1
|
Mó I, da Silva GJ. Tackling Carbapenem Resistance and the Imperative for One Health Strategies-Insights from the Portuguese Perspective. Antibiotics (Basel) 2024; 13:557. [PMID: 38927223 PMCID: PMC11201282 DOI: 10.3390/antibiotics13060557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Carbapenemases, a class of enzymes specialized in the hydrolysis of carbapenems, represent a significant threat to global public health. These enzymes are classified into different Ambler's classes based on their active sites, categorized into classes A, D, and B. Among the most prevalent types are IMI/NMC-A, KPC, VIM, IMP, and OXA-48, commonly associated with pathogenic species such as Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The emergence and dissemination of carbapenemase-producing bacteria have raised substantial concerns due to their ability to infect humans and animals (both companion and food-producing) and their presence in environmental reservoirs. Adopting a holistic One Health approach, concerted efforts have been directed toward devising comprehensive strategies to mitigate the impact of antimicrobial resistance dissemination. This entails collaborative interventions, highlighting proactive measures by global organizations like the World Health Organization, the Center for Disease Control and Prevention, and the Food and Agriculture Organization. By synthesizing the evolving landscape of carbapenemase epidemiology in Portugal and tracing the trajectory from initial isolated cases to contemporary reports, this review highlights key factors driving antibiotic resistance, such as antimicrobial use and healthcare practices, and underscores the imperative for sustained vigilance, interdisciplinary collaboration, and innovative interventions to curb the escalating threat posed by antibiotic-resistant pathogens. Finally, it discusses potential alternatives and innovations aimed at tackling carbapenemase-mediated antibiotic resistance, including new therapies, enhanced surveillance, and public awareness campaigns.
Collapse
Affiliation(s)
- Inês Mó
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Gabriela Jorge da Silva
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC, Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
| |
Collapse
|
2
|
Urbanowicz P, Izdebski R, Biedrzycka M, Gniadkowski M. VIM-type metallo-β-lactamase (MBL)-encoding genomic islands in Pseudomonas spp. in Poland: predominance of clc-like integrative and conjugative elements (ICEs). J Antimicrob Chemother 2024; 79:1030-1037. [PMID: 38488311 DOI: 10.1093/jac/dkae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/23/2024] [Indexed: 05/03/2024] Open
Abstract
OBJECTIVES To characterize VIM-type metallo-β-lactamase (MBL)-encoding genomic islands (GIs) in Pseudomonas aeruginosa and P. putida group isolates from Polish hospitals from 2001-2015/16. METHODS Twelve P. aeruginosa and 20 P. putida group isolates producing VIM-like MBLs were selected from a large collection of these based on epidemiological and typing data. The organisms represented all major epidemic genotypes of these species spread in Poland with chromosomally located blaVIM gene-carrying integrons. The previously determined short-read sequences were complemented by long-read sequencing in this study. The comparative structural analysis of the GIs used a variety of bioinformatic tools. RESULTS Thirty different GIs with blaVIM integrons were identified in the 32 isolates, of which 24 GIs from 26 isolates were integrative and conjugative elements (ICEs) of the clc family. These in turn were dominated by 21 variants of the GI2/ICE6441 subfamily with a total of 19 VIM integrons, each inserted in the same position within the ICE's Tn21-like transposon Tn4380. The three other ICEs formed a novel ICE6705 subfamily, lacking Tn4380 and having different VIM integrons located in another site of the elements. The remaining six non-ICE GIs represented miscellaneous structures. The presence of various integrons in the same ICE sublineage, and of the same integron in different GIs, indicated circulation and recombination of the integron-carrying genetic platforms across Pseudomonas species/genotypes. CONCLUSIONS Despite the general diversity of the blaVIM-carrying GIs in Pseudomonas spp. in Poland, a clear predominance of broadly spread and rapidly evolving clc-type ICEs was documented, confirming their significant role in antimicrobial resistance epidemiology.
Collapse
Affiliation(s)
- P Urbanowicz
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, Warsaw 00-725, Poland
| | - R Izdebski
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, Warsaw 00-725, Poland
| | - M Biedrzycka
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, Warsaw 00-725, Poland
| | - M Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, Warsaw 00-725, Poland
| |
Collapse
|
3
|
Kothari A, Kherdekar R, Mago V, Uniyal M, Mamgain G, Kalia RB, Kumar S, Jain N, Pandey A, Omar BJ. Age of Antibiotic Resistance in MDR/XDR Clinical Pathogen of Pseudomonas aeruginosa. Pharmaceuticals (Basel) 2023; 16:1230. [PMID: 37765038 PMCID: PMC10534605 DOI: 10.3390/ph16091230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotic resistance in Pseudomonas aeruginosa remains one of the most challenging phenomena of everyday medical science. The universal spread of high-risk clones of multidrug-resistant/extensively drug-resistant (MDR/XDR) clinical P. aeruginosa has become a public health threat. The P. aeruginosa bacteria exhibits remarkable genome plasticity that utilizes highly acquired and intrinsic resistance mechanisms to counter most antibiotic challenges. In addition, the adaptive antibiotic resistance of P. aeruginosa, including biofilm-mediated resistance and the formation of multidrug-tolerant persisted cells, are accountable for recalcitrance and relapse of infections. We highlighted the AMR mechanism considering the most common pathogen P. aeruginosa, its clinical impact, epidemiology, and save our souls (SOS)-mediated resistance. We further discussed the current therapeutic options against MDR/XDR P. aeruginosa infections, and described those treatment options in clinical practice. Finally, other therapeutic strategies, such as bacteriophage-based therapy and antimicrobial peptides, were described with clinical relevance.
Collapse
Affiliation(s)
- Ashish Kothari
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Radhika Kherdekar
- Department of Dentistry, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Vishal Mago
- Department of Burn and Plastic Surgery, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Madhur Uniyal
- Department of Trauma Surgery, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Garima Mamgain
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Roop Bhushan Kalia
- Department of Orthopaedics, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Sandeep Kumar
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, USA;
| | - Neeraj Jain
- Department of Medical Oncology, All India Institute of Medical Sciences, Rishikesh 249203, India
- Division of Cancer Biology, Central Drug Research Institute, Lucknow 226031, India
| | - Atul Pandey
- Department of Entomology, University of Kentucky, Lexington, KY 40503, USA
| | - Balram Ji Omar
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh 249203, India;
| |
Collapse
|
4
|
Mu X, Li X, Yin Z, Jing Y, Chen F, Gao H, Zhang Z, Tian Y, Guo H, Lu X, He J, Zheng Y, Zhou D, Wang P, Dai E. Abundant diversity of accessory genetic elements and associated antimicrobial resistance genes in pseudomonas aeruginosa isolates from a single Chinese hospital. Ann Clin Microbiol Antimicrob 2023; 22:51. [PMID: 37386463 DOI: 10.1186/s12941-023-00600-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
OBJECTIVES Pseudomonas aeruginosa has intrinsic antibiotic resistance and the strong ability to acquire additional resistance genes. However, a limited number of investigations provide detailed modular structure dissection and evolutionary analysis of accessory genetic elements (AGEs) and associated resistance genes (ARGs) in P. aeruginosa isolates. The objective of this study is to reveal the prevalence and transmission characteristics of ARGs by epidemiological investigation and bioinformatics analysis of AGEs of P. aeruginosa isolates taken from a Chinese hospital. METHODS Draft-genome sequencing was conducted for P. aeruginosa clinical isolates (n = 48) collected from a single Chinese hospital between 2019 and 2021. The clones of P. aeruginosa isolates, type 3 secretion system (T3SS)-related virulotypes, and the resistance spectrum were identified using multilocus sequence typing (MLST), polymerase chain reaction (PCR), and antimicrobial susceptibility tests. In addition, 17 of the 48 isolates were fully sequenced. An extensive modular structure dissection and genetic comparison was applied to AGEs of the 17 sequenced P. aeruginosa isolates. RESULTS From the draft-genome sequencing, 13 STs were identified, showing high genetic diversity. BLAST search and PCR detection of T3SS genes (exoT, exoY, exoS, and exoU) revealed that the exoS+/exoU- virulotype dominated. At least 69 kinds of acquired ARGs, involved in resistance to 10 different categories of antimicrobials, were identified in the 48 P. aeruginosa isolates. Detailed genetic dissection and sequence comparisons were applied to 25 AGEs from the 17 isolates, together with five additional prototype AGEs from GenBank. These 30 AGEs were classified into five groups -- integrative and conjugative elements (ICEs), unit transposons, IncpPBL16 plasmids, Incp60512-IMP plasmids, and IncpPA7790 plasmids. CONCLUSION This study provides a broad-scale and deeper genomics understanding of P. aeruginosa isolates taken from a single Chinese hospital. The isolates collected are characterized by high genetic diversity, high virulence, and multiple drug resistance. The AGEs in P. aeruginosa chromosomes and plasmids, as important genetic platforms for the spread of ARGs, contribute to enhancing the adaptability of P. aeruginosa in hospital settings.
