1
|
Agarwal R, Sehgal IS, Muthu V, Denning DW, Chakrabarti A, Soundappan K, Garg M, Rudramurthy SM, Dhooria S, Armstrong-James D, Asano K, Gangneux JP, Chotirmall SH, Salzer HJF, Chalmers JD, Godet C, Joest M, Page I, Nair P, Arjun P, Dhar R, Jat KR, Joe G, Krishnaswamy UM, Mathew JL, Maturu VN, Mohan A, Nath A, Patel D, Savio J, Saxena P, Soman R, Thangakunam B, Baxter CG, Bongomin F, Calhoun WJ, Cornely OA, Douglass JA, Kosmidis C, Meis JF, Moss R, Pasqualotto AC, Seidel D, Sprute R, Prasad KT, Aggarwal AN. Revised ISHAM-ABPA working group clinical practice guidelines for diagnosing, classifying and treating allergic bronchopulmonary aspergillosis/mycoses. Eur Respir J 2024; 63:2400061. [PMID: 38423624 PMCID: PMC10991853 DOI: 10.1183/13993003.00061-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND The International Society for Human and Animal Mycology (ISHAM) working group proposed recommendations for managing allergic bronchopulmonary aspergillosis (ABPA) a decade ago. There is a need to update these recommendations due to advances in diagnostics and therapeutics. METHODS An international expert group was convened to develop guidelines for managing ABPA (caused by Aspergillus spp.) and allergic bronchopulmonary mycosis (ABPM; caused by fungi other than Aspergillus spp.) in adults and children using a modified Delphi method (two online rounds and one in-person meeting). We defined consensus as ≥70% agreement or disagreement. The terms "recommend" and "suggest" are used when the consensus was ≥70% and <70%, respectively. RESULTS We recommend screening for A. fumigatus sensitisation using fungus-specific IgE in all newly diagnosed asthmatic adults at tertiary care but only difficult-to-treat asthmatic children. We recommend diagnosing ABPA in those with predisposing conditions or compatible clinico-radiological presentation, with a mandatory demonstration of fungal sensitisation and serum total IgE ≥500 IU·mL-1 and two of the following: fungal-specific IgG, peripheral blood eosinophilia or suggestive imaging. ABPM is considered in those with an ABPA-like presentation but normal A. fumigatus-IgE. Additionally, diagnosing ABPM requires repeated growth of the causative fungus from sputum. We do not routinely recommend treating asymptomatic ABPA patients. We recommend oral prednisolone or itraconazole monotherapy for treating acute ABPA (newly diagnosed or exacerbation), with prednisolone and itraconazole combination only for treating recurrent ABPA exacerbations. We have devised an objective multidimensional criterion to assess treatment response. CONCLUSION We have framed consensus guidelines for diagnosing, classifying and treating ABPA/M for patient care and research.
Collapse
Affiliation(s)
- Ritesh Agarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Inderpaul Singh Sehgal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Valliappan Muthu
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | - Kathirvel Soundappan
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mandeep Garg
- Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sahajal Dhooria
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Darius Armstrong-James
- Faculty of Medicine, Department of Infectious Disease, Imperial College London, London, UK
| | - Koichiro Asano
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Jean-Pierre Gangneux
- Université Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes, France
- CHU Rennes, Laboratoire de Parasitologie-Mycologie, ECMM Excellence Center in Medical Mycology, Rennes, France
- National Reference Center on Mycoses and Antifungals (CNRMA LA-Asp C), Rennes, France
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU) and Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Helmut J F Salzer
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine-Pneumology, Kepler University Hospital and Medical Faculty, Johannes Kepler University, Linz, Austria
| | | | - Cendrine Godet
- Université Paris Sorbonne, AP-HP, Hôpital Tenon, Service de Pneumologie et Oncologie Thoracique, Centre Constitutif Maladies Pulmonaires Rares Paris, Paris, France
| | | | - Iain Page
- NHS Lothian, Regional Infectious Diseases Unit, Western General Hospital, Edinburgh, UK
| | - Parameswaran Nair
