the laboratory parameters. Univariate and multivariate analyses identified ΔCRP (p < 0.001) and Δgamma-glutamyl transpeptidase (γGTP) (p = 0.019) as independent factors associated with ΔC/D. Partial R2 were 0.315 for ΔCRP and 0.024 for ΔγGTP, suggesting markedly greater contribution of ΔCRP to ΔC/D. In conclusion, since clinical laboratory parameters other than CRP had little influence on trough plasma voriconazole concentration, therapeutic drug monitoring and dose adjustment considering fluctuation in CRP level would be important for proper use of voriconazole in patients with hematological malignancies.
Collapse
Affiliation(s)
- Yu Maeda
- Department of Clinical Pharmacy, Oita University Hospital
| | - Ryota Tanaka
- Department of Clinical Pharmacy, Oita University Hospital
| | | | | | - Takehiro Hashimoto
- Department of Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine
| | - Masao Ogata
- Department of Hematology, Oita University Hospital
| | - Kazufumi Hiramatsu
- Department of Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine
| | - Hiroki Itoh
- Department of Clinical Pharmacy, Oita University Hospital
| |
Collapse
|
49
|
Precision Therapy for Invasive Fungal Diseases. J Fungi (Basel) 2021; 8:jof8010018. [PMID: 35049957 PMCID: PMC8780074 DOI: 10.3390/jof8010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/26/2022] Open
Abstract
Invasive fungal infections (IFI) are a common infection-related cause of death in immunocompromised patients. Approximately 10 million people are at risk of developing invasive aspergillosis annually. Detailed study of the pharmacokinetics (PK) and pharmacodynamics (PD) of antifungal drugs has resulted in a better understanding of optimal regimens for populations, drug exposure targets for therapeutic drug monitoring, and establishing in vitro susceptibility breakpoints. Importantly, however, each is an example of a “one size fits all strategy”, where complex systems are reduced to a singularity that ensures antifungal therapy is administered safely and effectively at the level of a population. Clearly, such a notion serves most patients adequately but is completely counter to the covenant at the centre of the clinician–patient relationship, where each patient should know whether they are well-positioned to maximally benefit from an antifungal drug. This review discusses the current therapy of fungal infections and areas of future research to maximise the effectiveness of antifungal therapy at an individual level.
Collapse
|
50
|
Douglas AP, Smibert OC, Bajel A, Halliday CL, Lavee O, McMullan B, Yong MK, Hal SJ, Chen SC. Consensus guidelines for the diagnosis and management of invasive aspergillosis, 2021. Intern Med J 2021; 51 Suppl 7:143-176. [DOI: 10.1111/imj.15591] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Abby P. Douglas
- Department of Infectious Diseases Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology University of Melbourne Melbourne Victoria Australia
- National Centre for Infections in Cancer Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Department of Infectious Diseases Austin Health Melbourne Victoria Australia
| | - Olivia. C. Smibert
- Department of Infectious Diseases Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology University of Melbourne Melbourne Victoria Australia
- National Centre for Infections in Cancer Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Department of Infectious Diseases Austin Health Melbourne Victoria Australia
| | - Ashish Bajel
- Sir Peter MacCallum Department of Oncology University of Melbourne Melbourne Victoria Australia
- Department of Clinical Haematology Peter MacCallum Cancer Centre and The Royal Melbourne Hospital Melbourne Victoria Australia
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital Sydney New South Wales Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity The University of Sydney Sydney New South Wales Australia
| | - Orly Lavee
- Department of Haematology St Vincent's Hospital Sydney New South Wales Australia
| | - Brendan McMullan
- National Centre for Infections in Cancer Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Department of Immunology and Infectious Diseases Sydney Children's Hospital Sydney New South Wales Australia
- School of Women's and Children's Health University of New South Wales Sydney New South Wales Australia
| | - Michelle K. Yong
- Department of Infectious Diseases Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology University of Melbourne Melbourne Victoria Australia
- National Centre for Infections in Cancer Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Victorian Infectious Diseases Service Royal Melbourne Hospital Melbourne Victoria Australia
| | - Sebastiaan J. Hal
- Sydney Medical School University of Sydney Sydney New South Wales Australia
- Department of Microbiology and Infectious Diseases Royal Prince Alfred Hospital Sydney New South Wales Australia
| | - Sharon C.‐A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital Sydney New South Wales Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity The University of Sydney Sydney New South Wales Australia
- Sydney Medical School University of Sydney Sydney New South Wales Australia
| | | |
Collapse
|