Collapse
Affiliation(s)
- Xiaofei Mu
- Department of Clinical Laboratory Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Xinyue Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China
| | - Ying Jing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China
| | - Fangzhou Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China
| | - Huixia Gao
- Department of Laboratory Medicine, the Fifth Hospital of Shijiazhuang, Hebei Medical University, No. 42 Tanan Road, Yuhua District, Shijiazhuang, Heibei, 050021, China
| | - Zhi Zhang
- Department of Laboratory Medicine, the Fifth Hospital of Shijiazhuang, Hebei Medical University, No. 42 Tanan Road, Yuhua District, Shijiazhuang, Heibei, 050021, China
| | - Yueyang Tian
- Department of Laboratory Medicine, the Fifth Hospital of Shijiazhuang, Hebei Medical University, No. 42 Tanan Road, Yuhua District, Shijiazhuang, Heibei, 050021, China
| | - Huiqian Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China
| | - Xiuhui Lu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China
| | - Jiaqi He
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China
| | - Yali Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China
| | - Peng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China.
| | - Erhei Dai
- Department of Clinical Laboratory Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050011, China.
- Department of Laboratory Medicine, the Fifth Hospital of Shijiazhuang, Hebei Medical University, No. 42 Tanan Road, Yuhua District, Shijiazhuang, Heibei, 050021, China.
| |
Collapse
|
5
|
Chio H, Guest EE, Hobman JL, Dottorini T, Hirst JD, Stekel DJ. Predicting bioactivity of antibiotic metabolites by molecular docking and dynamics. J Mol Graph Model 2023; 123:108508. [PMID: 37235902 DOI: 10.1016/j.jmgm.2023.108508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
Antibiotics enter the environment through waste streams, where they can exert selective pressure for antimicrobial resistance in bacteria. However, many antibiotics are excreted as partly metabolized forms, or can be subject to partial breakdown in wastewater treatment, soil, or through natural processes in the environment. If a metabolite is bioactive, even at sub-lethal levels, and also stable in the environment, then it could provide selection pressure for resistance. (5S)-penicilloic acid of piperacillin has previously been found complexed to the binding pocket of penicillin binding protein 3 (PBP3) of Pseudomonas aeruginosa. Here, we predicted the affinities of all potentially relevant antibiotic metabolites of ten different penicillins to that target protein, using molecular docking and molecular dynamics simulations. Docking predicts that, in addition to penicilloic acid, pseudopenicillin derivatives of these penicillins, as well as 6-aminopenicillanic acid (6APA), could also bind to this target. MD simulations further confirmed that (5R)-pseudopenicillin and 6APA bind the target protein, in addition to (5S)-penicilloic acid. Thus, it is possible that these metabolites are bioactive, and, if stable in the environment, could be contaminants selective for antibiotic resistance. This could have considerable significance for environmental surveillance for antibiotics as a means to reduce antimicrobial resistance, because targeted mass spectrometry could be required for relevant metabolites as well as the native antibiotics.
Collapse
Affiliation(s)
- Hokin Chio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Ellen E Guest
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Jon L Hobman
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Tania Dottorini
- School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Jonathan D Hirst
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Dov J Stekel
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK; Department of Mathematics and Applied Mathematics, University of Johannesburg, Aukland Park Kingsway Campus, Rossmore, Johannesburg, South Africa.
| |
Collapse
|
6
|
Barbu IC, Gheorghe-Barbu I, Grigore GA, Vrancianu CO, Chifiriuc MC. Antimicrobial Resistance in Romania: Updates on Gram-Negative ESCAPE Pathogens in the Clinical, Veterinary, and Aquatic Sectors. Int J Mol Sci 2023; 24:7892. [PMID: 37175597 PMCID: PMC10178704 DOI: 10.3390/ijms24097892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Multidrug-resistant Gram-negative bacteria such as Acinetobacter baumannii, Pseudomonas aeruginosa, and members of the Enterobacterales order are a challenging multi-sectorial and global threat, being listed by the WHO in the priority list of pathogens requiring the urgent discovery and development of therapeutic strategies. We present here an overview of the antibiotic resistance profiles and epidemiology of Gram-negative pathogens listed in the ESCAPE group circulating in Romania. The review starts with a discussion of the mechanisms and clinical significance of Gram-negative bacteria, the most frequent genetic determinants of resistance, and then summarizes and discusses the epidemiological studies reported for A. baumannii, P. aeruginosa, and Enterobacterales-resistant strains circulating in Romania, both in hospital and veterinary settings and mirrored in the aquatic environment. The Romanian landscape of Gram-negative pathogens included in the ESCAPE list reveals that all significant, clinically relevant, globally spread antibiotic resistance genes and carrying platforms are well established in different geographical areas of Romania and have already been disseminated beyond clinical settings.
Collapse
Affiliation(s)
- Ilda Czobor Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Georgiana Alexandra Grigore
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- Academy of Romanian Scientists, 050044 Bucharest, Romania
- Romanian Academy, 010071 Bucharest, Romania
| |
Collapse
|
7
|
Juhas M. Multidrug-Resistant Bacteria. BRIEF LESSONS IN MICROBIOLOGY 2023:65-77. [DOI: 10.1007/978-3-031-29544-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
8
|
Juhas M. Gene Transfer. BRIEF LESSONS IN MICROBIOLOGY 2023:51-63. [DOI: 10.1007/978-3-031-29544-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
9
|
Sim M, Lee J, Kwon D, Lee D, Park N, Wy S, Ko Y, Kim J. Reference-based read clustering improves the de novo genome assembly of microbial strains. Comput Struct Biotechnol J 2022; 21:444-451. [PMID: 36618978 PMCID: PMC9804104 DOI: 10.1016/j.csbj.2022.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Constructing accurate microbial genome assemblies is necessary to understand genetic diversity in microbial genomes and its functional consequences. However, it still remains as a challenging task especially when only short-read sequencing technologies are used. Here, we present a new read-clustering algorithm, called RBRC, for improving de novo microbial genome assembly, by accurately estimating read proximity using multiple reference genomes. The performance of RBRC was confirmed by simulation-based evaluation in terms of assembly contiguity and the number of misassemblies, and was successfully applied to existing fungal and bacterial genomes by improving the quality of the assemblies without using additional sequencing data. RBRC is a very useful read-clustering algorithm that can be used (i) for generating high-quality genome assemblies of microbial strains when genome assemblies of related strains are available, and (ii) for upgrading existing microbial genome assemblies when the generation of additional sequencing data, such as long reads, is difficult.