- McMaster University, McGill University, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - P Arjun
- KIMS Hospital, Trivandrum, India
| | - Raja Dhar
- Department of Pulmonology, CK Birla Hospitals, Kolkata, India
| | - Kana Ram Jat
- Division of Pediatric Pulmonology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | | | | | - Joseph L Mathew
- Pediatric Pulmonology Division, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Anant Mohan
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Alok Nath
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute, Lucknow, India
| | - Dharmesh Patel
- City Clinic and Bhailal Amin General Hospital, Vadodara, India
| | - Jayanthi Savio
- Department of Microbiology, St John's Medical College and Hospital, Bengaluru, India
| | - Puneet Saxena
- Pulmonary and Critical Care Medicine, Army Hospital (R&R), New Delhi, India
| | - Rajeev Soman
- Department of Infectious Diseases, Jupiter Hospital, Pune, India
| | | | - Caroline G Baxter
- Department of Respiratory Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Felix Bongomin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Gulu University, Gulu, Uganda
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - William J Calhoun
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Oliver A Cornely
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
| | - Jo A Douglass
- University of Melbourne, Royal Melbourne Hospital, Parkville, Australia
| | - Chris Kosmidis
- Division of Evolution, Infection and Genomics, University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK
| | - Jacques F Meis
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
- Center of Expertise in Mycology Radboudumc/CWZ Nijmegen, Nijmegen, The Netherlands
| | - Richard Moss
- Center of Excellence in Pulmonary Biology, Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Alessandro C Pasqualotto
- Molecular Biology Laboratory, Santa Casa de Misericordia de Porto Alegre, Porto Alegre, Brazil
- Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Danila Seidel
- Department of Internal Medicine, University Hospital, Cologne, Germany
| | - Rosanne Sprute
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
| | - Kuruswamy Thurai Prasad
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashutosh N Aggarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
2
|
Roboubi A, Audousset C, Fréalle É, Brun AL, Laurent F, Vitte J, Mortuaire G, Lefevre G, Cadranel J, Chenivesse C. Allergic bronchopulmonary aspergillosis: A multidisciplinary review. J Mycol Med 2023; 33:101392. [PMID: 37172543 DOI: 10.1016/j.mycmed.2023.101392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is a rare disease characterized by a complex allergic inflammatory reaction of airways against Aspergillus affecting patients with chronic respiratory diseases (asthma, cystic fibrosis). Exacerbation is often the way to diagnose ABPA and marks its evolution by its recurrent character leading to cortico-requirement or long-term antifungal treatment. Early diagnosis allows treatment of ABPA at an initial stage, preventing recurrence of exacerbations and long-term complications, mainly represented by bronchiectasis. This review of the literature aims to present the current state of the art in terms of diagnosis and treatment of ABPA from a multidisciplinary perspective. As there is no clinical, biological nor radiological specific sign, diagnostic criteria are regularly revised. They are mainly based on the elevation of total and specific IgE against Aspergillus fumigatus and the presence of suggestive CT abnormalities such as mucoid impaction and consolidations. ABPA management includes eviction of mold and pharmacological therapy. Exacerbations are treated in first line with a moderate dose of oral corticosteroids. Azole antifungal agents represent an alternative for the treatment of exacerbations and are the preferential strategy to reduce the future risk of exacerbations and for corticosteroids sparing. Asthma biologics may be of interest; however, their place remains to be determined. Avoiding complications of ABPA while limiting the side effects of systemic drugs remains a major challenge of ABPA management. Several drugs, including new antifungals and asthma biologics, are currently being tested and may be useful in the future.