Collapse
Affiliation(s)
- Mikang Sim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jongin Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Daehong Kwon
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Daehwan Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Nayoung Park
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Suyeon Wy
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Younhee Ko
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Gyeonggi-do 17035, Republic of Korea
| | - Jaebum Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea,Corresponding author.
| |
Collapse
|
10
|
Unravelling complex transposable elements surrounding bla GES-16 in a Pseudomonas aeruginosa ExoU strain. J Glob Antimicrob Resist 2022; 30:143-147. [PMID: 35447384 DOI: 10.1016/j.jgar.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/16/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES We characterised the complex surrounding regions of blaGES-16 in a Pseudomonas aeruginosa exoU+ strain (P-10.226) in Brazil. METHODS Species identification was performed by MALDI-TOF MS, and the antimicrobial susceptibility profile was determined by broth microdilution based on European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints. The whole genome sequencing (WGS) of P-10.226 strain was performed using both short-read paired-end sequencing on the Illumina MiSeq platform as well as the long-read Oxford Nanopore MinION. RESULTS WGS analysis showed that P-10.226 carried blaGES-16, which was found as a gene cassette inserted into a novel class I integron, In1992 (aadB-blaOXA-56-blaGES-16-aadB-aadA6c), whose 3'-CS was truncated by a nested transposable element, IS5564::ISPa157. The structure was even more complex since IS6100-ΔIS6100 structure and a TnAs2-like harbouring the operon merRTPADE was found downstream In1992. Fragments of TnAs3 harbouring 25-bp imperfect inverted repeats were identified bordering the intl1 of In1992 and also flanking IS6100-ΔIS6100, which might be genetic marks of its previous presence in the genome. Interestingly, In1992 also shows a distinct cassette array from In581 (blaGES-16-dfrA22-aacA27-aadA1), which was previously reported in Serratia marcescens strains recovered in Brazil. Finally, exoU gene, which encodes a potent cytotoxin of type III secretion systems (T3SS) effector proteins from P. aeruginosa and is associated to severe infections, was also detected. CONCLUSION We described the novel In1992 carrying blaGES-16 surrounded by complex transposition events in a XDR P. aeruginosa strain. The identification of many sets of direct repeats adjacent to TnAs3 fragments indicates a major past of transposition events that shaped the current genetic environment of In1992.
Collapse
|
11
|
Mohapatra B, Malhotra H, Phale PS. Life Within a Contaminated Niche: Comparative Genomic Analyses of an Integrative Conjugative Element ICE nahCSV86 and Two Genomic Islands From Pseudomonas bharatica CSV86 T Suggest Probable Role in Colonization and Adaptation. Front Microbiol 2022; 13:928848. [PMID: 35875527 PMCID: PMC9298801 DOI: 10.3389/fmicb.2022.928848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/08/2022] [Indexed: 11/26/2022] Open
Abstract
Comparative genomic and functional analyses revealed the presence of three genomic islands (GIs, >50 Kb size): ICEnahCSV86, Pseudomonas bharatica genomic island-1 (PBGI-1), and PBGI-2 in the preferentially aromatic-degrading soil bacterium, Pseudomonas bharatica CSV86T. Site-specific genomic integration at or near specific transfer RNAs (tRNAs), near-syntenic structural modules, and phylogenetic relatedness indicated their evolutionary lineage to the type-4 secretion system (T4SS) ICEclc family, thus predicting these elements to be integrative conjugative elements (ICEs). These GIs were found to be present as a single copy in the genome and the encoded phenotypic traits were found to be stable, even in the absence of selection pressure. ICEnahCSV86 harbors naphthalene catabolic (nah-sal) cluster, while PBGI-1 harbors Co-Zn-Cd (czc) efflux genes as cargo modules, whereas PBGI-2 was attributed to as a mixed-function element. The ICEnahCSV86 has been reported to be conjugatively transferred (frequency of 7 × 10–8/donor cell) to Stenotrophomonas maltophilia CSV89. Genome-wide comparative analyses of aromatic-degrading bacteria revealed nah-sal clusters from several Pseudomonas spp. as part of probable ICEs, syntenic to conjugatively transferable ICEnahCSV86 of strain CSV86T, suggesting it to be a prototypical element for naphthalene degradation. It was observed that the plasmids harboring nah-sal clusters were phylogenetically incongruent with predicted ICEs, suggesting genetic divergence of naphthalene metabolic clusters in the Pseudomonas population. Gene synteny, divergence estimates, and codon-based Z-test indicated that ICEnahCSV86 is probably derived from PBGI-2, while multiple recombination events masked the ancestral lineage of PBGI-1. Diversifying selection pressure (dN-dS = 2.27–4.31) imposed by aromatics and heavy metals implied the modular exchange-fusion of various cargo clusters through events like recombination, rearrangement, domain reshuffling, and active site optimization, thus allowing the strain to evolve, adapt, and maximize the metabolic efficiency in a contaminated niche. The promoters (Pnah and Psal) of naphthalene cargo modules (nah, sal) on ICEnahCSV86 were proved to be efficient for heterologous protein expression in Escherichia coli. GI-based genomic plasticity expands the metabolic spectrum and versatility of CSV86T, rendering efficient adaptation to the contaminated niche. Such isolate(s) are of utmost importance for their application in bioremediation and are the probable ideal host(s) for metabolic engineering.
Collapse
Affiliation(s)
- Balaram Mohapatra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
12
|
Zhang P, Wang J, Li Y, Shi W, Cai H, Yang Q, Li X, Yu Y, Qu T, Jiang Y. Emergence of bla KPC-33-harboring Hypervirulent ST463 Pseudomonas aeruginosa Causing Fatal Infections in China. J Infect 2022; 85:e86-e88. [PMID: 35863519 DOI: 10.1016/j.jinf.2022.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Piaopiao Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Wang
- Respiratory Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Li
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weixiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Heng Cai
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xi Li
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Tingting Qu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
13
|
Lynch JP, Zhanel GG. Pseudomonas aeruginosa Pneumonia: Evolution of Antimicrobial Resistance and Implications for Therapy. Semin Respir Crit Care Med 2022; 43:191-218. [PMID: 35062038 DOI: 10.1055/s-0041-1740109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pseudomonas aeruginosa (PA), a non-lactose-fermenting gram-negative bacillus, is a common cause of nosocomial infections in critically ill or debilitated patients, particularly ventilator-associated pneumonia (VAP), and infections of urinary tract, intra-abdominal, wounds, skin/soft tissue, and bloodstream. PA rarely affects healthy individuals, but may cause serious infections in patients with chronic structural lung disease, comorbidities, advanced age, impaired immune defenses, or with medical devices (e.g., urinary or intravascular catheters, foreign bodies). Treatment of pseudomonal infections is difficult, as PA is intrinsically resistant to multiple antimicrobials, and may acquire new resistance determinants even while on antimicrobial therapy. Mortality associated with pseudomonal VAP or bacteremias is high (> 35%) and optimal therapy is controversial. Over the past three decades, antimicrobial resistance (AMR) among PA has escalated globally, via dissemination of several international multidrug resistant "epidemic" clones. We discuss the importance of PA as a cause of pneumonia including health care-associated pneumonia, hospital-acquired pneumonia, VAP, the emergence of AMR to this pathogen, and approaches to therapy (both empirical and definitive).
Collapse
Affiliation(s)
- Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - George G Zhanel
- Department of Medical Microbiology/Infectious Diseases, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| |
Collapse
|
14
|
Liu M, Liu J, Liu G, Wang H, Wang X, Deng Z, He Y, Ou HY. ICEO, a biological ontology for representing and analyzing bacterial integrative and conjugative elements. Sci Data 2022; 9:11. [PMID: 35058462 PMCID: PMC8776819 DOI: 10.1038/s41597-021-01112-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/13/2021] [Indexed: 01/18/2023] Open
Abstract
Bacterial integrative and conjugative elements (ICEs) are highly modular mobile genetic elements critical to the horizontal transfer of antibiotic resistance and virulence factor genes. To better understand and analyze the ongoing increase of ICEs, we developed an Integrative and Conjugative Element Ontology (ICEO) to represent the gene components, functional modules, and other information of experimentally verified ICEs. ICEO is aligned with the upper-level Basic Formal Ontology and reuses existing reliable ontologies. There are 31,081 terms, including 26,814 classes from 14 ontologies and 4128 ICEO-specific classes, representing the information of 271 known experimentally verified ICEs from 235 bacterial strains in ICEO currently and 311 predicted ICEs of 272 completely sequenced Klebsiella pneumoniae strains. Three ICEO use cases were illustrated to investigate complex joins of ICEs and their harboring antibiotic resistance or virulence factor genes by using SPARQL or DL query. ICEO has been approved as an Open Biomedical Ontology library ontology. It may be dedicated to facilitating systematical ICE knowledge representation, integration, and computer-assisted queries.