Collapse
Affiliation(s)
| | - Camille Audousset
- CHU Lille, Univ. Lille, CNRS, Inserm, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Émilie Fréalle
- CHU Lille, Laboratoire de Parasitologie-Mycologie, Univ. Lille, ULR 4515-LGCgE, Laboratoire de Génie Civil et Géo-Environnement, Lille F-59000, France
| | - Anne-Laure Brun
- Hôpital Foch, Service de radiologie diagnostique et interventionnelle, Suresnes, France
| | - François Laurent
- Université de Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, INSERM U1045, CIC1401, CHU de Bordeaux, Pessac, France
| | - Joana Vitte
- Aix-Marseille Univ, MEPHI, Marseille, France; IHU Méditerranée Infection, Marseille, France; Desbrest Institute of Epidemiology and Public Health IDESP, Univ Montpellier, INSERM UA 11, Montpellier, France
| | - Geoffrey Mortuaire
- CHU de Lille, Service d'ORL et de chirurgie cervico-faciale, Lille 59000, France; Université de Lille, Inserm, CHU de Lille, U1286, INFINITE-Institute for translational research in inflammation, Lille 59000, France
| | - Guillaume Lefevre
- Univ Lille, U1286 INFINITE - Lille Inflammation Research International Center, CHU Lille, Lille, France
| | - Jacques Cadranel
- Sorbonne Université, APHP-Hopital Tenon, GRC04 Theranoscan Sorbonne Université, Paris, France
| | - Cécile Chenivesse
- Univ. Lille, CHU Lille, CNRS, Inserm, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France; CRISALIS (Clinical Research Initiative in Severe Asthma: a Lever for Innovation & Science), F-CRIN Network, INSERM US015, Toulouse, France.
| |
Collapse
|
3
|
Oliveira M, Oliveira D, Lisboa C, Boechat JL, Delgado L. Clinical Manifestations of Human Exposure to Fungi. J Fungi (Basel) 2023; 9:jof9030381. [PMID: 36983549 PMCID: PMC10052331 DOI: 10.3390/jof9030381] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Biological particles, along with inorganic gaseous and particulate pollutants, constitute an ever-present component of the atmosphere and surfaces. Among these particles are fungal species colonizing almost all ecosystems, including the human body. Although inoffensive to most people, fungi can be responsible for several health problems, such as allergic fungal diseases and fungal infections. Worldwide fungal disease incidence is increasing, with new emerging fungal diseases appearing yearly. Reasons for this increase are the expansion of life expectancy, the number of immunocompromised patients (immunosuppressive treatments for transplantation, autoimmune diseases, and immunodeficiency diseases), the number of uncontrolled underlying conditions (e.g., diabetes mellitus), and the misusage of medication (e.g., corticosteroids and broad-spectrum antibiotics). Managing fungal diseases is challenging; only four classes of antifungal drugs are available, resistance to these drugs is increasing, and no vaccines have been approved. The present work reviews the implications of fungal particles in human health from allergic diseases (i.e., allergic bronchopulmonary aspergillosis, severe asthma with fungal sensitization, thunderstorm asthma, allergic fungal rhinosinusitis, and occupational lung diseases) to infections (i.e., superficial, subcutaneous, and systemic infections). Topics such as the etiological agent, risk factors, clinical manifestations, diagnosis, and treatment will be revised to improve the knowledge of this growing health concern.
Collapse
Affiliation(s)
- Manuela Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Ipatimup-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Diana Oliveira
- CRN-Unidade de Reabilitação AVC, Centro de Reabilitação do Norte, Centro Hospitalar de Vila Nova de Gaia/Espinho, Avenida dos Sanatórios 127, 4405-565 Vila Nova de Gaia, Portugal
| | - Carmen Lisboa
- Serviço de Microbiologia, Departamento de Patologia, Faculdade de Medicina do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Serviço de Dermatologia, Centro Hospitalar Universitário de São João, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- CINTESIS@RISE-Centro de Investigação em Tecnologias e Serviços de Saúde, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - José Laerte Boechat
- CINTESIS@RISE-Centro de Investigação em Tecnologias e Serviços de Saúde, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Luís Delgado
- CINTESIS@RISE-Centro de Investigação em Tecnologias e Serviços de Saúde, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Laboratório de Imunologia, Serviço de Patologia Clínica, Centro Hospitalar e Universitário de São João, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
4
|
Steels S, Proesmans M, Bossuyt X, Dupont L, Frans G. Laboratory biomarkers in the diagnosis and follow-up of treatment of allergic bronchopulmonary aspergillosis in cystic fibrosis. Crit Rev Clin Lab Sci 2023; 60:1-24. [PMID: 35968577 DOI: 10.1080/10408363.2022.2101612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Allergic bronchopulmonary aspergillosis (ABPA), a severe inflammatory respiratory disease, is caused by a hypersensitivity reaction to the colonization of the airways with Aspergillus fumigatus. It is most often described in patients with asthma or cystic fibrosis. The diagnosis of ABPA is based on a combination of clinical, radiological, and immunological findings that have been included in different diagnostic criteria over the years. In this paper, we review the biomarkers included in these diagnostic criteria and novel research biomarkers that may be used in the diagnosis and treatment follow-up of ABPA in cystic fibrosis.
Collapse
Affiliation(s)
- Sophie Steels
- Department of Laboratory Medicine, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Marijke Proesmans
- Department of Pediatrics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Xavier Bossuyt
- Department of Laboratory Medicine, University Hospitals Leuven, KU Leuven, Leuven, Belgium.,Clinical and Diagnostic Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Lieven Dupont
- Department of Respiratory Medicine, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Glynis Frans
- Department of Laboratory Medicine, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Nwankwo L, Gilmartin D, Matharu S, Nuh A, Donovan J, Armstrong-James D, Shah A. Experience of Isavuconazole as a Salvage Therapy in Chronic Pulmonary Fungal Disease. J Fungi (Basel) 2022; 8:362. [PMID: 35448593 PMCID: PMC9029347 DOI: 10.3390/jof8040362] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/20/2022] [Accepted: 03/27/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Instances of resistant fungal infection are rising in pulmonary disease, with limited therapeutic options. Therapeutic drug monitoring of azole antifungals has been necessary to ensure safety and efficacy but is considered unnecessary for the newest triazole isavuconazole. Aims: To characterise the prevalence of isavuconazole resistance and use in a tertiary respiratory centre. Methods: A retrospective observational analysis (2016−2021) of adult respiratory patients analysing fungal culture, therapeutic drug monitoring, and outcome post-isavuconazole therapy. Results: During the study period, isavuconazole susceptibility testing was performed on 26 Aspergillus spp. isolates. A total of 80.8% of A. fumigatus isolates had isavuconazole (MIC > 1 mg/L, and 73.0% > 2 mg/L) with a good correlation to voriconazole MIC (r = 0.7, p = 0.0002). A total of 54 patients underwent isavuconazole therapy during the study period (median duration 234 days (IQR: 24−499)). A total of 67% of patients tolerated isavuconazole, despite prior azole toxicity in 61.8%, with increased age (rpb = 0.31; p = 0.021) and male sex (φc = 0.30; p = 0.027) being associated with toxicity. A total of 132 isavuconazole levels were performed with 94.8% > 1 mg/L and 72% > 2 mg/L. Dose change from manufacturer’s recommendation was, however, required in 9.3% to achieve a concentration of >2 mg/L. Conclusion: We describe the use of isavuconazole as a salvage therapy in a chronic pulmonary fungal disease setting with a high prevalence of azole resistance. Therapeutic concentrations at standard dosing were high; however, results reinforce antifungal stewardship for optimization.
Collapse
Affiliation(s)
- Lisa Nwankwo
- Pharmacy Department, Royal Brompton Hospital, Guy’s and St. Thomas’ NHS Foundation Trust, London SW3 6NP, UK
| | - Desmond Gilmartin
- Clinical Informatics, Royal Brompton and Harefield Hospital Foundation NHS Trust, Fulham, London SW3 6HP, UK; (D.G.); (S.M.)
| | - Sheila Matharu
- Clinical Informatics, Royal Brompton and Harefield Hospital Foundation NHS Trust, Fulham, London SW3 6HP, UK; (D.G.); (S.M.)
| | - Ali Nuh
- Microbiology Department, Royal Brompton Hospital, Guy’s and St. Thomas’ NHS Foundation Trust, London SW3 6NP, UK; (A.N.); (D.A.-J.)
| | - Jackie Donovan
- Department of Pathology, Royal Brompton and Harefield NHS Foundation Trust, London SW3 6NP, UK;
| | - Darius Armstrong-James
- Microbiology Department, Royal Brompton Hospital, Guy’s and St. Thomas’ NHS Foundation Trust, London SW3 6NP, UK; (A.N.); (D.A.-J.)