Collapse
Affiliation(s)
- Meng Liu
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jialin Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guitian Liu
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Hui Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Xiaoli Wang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yongqun He
- University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Hong-Yu Ou
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
15
|
Cabrera R, Fernández-Barat L, Vázquez N, Alcaraz-Serrano V, Bueno-Freire L, Amaro R, López-Aladid R, Oscanoa P, Muñoz L, Vila J, Torres A. OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1600-1610. [PMID: 35323912 PMCID: PMC9155640 DOI: 10.1093/jac/dkac084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 02/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background Non-cystic fibrosis bronchiectasis (BE) is a chronic structural lung condition that facilitates chronic colonization by different microorganisms and courses with recurrent respiratory infections and frequent exacerbations. One of the main pathogens involved in BE is Pseudomonas aeruginosa. Objectives To determine the molecular mechanisms of resistance and the molecular epidemiology of P. aeruginosa strains isolated from patients with BE. Methods A total of 43 strains of P. aeruginosa were isolated from the sputum of BE patients. Susceptibility to the following antimicrobials was analysed: ciprofloxacin, meropenem, imipenem, amikacin, tobramycin, aztreonam, piperacillin/tazobactam, ceftazidime, ceftazidime/avibactam, ceftolozane/tazobactam, cefepime and colistin. The resistance mechanisms present in each strain were assessed by PCR, sequencing and quantitative RT–PCR. Molecular epidemiology was determined by MLST. Phylogenetic analysis was carried out using the eBURST algorithm. Results High levels of resistance to ciprofloxacin (44.19%) were found. Mutations in the gyrA, gyrB, parC and parE genes were detected in ciprofloxacin-resistant P. aeruginosa strains. The number of mutated QRDR genes was related to increased MIC. Different β-lactamases were detected: blaOXA50, blaGES-2, blaIMI-2 and blaGIM-1. The aac(3)-Ia, aac(3)-Ic, aac(6″)-Ib and ant(2″)-Ia genes were associated with aminoglycoside-resistant strains. The gene expression analysis showed overproduction of the MexAB-OprM efflux system (46.5%) over the other efflux system. The most frequently detected clones were ST619, ST676, ST532 and ST109. Conclusions Resistance to first-line antimicrobials recommended in BE guidelines could threaten the treatment of BE and the eradication of P. aeruginosa, contributing to chronic infection.
Collapse
Affiliation(s)
- Roberto Cabrera
- Hospital Clínic, Cellex Laboratory, CIBERES (Center for net Biomedical Research Respiratory diseases, 06/06/0028) - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Spain
- Respiratory Intensive Care Unit, Pneumology Department, Hospital Clínic, Barcelona, Spain
| | - Laia Fernández-Barat
- Hospital Clínic, Cellex Laboratory, CIBERES (Center for net Biomedical Research Respiratory diseases, 06/06/0028) - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Spain
- Respiratory Intensive Care Unit, Pneumology Department, Hospital Clínic, Barcelona, Spain
- Corresponding author. E-mail:
| | - Nil Vázquez
- Hospital Clínic, Cellex Laboratory, CIBERES (Center for net Biomedical Research Respiratory diseases, 06/06/0028) - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Spain
- Respiratory Intensive Care Unit, Pneumology Department, Hospital Clínic, Barcelona, Spain
| | - Victoria Alcaraz-Serrano
- Hospital Clínic, Cellex Laboratory, CIBERES (Center for net Biomedical Research Respiratory diseases, 06/06/0028) - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Spain
- Respiratory Intensive Care Unit, Pneumology Department, Hospital Clínic, Barcelona, Spain
| | - Leticia Bueno-Freire
- Hospital Clínic, Cellex Laboratory, CIBERES (Center for net Biomedical Research Respiratory diseases, 06/06/0028) - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Spain
- Respiratory Intensive Care Unit, Pneumology Department, Hospital Clínic, Barcelona, Spain
| | - Rosanel Amaro
- Hospital Clínic, Cellex Laboratory, CIBERES (Center for net Biomedical Research Respiratory diseases, 06/06/0028) - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Spain
- Respiratory Intensive Care Unit, Pneumology Department, Hospital Clínic, Barcelona, Spain
| | - Rubén López-Aladid
- Hospital Clínic, Cellex Laboratory, CIBERES (Center for net Biomedical Research Respiratory diseases, 06/06/0028) - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Spain
- Respiratory Intensive Care Unit, Pneumology Department, Hospital Clínic, Barcelona, Spain
| | - Patricia Oscanoa
- Hospital Clínic, Cellex Laboratory, CIBERES (Center for net Biomedical Research Respiratory diseases, 06/06/0028) - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Spain
- Respiratory Intensive Care Unit, Pneumology Department, Hospital Clínic, Barcelona, Spain
| | - Laura Muñoz
- Barcelona Global Health Institute, Department of Clinical Microbiology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Jordi Vila
- Barcelona Global Health Institute, Department of Clinical Microbiology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Antoni Torres
- Hospital Clínic, Cellex Laboratory, CIBERES (Center for net Biomedical Research Respiratory diseases, 06/06/0028) - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Spain
- Respiratory Intensive Care Unit, Pneumology Department, Hospital Clínic, Barcelona, Spain
| |
Collapse
|
16
|
β-lactam Resistance in Pseudomonas aeruginosa: Current Status, Future Prospects. Pathogens 2021; 10:pathogens10121638. [PMID: 34959593 PMCID: PMC8706265 DOI: 10.3390/pathogens10121638] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is a major opportunistic pathogen, causing a wide range of acute and chronic infections. β-lactam antibiotics including penicillins, carbapenems, monobactams, and cephalosporins play a key role in the treatment of P. aeruginosa infections. However, a significant number of isolates of these bacteria are resistant to β-lactams, complicating treatment of infections and leading to worse outcomes for patients. In this review, we summarize studies demonstrating the health and economic impacts associated with β-lactam-resistant P. aeruginosa. We then describe how β-lactams bind to and inhibit P. aeruginosa penicillin-binding proteins that are required for synthesis and remodelling of peptidoglycan. Resistance to β-lactams is multifactorial and can involve changes to a key target protein, penicillin-binding protein 3, that is essential for cell division; reduced uptake or increased efflux of β-lactams; degradation of β-lactam antibiotics by increased expression or altered substrate specificity of an AmpC β-lactamase, or by the acquisition of β-lactamases through horizontal gene transfer; and changes to biofilm formation and metabolism. The current understanding of these mechanisms is discussed. Lastly, important knowledge gaps are identified, and possible strategies for enhancing the effectiveness of β-lactam antibiotics in treating P. aeruginosa infections are considered.
Collapse
|
17
|
Carbapenem Resistance Determinants Acquired through Novel Chromosomal Integrations in Extensively Drug-Resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 2021; 65:e0028921. [PMID: 33941520 PMCID: PMC8373256 DOI: 10.1128/aac.00289-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Two novel blaDIM-1- or blaIMP-1-containing genomic islands (GIs) were discovered by whole-genome sequence analyses in four extensively drug-resistant (XDR) Pseudomonas aeruginosa isolates from inpatients at a tertiary hospital in Ghana. The strains were of sequence type 234 (ST234) and formed a phylogenetic clade together with ST111, which is recognized as a global high-risk clone. Their carbapenem resistance was encoded by two Tn402-type integrons, In1592 (blaDIM-1) and In1595 (blaIMP-1), both carrying complete tni mobilization modules. In1595 was bound by conserved 25-bp inverted repeats (IRs) flanked by 5-bp direct repeats (DRs) associated with target site duplication. The integrons were embedded in two GIs that contained cognate integrases and were distinguished by a lower GC content than the chromosomal average. PAGI-97A (52.659 bp; In1592), which encoded a P4-type site-specific integrase of the tyrosine recombinase family in its 3′ border, was integrated into tRNA-Pro(ggg) and bracketed by a 49-bp perfect DR created by 3′-end target duplication. GIs with the same structural features, but diverse genetic content, were identified in 41/226 completed P. aeruginosa genomes. PAGI-97B (22,636 bp; In1595), which encoded an XerC/D superfamily integrase in its 5′ border, was inserted into the small RNA (sRNA) PrrF1/PrrF2 locus. Specific insertions into this highly conserved locus involved in iron-dependent regulation, all leaving PrrF1 intact, were identified in an additional six phylogenetically unrelated P. aeruginosa genomes. Our molecular analyses unveiled a hospital-associated clonal dissemination of carbapenem-resistant ST234 P. aeruginosa in which the XDR phenotype resulted from novel insertions of two GIs into specific chromosomal sites.
Collapse
|
18
|
Al-Orphaly M, Hadi HA, Eltayeb FK, Al-Hail H, Samuel BG, Sultan AA, Skariah S. Epidemiology of Multidrug-Resistant Pseudomonas aeruginosa in the Middle East and North Africa Region. mSphere 2021; 6:e00202-21. [PMID: 34011686 PMCID: PMC8265635 DOI: 10.1128/msphere.00202-21] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Over the last decades, there has been a dramatic global increase in multidrug-resistant (MDR) pathogens particularly among Gram-negative bacteria (GNB). Pseudomonas aeruginosa is responsible for various health care-associated infections, while MDR P. aeruginosa causes significant morbidity and mortality. Middle East and North Africa (MENA) represent an unexplored geographical region for the study of drug resistance since many of these countries are at crossroads of high volume of travel, diverse expatriate populations, as well as high antibiotic consumption despite attempts to implement antimicrobial stewardship programs. This minireview analyzes epidemiology, microbiological, and genomic characteristics of MDR P. aeruginosa in the MENA region. Published data on MDR P. aeruginosa prevalence, antimicrobial resistance patterns, and genetic profiles from studies published during the past 10 years from 19 MENA countries have been included in this minireview. There is wide variation in the epidemiology of MDR P. aeruginosa in the MENA region in terms of prevalence, antimicrobial characteristics, as well as genetic profiles. Overall, there is high prevalence of MDR P. aeruginosa seen in the majority of the countries in the MENA region with similarities between neighboring countries, which might reflect comparable population and antibiotic-prescribing cultures. Isolates from critical care units are significantly resistant particularly from certain countries such as Saudi Arabia, Egypt, Libya, Syria, and Lebanon with high-level resistance to cephalosporins, carbapenems, and aminoglycosides. Colistin susceptibility patterns remains high apart from countries with high-level antibiotic resistance such as Saudi Arabia, Syria, and Egypt.
Collapse
Affiliation(s)
- Mahmood Al-Orphaly
- Department of Medical Education, Weill Cornell Medicine - Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Hamad Abdel Hadi
- Department of Infectious Diseases, Communicable Diseases Centre, Hamad Medical Corporation, Doha, Qatar
| | | | - Hissa Al-Hail
- Department of Medical Education, Weill Cornell Medicine - Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Bincy Gladson Samuel
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Ali A Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Sini Skariah
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
19
|
Wheatley RM, MacLean RC. CRISPR-Cas systems restrict horizontal gene transfer in Pseudomonas aeruginosa. THE ISME JOURNAL 2021; 15:1420-1433. [PMID: 33349652 PMCID: PMC8105352 DOI: 10.1038/s41396-020-00860-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/06/2020] [Accepted: 11/26/2020] [Indexed: 11/29/2022]
Abstract
CRISPR-Cas systems provide bacteria and archaea with an adaptive immune system that targets foreign DNA. However, the xenogenic nature of immunity provided by CRISPR-Cas raises the possibility that these systems may constrain horizontal gene transfer. Here we test this hypothesis in the opportunistic pathogen Pseudomonas aeruginosa, which has emerged as an important model system for understanding CRISPR-Cas function. Across the diversity of P. aeruginosa, active CRISPR-Cas systems are associated with smaller genomes and higher GC content, suggesting that CRISPR-Cas inhibits the acquisition of foreign DNA. Although phage is the major target of CRISPR-Cas spacers, more than 80% of isolates with an active CRISPR-Cas system have spacers that target integrative conjugative elements (ICE) or the conserved conjugative transfer machinery used by plasmids and ICE. Consistent with these results, genomes containing active CRISPR-Cas systems harbour a lower abundance of both prophage and ICE. Crucially, spacers in genomes with active CRISPR-Cas systems map to ICE and phage that are integrated into the chromosomes of closely related genomes lacking CRISPR-Cas immunity. We propose that CRISPR-Cas acts as an important constraint to horizontal gene transfer, and the evolutionary mechanisms that ensure its maintenance or drive its loss are key to the ability of this pathogen to adapt to new niches and stressors.
Collapse
Affiliation(s)
| | - R Craig MacLean
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| |
Collapse
|
20
|
Yu T, Yang H, Li J, Chen F, Hu L, Jing Y, Luo X, Yin Z, Zou M, Zhou D. Novel Chromosome-Borne Accessory Genetic Elements Carrying Multiple Antibiotic Resistance Genes in Pseudomonas aeruginosa. Front Cell Infect Microbiol 2021; 11:638087. [PMID: 33816340 PMCID: PMC8012812 DOI: 10.3389/fcimb.2021.638087] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is noted for its intrinsic antibiotic resistance and capacity of acquiring additional resistance genes. In this study, the genomes of nine clinical P. aeruginosa isolates were fully sequenced. An extensive genetic comparison was applied to 18 P. aeruginosa accessory genetic elements (AGEs; 13 of them were sequenced in this study and located within P. aeruginosa chromosomes) that were divided into four groups: five related integrative and conjugative elements (ICEs), four related integrative and mobilizable elements (IMEs), five related unit transposons, and two related IMEs and their two derivatives. At least 45 resistance genes, involved in resistance to 10 different categories of antibiotics and heavy metals, were identified from these 18 AGEs. A total of 10 β-lactamase genes were identified from 10 AGEs sequenced herein, and nine of them were captured within class 1 integrons, which were further integrated into ICEs and IMEs with intercellular mobility, and also unit transposons with intracellular mobility. Through this study, we identified for the first time 20 novel MGEs, including four ICEs Tn6584, Tn6585, Tn6586, and Tn6587; three IMEs Tn6853, Tn6854, and Tn6878; five unit transposons Tn6846, Tn6847, Tn6848, Tn6849, and Tn6883; and eight integrons In1795, In1778, In1820, In1784, In1775, In1774, In1789, and In1799. This was also the first report of two resistance gene variants blaCARB-53 and catB3s, and a novel ST3405 isolate of P. aeruginosa. The data presented here denoted that complex transposition and homologous recombination promoted the assembly and integration of AGEs with mosaic structures into P. aeruginosa chromosomes.
Collapse
Affiliation(s)
- Ting Yu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jun Li
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Fangzhou Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ying Jing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xinhua Luo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mingxiang Zou
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
21
|
Hernández-García M, García-Castillo M, García-Fernández S, Melo-Cristino J, Pinto MF, Gonçalves E, Alves V, Vieira AR, Ramalheira E, Sancho L, Diogo J, Ferreira R, Silva T, Chaves C, Bou G, Cercenado E, Delgado-Valverde M, Oliver A, Pitart C, Rodríguez-Lozano J, Tormo N, Romano J, Pássaro L, Paixão L, López-Mendoza D, Díaz-Regañón J, Cantón R, Melo-Cristino J, Pinto MF, Marcelo C, Peres H, Lourenço I, Peres I, Marques J, Chantre O, Pina T, Gonçalves E, Toscano C, Alves V, Ribeiro M, Costa E, Vieira AR, Ferreira S, Diaz R, Ramalheira E, Schäfer S, Tancredo L, Sancho L, Rodrigues A, Diogo J, Ferreira R, Ramos H, Silva T, Silva D, Chaves C, Queiroz C, Nabiev A, Pássaro L, Paixao L, Romano J, Moura C. Distinct epidemiology and resistance mechanisms affecting ceftolozane/tazobactam in Pseudomonas aeruginosa isolates recovered from ICU patients in Spain and Portugal depicted by WGS. J Antimicrob Chemother 2020; 76:370-379. [DOI: 10.1093/jac/dkaa430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Abstract
Objectives
To analyse the epidemiology, the resistome and the virulome of ceftolozane/tazobactam-susceptible or -resistant Pseudomonas aeruginosa clinical isolates recovered from surveillance studies in Portugal (STEP, 2017–18) and Spain (SUPERIOR, 2016–17).