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Diseases, Imperial College London, London SW7 2AZ, UK
- Department of Respiratory Medicine, Royal Brompton Hospital, Guy’s and St. Thomas’ NHS Foundation Trust, London SW3 6NP, UK
| | - Anand Shah
- Department of Respiratory Medicine, Royal Brompton Hospital, Guy’s and St. Thomas’ NHS Foundation Trust, London SW3 6NP, UK
- MRC Centre of Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College, London W2 1PG, UK
| |
Collapse
|
6
|
Kably B, Launay M, Derobertmasure A, Lefeuvre S, Dannaoui E, Billaud EM. Antifungal Drugs TDM: Trends and Update. Ther Drug Monit 2022; 44:166-197. [PMID: 34923544 DOI: 10.1097/ftd.0000000000000952] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE The increasing burden of invasive fungal infections results in growing challenges to antifungal (AF) therapeutic drug monitoring (TDM). This review aims to provide an overview of recent advances in AF TDM. METHODS We conducted a PubMed search for articles during 2016-2020 using "TDM" or "pharmacokinetics" or "drug-drug-interaction" with "antifungal," consolidated for each AF. Selection was limited to English language articles with human data on drug exposure. RESULTS More than 1000 articles matched the search terms. We selected 566 publications. The latest findings tend to confirm previous observations in real-life clinical settings. The pharmacokinetic variability related to special populations is not specific but must be considered. AF benefit-to-risk ratio, drug-drug interaction (DDI) profiles, and minimal inhibitory concentrations for pathogens must be known to manage at-risk situations and patients. Itraconazole has replaced ketoconazole in healthy volunteers DDI studies. Physiologically based pharmacokinetic modeling is widely used to assess metabolic azole DDI. AF prophylactic use was studied more for Aspergillus spp. and Mucorales in oncohematology and solid organ transplantation than for Candida (already studied). Emergence of central nervous system infection and severe infections in immunocompetent individuals both merit special attention. TDM is more challenging for azoles than amphotericin B and echinocandins. Fewer TDM requirements exist for fluconazole and isavuconazole (ISZ); however, ISZ is frequently used in clinical situations in which TDM is recommended. Voriconazole remains the most challenging of the AF, with toxicity limiting high-dose treatments. Moreover, alternative treatments (posaconazole tablets, ISZ) are now available. CONCLUSIONS TDM seems to be crucial for curative and/or long-term maintenance treatment in highly variable patients. TDM poses fewer cost issues than the drugs themselves or subsequent treatment issues. The integration of clinical pharmacology into multidisciplinary management is now increasingly seen as a part of patient care.
Collapse
Affiliation(s)
- Benjamin Kably
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Européen Georges Pompidou, AP-HP Centre
- Faculté de Médecine, Université de Paris, Paris, France
| | - Manon Launay
- Laboratoire de Pharmacologie-Toxicologie-Gaz du sang, Hôpital Nord-CHU Saint Etienne, Saint-Etienne
| | - Audrey Derobertmasure
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Européen Georges Pompidou, AP-HP Centre
| | - Sandrine Lefeuvre
- Laboratoire de Toxicologie et Pharmacocinétique, CHU de Poitiers, Poitiers; and
| | - Eric Dannaoui
- Faculté de Médecine, Université de Paris, Paris, France
- Unité de Parasitologie-Mycologie, Laboratoire de Microbiologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Eliane M Billaud
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Européen Georges Pompidou, AP-HP Centre
- Faculté de Médecine, Université de Paris, Paris, France
| |
Collapse
|
7
|
Lewington-Gower E, Chan L, Shah A. Review of current and future therapeutics in ABPA. Ther Adv Chronic Dis 2021; 12:20406223211047003. [PMID: 34729149 PMCID: PMC8543630 DOI: 10.1177/20406223211047003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/26/2021] [Indexed: 12/17/2022] Open
Abstract
Allergic bronchopulmonary aspergillosis is an allergic pulmonary condition caused by hypersensitivity to antigens of Aspergillus sp. found most commonly in patients with underlying asthma or cystic fibrosis. Host factors which alter the innate and adaptive immune responses to this abundant airborne fungus contribute to the development of chronic airway inflammation, bronchiectasis, and fibrosis. Traditionally, treatment has focussed on reducing fungal burden and immune response to fungal antigens. However, a significant proportion of patients continue to suffer recurrent exacerbations with progressive lung damage, and the side effect burden of existing treatments is high. New treatments including novel antifungal agents, monoclonal antibodies against aspects of the adaptive immune response as well as targeted immunotherapies may be better tolerated and achieve improved outcomes but have not yet been studied in large-scale randomised control trials.