Methods
P. aeruginosa isolates were recovered from intra-abdominal, urinary tract and lower respiratory tract infections in ICU patients admitted to 11 Portuguese and 8 Spanish hospitals. MICs were determined (ISO-standard broth microdilution, EUCAST 2020 breakpoints). A subset of 28 ceftolozane/tazobactam-resistant P. aeruginosa isolates were analysed and compared with 28 ceftolozane/tazobactam-susceptible P. aeruginosa strains by WGS.
Results
Clonal complex (CC) 235 (27%) and CC175 (18%) were the most frequent, followed by CC244 (13%), CC348 (9%), CC253 (5%) and CC309 (5%). Inter-hospital clonal dissemination was observed, limited to a geographical region (CC235, CC244, CC348 and CC253 in Portugal and CC175 and CC309 in Spain). Carbapenemases were detected in 25 isolates (45%): GES-13 (13/25); VIM type (10/25) [VIM-2 (4/10), VIM-20 (3/10), VIM-1 (2/10) and VIM-36 (1/10)]; and KPC-3 (2/25). GES-13-CC235 (13/15) and VIM type-CC175 (5/10) associations were observed. Interestingly, KPC-3 and VIM-36 producers showed ceftolozane/tazobactam-susceptible phenotypes. However, ceftolozane/tazobactam resistance was significantly associated with GES-13 and VIM-type carbapenemase production. Six non-carbapenemase producers also displayed ceftolozane/tazobactam resistance, three of them showing known ceftolozane/tazobactam resistance-associated mutations in the PBP3 gene, ftsI (R504C and F533L). Overall, an extensive virulome was identified in all P. aeruginosa isolates, particularly in carbapenemase-producing strains.
Conclusions
GES-13-CC235 and VIM type-CC175 were the most frequent MDR/XDR P. aeruginosa clones causing infections in Portuguese and Spanish ICU patients, respectively. Ceftolozane/tazobactam resistance was mainly due to carbapenemase production, although mutations in PBP-encoding genes may additionally be involved.
Collapse
Affiliation(s)
| | - María García-Castillo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain
| | | | - José Melo-Cristino
- Serviço de Microbiologia Centro Hospitalar Lisboa Norte, Lisboa, Portugal
| | - Margarida F Pinto
- Laboratório de Microbiologia, Serviço de Patologia Clínica, Centro Hospitalar Universitário Lisboa Central, Lisboa, Portugal
| | - Elsa Gonçalves
- Laboratório de Microbiologia Clínica Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal
| | - Valquíria Alves
- Laboratório de Microbiologia, Unidade Local de Saúde de Matosinhos, Matosinhos, Portugal
| | - Ana Raquel Vieira
- Serviço de Patologia Clínica, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Elmano Ramalheira
- Serviço Patologia Clínica, Hospital Infante Dom Pedro, Aveiro, Portugal
| | - Luísa Sancho
- Serviço de Patologia Clínica, Hospital Prof. Dr. Fernando da Fonseca, Amadora, Portugal
| | - José Diogo
- Serviço de Microbiologia, Hospital Garcia de Orta, Almada, Portugal
| | - Rui Ferreira
- Serviço de Patologia Clínica–Microbiologia–CHUA–Unidade de Portimão, Portimão, Portugal
| | - Tânia Silva
- Serviço de Microbiologia do Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Catarina Chaves
- Serviço de Microbiologia, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Germán Bou
- Servicio de Microbiología, Hospital Universitario A Coruña, A Coruña, Spain
| | - Emilia Cercenado
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Mercedes Delgado-Valverde
- UGC Enfermedades Infecciosas, Microbiología Clínica y Medicina Preventiva, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Antonio Oliver
- Servicio de Microbiología, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Cristina Pitart
- Servicio de Microbiología, Hospital Clínic i Provincial, Barcelona, Spain
| | - Jesús Rodríguez-Lozano
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Nuria Tormo
- Servicio de Microbiología, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | | | | | | | | | | | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ortiz de la Rosa JM, Nordmann P, Poirel L. ESBLs and resistance to ceftazidime/avibactam and ceftolozane/tazobactam combinations in Escherichia coli and Pseudomonas aeruginosa. J Antimicrob Chemother 2020; 74:1934-1939. [PMID: 31225611 DOI: 10.1093/jac/dkz149] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/27/2019] [Accepted: 03/15/2019] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVES To evaluate the efficacy of the recently launched β-lactam/β-lactamase inhibitor combinations ceftazidime/avibactam and ceftolozane/tazobactam against ESBL-producing Escherichia coli and Pseudomonas aeruginosa strains. METHODS A series of ESBL-encoding genes (blaTEM, blaSHV, blaCTX-M, blaVEB, blaPER, blaGES and blaBEL) was cloned and expressed in E. coli or P. aeruginosa recipient strains. Cultures of E. coli TOP10 harbouring recombinant plasmids and therefore producing the different ESBLs tested were grown in order to perform measurements of catalytic activities, using benzylpenicillin, ceftazidime and ceftolozane as substrates. IC50s were additionally determined for clavulanic acid, tazobactam and avibactam. RESULTS We showed here an overall better activity of ceftazidime/avibactam compared with ceftolozane/tazobactam toward ESBL-producing E. coli and P. aeruginosa. Several ESBLs of the GES, PER and BEL types conferred resistance to ceftolozane/tazobactam in E. coli and P. aeruginosa. For GES-6 and PER-1 producers, resistance to ceftolozane/tazobactam could be explained by a high hydrolysis of ceftolozane and a low activity of tazobactam as an inhibitor. On the other hand, PER-producing P. aeruginosa also exhibited resistance to ceftazidime/avibactam. CONCLUSIONS Altogether, the results show that the ESBL PER-1, which is widespread worldwide, may be a source of resistance to both ceftolozane/tazobactam and ceftazidime/avibactam. Excellent activity of ceftazidime/avibactam was highlighted for both ESBL-producing E. coli and ESBL-producing P. aeruginosa.
Collapse
Affiliation(s)
- José-Manuel Ortiz de la Rosa
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Patrice Nordmann
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland.,Swiss National Reference Centre for Emerging Antibiotic Resistance, Fribourg, Switzerland.,INSERM European Unit (LEA), IAME, Paris, France.,University of Lausanne and University Hospital Centre, Lausanne, Switzerland
| | - Laurent Poirel
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland.,Swiss National Reference Centre for Emerging Antibiotic Resistance, Fribourg, Switzerland.,INSERM European Unit (LEA), IAME, Paris, France
| |
Collapse
|
23
|
Secondary in-hospital epidemiological investigation after an outbreak of Pseudomonas aeruginosa ST357. J Infect Chemother 2020; 26:257-265. [DOI: 10.1016/j.jiac.2019.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/04/2019] [Accepted: 09/24/2019] [Indexed: 12/27/2022]
|
24
|
Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, Benito N, Grau S. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin Microbiol Rev 2019; 32:32/4/e00031-19. [PMID: 31462403 PMCID: PMC6730496 DOI: 10.1128/cmr.00031-19] [Citation(s) in RCA: 465] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In recent years, the worldwide spread of the so-called high-risk clones of multidrug-resistant or extensively drug-resistant (MDR/XDR) Pseudomonas aeruginosa has become a public health threat. This article reviews their mechanisms of resistance, epidemiology, and clinical impact and current and upcoming therapeutic options. In vitro and in vivo treatment studies and pharmacokinetic and pharmacodynamic (PK/PD) models are discussed. Polymyxins are reviewed as an important therapeutic option, outlining dosage, pharmacokinetics and pharmacodynamics, and their clinical efficacy against MDR/XDR P. aeruginosa infections. Their narrow therapeutic window and potential for combination therapy are also discussed. Other "old" antimicrobials, such as certain β-lactams, aminoglycosides, and fosfomycin, are reviewed here. New antipseudomonals, as well as those in the pipeline, are also reviewed. Ceftolozane-tazobactam has clinical activity against a significant percentage of MDR/XDR P. aeruginosa strains, and its microbiological and clinical data, as well as recommendations for improving its use against these bacteria, are described, as are those for ceftazidime-avibactam, which has better activity against MDR/XDR P. aeruginosa, especially strains with certain specific mechanisms of resistance. A section is devoted to reviewing upcoming active drugs such as imipenem-relebactam, cefepime-zidebactam, cefiderocol, and murepavadin. Finally, other therapeutic strategies, such as use of vaccines, antibodies, bacteriocins, anti-quorum sensing, and bacteriophages, are described as future options.
Collapse
Affiliation(s)
- Juan P Horcajada
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Milagro Montero
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Antonio Oliver
- Service of Microbiology, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Luisa Sorlí
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Sònia Luque
- Service of Pharmacy, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Silvia Gómez-Zorrilla
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Natividad Benito
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Santiago Grau
- Service of Pharmacy, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
25
|
Antibiotic resistance in Pseudomonas aeruginosa - Mechanisms, epidemiology and evolution. Drug Resist Updat 2019; 44:100640. [PMID: 31492517 DOI: 10.1016/j.drup.2019.07.002] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
Antibiotics are powerful drugs used in the treatment of bacterial infections. The inappropriate use of these medicines has driven the dissemination of antibiotic resistance (AR) in most bacteria. Pseudomonas aeruginosa is an opportunistic pathogen commonly involved in environmental- and difficult-to-treat hospital-acquired infections. This species is frequently resistant to several antibiotics, being in the "critical" category of the WHO's priority pathogens list for research and development of new antibiotics. In addition to a remarkable intrinsic resistance to several antibiotics, P. aeruginosa can acquire resistance through chromosomal mutations and acquisition of AR genes. P. aeruginosa has one of the largest bacterial genomes and possesses a significant assortment of genes acquired by horizontal gene transfer (HGT), which are frequently localized within integrons and mobile genetic elements (MGEs), such as transposons, insertion sequences, genomic islands, phages, plasmids and integrative and conjugative elements (ICEs). This genomic diversity results in a non-clonal population structure, punctuated by specific clones that are associated with significant morbidity and mortality worldwide, the so-called high-risk clones. Acquisition of MGEs produces a fitness cost in the host, that can be eased over time by compensatory mutations during MGE-host coevolution. Even though plasmids and ICEs are important drivers of AR, the underlying evolutionary traits that promote this dissemination are poorly understood. In this review, we provide a comprehensive description of the main strategies involved in AR in P. aeruginosa and the leading drivers of HGT in this species. The most recently developed genomic tools that allowed a better understanding of the features contributing for the success of P. aeruginosa are discussed.
Collapse
|
26
|
Botelho J, Grosso F, Peixe L. WITHDRAWN: Antibiotic resistance in Pseudomonas aeruginosa – mechanisms, epidemiology and evolution. Drug Resist Updat 2019. [DOI: 10.1016/j.drup.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Khan A, Tran TT, Rios R, Hanson B, Shropshire WC, Sun Z, Diaz L, Dinh AQ, Wanger A, Ostrosky-Zeichner L, Palzkill T, Arias CA, Miller WR. Extensively Drug-Resistant Pseudomonas aeruginosa ST309 Harboring Tandem Guiana Extended Spectrum β-Lactamase Enzymes: A Newly Emerging Threat in the United States. Open Forum Infect Dis 2019; 6:ofz273. [PMID: 31281867 PMCID: PMC6602888 DOI: 10.1093/ofid/ofz273] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/04/2019] [Indexed: 12/26/2022] Open
Abstract
Background Treatment of serious infections due to multidrug-resistant (MDR) Pseudomonas aeruginosa remains a challenge, despite the introduction of novel therapeutics. In this study, we report 2 extensively drug-resistant clinical isolates of sequence type (ST) 309 P aeruginosa resistant to all β-lactams, including the novel combinations ceftolozane/tazobactam, ceftazidime/avibactam, and meropenem/vaborbactam. Methods Isolates were sequenced using both short-read (Illumina) and long-read technology to identify resistance determinants, polymorphisms (compared with P aeruginosa PAO1), and reconstruct a phylogenetic tree. A pair of β-lactamases, Guiana extended spectrum β-lactamase (GES)-19 and GES-26, were cloned and expressed in a laboratory strain of Escherichia coli to examine their relative impact on resistance. Using cell lysates from E coli expressing the GES genes individually and in tandem, we determined relative rates of hydrolysis for nitrocefin and ceftazidime. Results Two ST309 P aeruginosa clinical isolates were found to harbor the extended spectrum β-lactamases GES-19 and GES-26 clustered in tandem on a chromosomal class 1 integron. The presence of both enzymes in E coli was associated with significantly elevated minimum inhibitory concentrations to aztreonam, cefepime, meropenem, ceftazidime/avibactam, and ceftolozane/tazobactam, compared with those expressed individually. The combination of ceftazidime/avibactam plus aztreonam was active in vitro and used to achieve cure in one patient. Phylogenetic analysis revealed ST309 P aeruginosa are closely related to MDR strains from Mexico also carrying tandem GES. Conclusions The presence of tandem GES-19 and GES-26 is associated with resistance to all β-lactams, including ceftolozane/tazobactam. Phylogenetic analysis suggests that ST309 P aeruginosa may be an emerging threat in the United States.
Collapse
Affiliation(s)
- Ayesha Khan
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern School of Medicine, Houston.,Department of Microbiology and Molecular Genetics, McGovern School of Medicine, Houston
| | - Truc T Tran
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern School of Medicine, Houston.,Division of Infectious Diseases, University of Texas Health Science Center, McGovern School of Medicine, Houston
| | - Rafael Rios
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia
| | - Blake Hanson
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern School of Medicine, Houston.,Division of Infectious Diseases, University of Texas Health Science Center, McGovern School of Medicine, Houston.,Center for Infectious Diseases, University of Texas Health Science Center, School of Public Health, Houston
| | - William C Shropshire
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern School of Medicine, Houston.,Center for Infectious Diseases, University of Texas Health Science Center, School of Public Health, Houston
| | - Zhizeng Sun
- Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas
| | - Lorena Diaz
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern School of Medicine, Houston.,Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia
| | - An Q Dinh
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern School of Medicine, Houston.,Division of Infectious Diseases, University of Texas Health Science Center, McGovern School of Medicine, Houston
| | - Audrey Wanger
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern School of Medicine, Houston.,Department of Microbiology and Molecular Genetics, McGovern School of Medicine, Houston
| | - Luis Ostrosky-Zeichner
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern School of Medicine, Houston.,Division of Infectious Diseases, University of Texas Health Science Center, McGovern School of Medicine, Houston
| | - Timothy Palzkill
- Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas
| | - Cesar A Arias
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern School of Medicine, Houston.,Department of Microbiology and Molecular Genetics, McGovern School of Medicine, Houston.,Division of Infectious Diseases, University of Texas Health Science Center, McGovern School of Medicine, Houston.,Center for Infectious Diseases, University of Texas Health Science Center, School of Public Health, Houston.,Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia
| | - William R Miller
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern School of Medicine, Houston.,Division of Infectious Diseases, University of Texas Health Science Center, McGovern School of Medicine, Houston
| |
Collapse
|
28
|
Juhas M. Genomic Islands and the Evolution of Multidrug-Resistant Bacteria. HORIZONTAL GENE TRANSFER 2019:143-153. [DOI: 10.1007/978-3-030-21862-1_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
29
|
Acquisition of Extended-Spectrum β-Lactamase GES-6 Leading to Resistance to Ceftolozane-Tazobactam Combination in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2018; 63:AAC.01809-18. [PMID: 30323045 DOI: 10.1128/aac.01809-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/11/2018] [Indexed: 12/21/2022] Open
Abstract
A clinical Pseudomonas aeruginosa isolate resistant to all β-lactams, including ceftolozane-tazobactam and carbapenems, was recovered. It belonged to sequence type 235 and produced the extended-spectrum β-lactamase (ESBL) GES-6 differing from GES-1 by two amino acid substitutions (E104K and G170S). GES-6 possessed an increased hydrolytic activity toward carbapenems and to ceftolozane and a decreased susceptibility to β-lactamase inhibitors compared to GES-1, except for avibactam. We show here that resistance to ceftolozane-tazobactam may occur through acquisition of a specific ESBL in P. aeruginosa but that ceftazidime-avibactam combination remains an effective alternative.