Collapse
Affiliation(s)
- Elisa Lewington-Gower
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Ley Chan
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Anand Shah
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London SW3 6NP, UK
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
8
|
Aldossary S, Shah A. Healthcare Utilization and Impact of Antifungal Stewardships Within Respiratory Care Settings: A Systematic Literature Review. Mycopathologia 2021; 186:673-684. [PMID: 33991279 PMCID: PMC8536614 DOI: 10.1007/s11046-021-00547-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/17/2021] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Fungal infection and sensitization are common in chronic respiratory patient populations such as bronchiectasis, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) and are often associated with prolonged antifungal therapy (Hohmann et al. in Clin Infect Dis 15:939-940, 2010; Vissichelli et al. in Infect Prev Pract 1:100029, 2019), morbidity, and mortality. Although the use of antifungal stewardship (AFS) is increasing within an invasive fungal disease setting, its use and impact within a chronic respiratory setting have not been defined. METHODS A systematic literature review was conducted using PRISMA guidelines to evaluate the use of antifungal stewardship within a chronic respiratory care setting. Three databases have been searched, Medline via Ovid, Embase and GlobalHealth, for papers published between 1949 and 2020. RESULTS The initial search identified 987 papers from Medline, 1761 papers from Embase, and 481 papers from GlobalHealth. Only 28 papers met the criteria for inclusion in this systematic literature review. The included studies were subjected to CASP and GRADE assessments to rank their quality and applicability. Only two studies were focussed on Aspergillus species infection. CONCLUSION Although antifungal stewardship is increasing, its applications are still limited in chronic respiratory care settings despite the prolonged requirement for antifungal therapy and high antimicrobial resistance.
Collapse
Affiliation(s)
- Salma Aldossary
- Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Anand Shah
- Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK.
- MRC Centre of Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK.
| |
Collapse
|
9
|
Sareen A, Ramphul M, Bhatt JM. It's not all about inhaled treatment: challenges with oral therapy in paediatric respiratory medicine. Breathe (Sheff) 2021; 17:210005. [PMID: 34295409 PMCID: PMC8291910 DOI: 10.1183/20734735.0005-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/30/2021] [Indexed: 12/02/2022] Open
Abstract
Advances in therapies and management of conditions encountered by paediatric respiratory specialists have led to improved outcomes and improved survival rates dramatically in chronic diseases such as cystic fibrosis. However, this has also meant an increase in treatment burden. A variety of inhaled treatments are crucial in managing paediatric respiratory diseases, but these patients also have to take many oral medications. It is widely recognised that developing oral formulations appropriate for the paediatric population can affect how well a product is received by patients and their families. Consideration should be given to palatability and the number of medicines to be administered as these can all contribute to treatment adherence. Polypharmacy specifically in the context of management of patients with cystic fibrosis is not a new concept, but the recently introduced cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies and their potential for interactions and adverse reactions create novel challenges. There are some strategies that families and healthcare professionals can implement to reduce treatment burden. This review will also provide some insight into the life of a teenager with cystic fibrosis and the relative complexities of her treatment and the impacts on daily life. In children, medications given by the oral route can be challenging to administer, add to the burden of care and contribute to poor adherence. Additionally, polypharmacy increases the chances of interactions between oral medications.https://bit.ly/3fxgXQU
Collapse
Affiliation(s)
- Anneka Sareen
- Pharmacy Dept, Nottingham Children's Hospital, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, UK
| | - Manisha Ramphul
- Paediatric Respiratory Medicine, Nottingham Children's Hospital, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, UK
| | - Jayesh Mahendra Bhatt
- Paediatric Respiratory Medicine, Nottingham Children's Hospital, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
10
|
Tompkins MG, Pettit R. Beyond the Guidelines: Treatment of Allergic Bronchopulmonary Aspergillosis in Cystic Fibrosis. Ann Pharmacother 2021; 56:181-192. [PMID: 34078140 DOI: 10.1177/10600280211022065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To review the available literature addressing alternative allergic bronchopulmonary aspergillosis (ABPA) treatment options for patients with cystic fibrosis (CF). DATA SOURCES A literature search of PubMed was performed (January 2002 to April 2021) using the following search terms: allergic bronchopulmonary aspergillosis, aspergillus-related lung disease, cystic fibrosis. Manufacturer prescribing information, clinical practice guidelines, and data from ClinicalTrials.gov were incorporated in the reviewed data. STUDY SELECTION AND DATA EXTRACTION Relevant English-language studies or those conducted in humans were considered for inclusion. DATA SYNTHESIS Available literature for alternative ABPA treatments in CF is lacking randomized controlled trials, but there is considerable support in case reports and case series describing the benefits in pediatric and adult patients. Recent literature has begun to explore the place in therapy for novel, corticosteroid-sparing treatment approaches. The alternative therapies summarized in this review all resulted in clinical improvement and subsequent discontinuation or dose reductions of oral corticosteroids, with minimal reported adverse drug effects. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE Although corticosteroids are the cornerstone of ABPA management, the toxicities can be significant limitations in an already high-risk patient population. Patients may fail or become intolerant to guideline-recommended therapies and require alternative treatment approaches. CONCLUSIONS Alternative treatment modalities for ABPA in patients with CF, including azole antifungals, pulsed intravenous glucocorticoids, omalizumab, mepolizumab, and inhaled amphotericin, appear to be efficacious and well tolerated. Pharmacological properties including route of administration, storage and stability, beyond use dating, and adverse effects of the various treatment modalities must be considered when selecting a practical care plan for patients.
Collapse
Affiliation(s)
- Madeline G Tompkins
- Riley Hospital for Children at Indiana University Health, Indianapolis, IN, USA
| | - Rebecca Pettit
- Riley Hospital for Children at Indiana University Health, Indianapolis, IN, USA
| |
Collapse
|
11
|
Bercusson A, Jarvis G, Shah A. CF Fungal Disease in the Age of CFTR Modulators. Mycopathologia 2021; 186:655-664. [PMID: 33813719 PMCID: PMC8536598 DOI: 10.1007/s11046-021-00541-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022]
Abstract
Fungi are increasingly recognised to have a significant role in the progression of lung disease in Cystic fibrosis with Aspergillus fumigatus the most common fungus isolated during respiratory sampling. The emergence of novel CFTR modulators has, however, significantly changed the outlook of disease progression in CF. In this review we discuss what impact novel CFTR modulators will have on fungal lung disease and its management in CF. We discuss how CFTR modulators affect antifungal innate immunity and consider the impact of Ivacaftor on fungal disease in individuals with gating mutations. We further review the increasing complication of drug-drug interactions with concurrent use of azole antifungal medication and highlight key unknowns that require addressing to fully understand the impact of CFTR modulators on fungal disease.
Collapse
Affiliation(s)
- Amelia Bercusson
- Cystic Fibrosis Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - George Jarvis
- Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Anand Shah
- Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK. .,Department of Infectious Disease Epidemiology, MRC Centre of Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK.
| |
Collapse
|
12
|
Curran AK, Hava DL. Allergic Diseases Caused by Aspergillus Species in Patients with Cystic Fibrosis. Antibiotics (Basel) 2021; 10:antibiotics10040357. [PMID: 33800658 PMCID: PMC8067098 DOI: 10.3390/antibiotics10040357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 01/04/2023] Open
Abstract
Aspergillus spp. are spore forming molds; a subset of which are clinically relevant to humans and can cause significant morbidity and mortality. A. fumigatus causes chronic infection in patients with chronic lung disease such as asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF). In patients with CF, A. fumigatus infection can lead to allergic disease, such as allergic bronchopulmonary aspergillosis (ABPA) which is associated with high rates of hospitalizations for acute exacerbations and lower lung function. ABPA results from TH2 immune response to Aspergillus antigens produced during hyphal growth, marked by high levels of IgE and eosinophil activation. Clinically, patients with ABPA experience difficulty breathing; exacerbations of disease and are at high risk for bronchiectasis and lung fibrosis. Oral corticosteroids are used to manage aspects of the inflammatory response and antifungal agents are used to reduce fungal burden and lower the exposure to fungal antigens. As the appreciation for the severity of fungal infections has grown, new therapies have emerged that aim to improve treatment and outcomes for patients with CF.