Collapse
|
30
|
Botelho J, Roberts AP, León-Sampedro R, Grosso F, Peixe L. Carbapenemases on the move: it's good to be on ICEs. Mob DNA 2018; 9:37. [PMID: 30574213 PMCID: PMC6299553 DOI: 10.1186/s13100-018-0141-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022] Open
Abstract
Background The evolution and spread of antibiotic resistance is often mediated by mobile genetic elements. Integrative and conjugative elements (ICEs) are the most abundant conjugative elements among prokaryotes. However, the contribution of ICEs to horizontal gene transfer of antibiotic resistance has been largely unexplored. Results Here we report that ICEs belonging to mating-pair formation (MPF) classes G and T are highly prevalent among the opportunistic pathogen Pseudomonas aeruginosa, contributing to the spread of carbapenemase-encoding genes (CEGs). Most CEGs of the MPFG class were encoded within class I integrons, which co-harbour genes conferring resistance to other antibiotics. The majority of the integrons were located within Tn3-like and composite transposons. Conserved attachment site could be predicted for the MPFG class ICEs. MPFT class ICEs carried the CEGs within composite transposons which were not associated with integrons. Conclusions The data presented here provides a global snapshot of the different CEG-harbouring ICEs and sheds light on the underappreciated contribution of these elements to the evolution and dissemination of antibiotic resistance on P. aeruginosa. Electronic supplementary material The online version of this article (10.1186/s13100-018-0141-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- João Botelho
- 1UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia da Universidade do Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal
| | - Adam P Roberts
- 2Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK.,3Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Ricardo León-Sampedro
- 4Department of Microbiology, University Hospital Ramón y Cajal, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain.,Biomedical Research Networking Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain
| | - Filipa Grosso
- 1UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia da Universidade do Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal
| | - Luísa Peixe
- 1UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia da Universidade do Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal
| |
Collapse
|
31
|
Ko KS. Antibiotic-resistant clones in Gram-negative pathogens: presence of global clones in Korea. J Microbiol 2018; 57:195-202. [PMID: 30552629 DOI: 10.1007/s12275-019-8491-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/26/2022]
Abstract
Antibiotic resistance is a global concern in public health. Antibiotic-resistant clones can spread nationally, internationally, and globally. This review considers representative antibiotic-resistant Gram-negative bacterial clones-CTX-M- 15-producing ST131 in Escherichia coli, extended-spectrum ß-lactamase-producing ST11 and KPC-producing ST258 in Klebsiella pneumoniae, IMP-6-producing, carbapenem-resistant ST235 in Pseudomonas aeruginosa, and OXA-23-producing global clone 2 in Acinetobacter baumannii-that have disseminated worldwide, including in Korea. The findings highlight the urgency for systematic monitoring and international cooperation to suppress the emergence and propagation of antibiotic resistance.
Collapse
Affiliation(s)
- Kwan Soo Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
32
|
Kainuma A, Momiyama K, Kimura T, Akiyama K, Inoue K, Naito Y, Kinoshita M, Shimizu M, Kato H, Shime N, Fujita N, Sawa T. An outbreak of fluoroquinolone-resistant Pseudomonas aeruginosa ST357 harboring the exoU gene. J Infect Chemother 2018; 24:615-622. [PMID: 29628388 DOI: 10.1016/j.jiac.2018.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/11/2018] [Accepted: 03/14/2018] [Indexed: 12/15/2022]
Abstract
Antimicrobial-resistant isolates of Pseudomonas aeruginosa collected from 2005 to 2014 in a university hospital in Kyoto, Japan, were retrospectively analyzed by multilocus sequence typing (MLST), exoenzyme genotype determination, integron characterization, and clinical associations. During the study, 1573 P. aeruginosa isolates were detected, and 41 of these were resistant to more than two classes of antimicrobial agents. Twenty-five (61.0%) isolates were collected from urine. All isolates were resistant to ciprofloxacin, 8 (19.5%) isolates showed resistance to imipenem/cilastatin, and 8 (19.5%) isolates showed resistance to meropenem. None of the isolates fulfilled the clinical criteria for multidrug-resistant P. aeruginosa. All isolates were negative in the metallo-β lactamase test. Thirty-six (87.8%) isolates were of the exoS-exoU+ genotype and 5 (12.2%) isolates were of the exoS+exoU- genotype. Among 36 exoS-exoU+ isolates, 33 (80.5%) were ST357, and 3 (7.3%) were ST235. Five isolates of exoS+exoU- were ST186, ST244, ST314, ST508, and ST512. Thirty-three isolates were positive for class 1 integrons and four different class 1 integrons were detected: aminoglycoside (2') adenyltransferase and chloramphenicol transporter (AadB+CmlA6), OXA-4 β-lactamase and aminoglycoside 3'-adenyltransferase (OXA4+AadA2), AadB alone, and aminoglycoside acetyltransferase alone (AacA31). Among the 41 patients from which the isolates originated, the most common underlying disease was cancer in 16 patients (39%), and 9 patients (22.0%) died during the hospitalization period. There was no statistical correlation between MLST, exoenzyme genotype, and patient mortality. The results indicated outbreaks of fluoroquinolone-resistant P. aeruginosa in immunocompromised patients mainly due to the propagation of potentially virulent ST357 isolates possessing the exoU+ genotype.
Collapse
Affiliation(s)
| | - Kyoko Momiyama
- School of Pharmacy, Kyoto Pharmaceutical University, Kyoto, Japan.
| | - Takeshi Kimura
- Division of Infection Control & Laboratory Medicine at University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Koichi Akiyama
- Department of Anesthesiology, School of Medicine, Japan.
| | - Keita Inoue
- Department of Anesthesiology, School of Medicine, Japan.
| | | | - Mao Kinoshita
- Department of Anesthesiology, School of Medicine, Japan.
| | - Masaru Shimizu
- Department of Anesthesiology, School of Medicine, Japan.
| | - Hideya Kato
- Department of Anesthesiology, School of Medicine, Japan.
| | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Institute of Biochemical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Naohisa Fujita
- Division of Infection Control & Laboratory Medicine at University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Teiji Sawa
- Department of Anesthesiology, School of Medicine, Japan.
| |
Collapse
|
33
|
Botelho J, Grosso F, Quinteira S, Brilhante M, Ramos H, Peixe L. Two decades of blaVIM-2-producing Pseudomonas aeruginosa dissemination: an interplay between mobile genetic elements and successful clones. J Antimicrob Chemother 2018; 73:873-882. [DOI: 10.1093/jac/dkx517] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/08/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- João Botelho
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Filipa Grosso
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Sandra Quinteira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto (CIBIO/UP)/InBio Laboratório Associado, Vairão, Portugal
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Porto, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra, PRD, Portugal
| | - Michael Brilhante
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Helena Ramos
- Serviço de Microbiologia, Centro Hospitalar do Porto, Porto, Portugal
| | - Luísa Peixe
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|