Collapse
Affiliation(s)
| | - David L. Hava
- Synlogic Inc., 301 Binney Street, Cambridge, MA 02142, USA
- Correspondence:
| |
Collapse
|
13
|
Di Paolo M, Hewitt L, Nwankwo E, Ni M, Vidal-Diaz A, Fisher MC, Armstrong-James D, Shah A. A retrospective 'real-world' cohort study of azole therapeutic drug monitoring and evolution of antifungal resistance in cystic fibrosis. JAC Antimicrob Resist 2021; 3:dlab026. [PMID: 34223100 PMCID: PMC8210303 DOI: 10.1093/jacamr/dlab026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/11/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Individuals with cystic fibrosis (CF) have an increased susceptibility to fungal infection/allergy, with triazoles often used as first-line therapy. Therapeutic drug monitoring (TDM) is essential due to significant pharmacokinetic variability and the recent emergence of triazole resistance worldwide. OBJECTIVES In this retrospective study we analysed the 'real-world' TDM of azole therapy in a large CF cohort, risk factors for subtherapeutic dosing, and the emergence of azole resistance. METHODS All adults with CF on azole therapy in a large single UK centre were included. Clinical demographics, TDM and microbiology were analysed over a 2 year study period (2015-17) with multivariate logistic regression used to identify risk factors for subtherapeutic dosing. RESULTS 91 adults were treated with azole medication during the study period. A high prevalence of chronic subtherapeutic azole dosing was seen with voriconazole (60.8%) and itraconazole capsule (59.6%) use, representing significant risk factors for subtherapeutic levels. Rapid emergence of azole resistance was additionally seen over the follow-up period with a 21.4% probability of CF patients developing a resistant fungal isolate after 2 years. No significant relationship was found however between subtherapeutic azole dosing and azole resistance emergence. CONCLUSIONS Our study demonstrates a high prevalence of subtherapeutic azole levels in CF adults with increased risk using itraconazole capsules and voriconazole therapy. We show rapid emergence of azole resistance highlighting the need for effective antifungal stewardship. Further large longitudinal studies are needed to understand the effects of antifungal resistance on outcome in CF and the implications of subtherapeutic dosing on resistance evolution.
Collapse
Affiliation(s)
- M Di Paolo
- Department of Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - L Hewitt
- Department of Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
- Faculty of Medicine, Department of Infectious Diseases, Imperial College London, London, UK
| | - E Nwankwo
- Department of Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - M Ni
- London In Vitro Diagnostics Collaborative, Department of Surgery and Cancer, Imperial College London, UK
| | - A Vidal-Diaz
- London In Vitro Diagnostics Collaborative, Department of Surgery and Cancer, Imperial College London, UK
| | - M C Fisher
- MRC Centre of Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, UK
| | - D Armstrong-James
- Department of Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
- Faculty of Medicine, Department of Infectious Diseases, Imperial College London, London, UK
| | - A Shah
- Department of Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
- MRC Centre of Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, UK
| |
Collapse
|
14
|
Guegan H, Prat E, Robert-Gangneux F, Gangneux JP. Azole Resistance in Aspergillus fumigatus: A Five-Year Follow Up Experience in a Tertiary Hospital With a Special Focus on Cystic Fibrosis. Front Cell Infect Microbiol 2021; 10:613774. [PMID: 33680981 PMCID: PMC7930226 DOI: 10.3389/fcimb.2020.613774] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
Azole-resistant Aspergillus fumigatus (ARAf) has emerged worldwide during the last decades. Drug pressure after long term treatments of chronically infected patients and the propagation of environmental clones selected under the pressure of imidazoles fungicides used in agriculture and farming both account for this emergence. The objectives of this study were to determine the rate of azole resistance in Aspergillus fumigatus during a 5-year period, taking into account (i) differences between underlying diseases of the patients treated, (ii) cross-resistance between azoles, and (iii) focusing on the 5-year evolution of our center’s cystic fibrosis cohort. Overall, the rates of voriconazole (VRC)-resistant and itraconazole (ITC)-resistant A. fumigatus isolates were 4.1% (38/927) and 14.5% (95/656), respectively, corresponding to 21/426 (4.9%) and 44/308 (14.3%) patients, respectively. Regarding cross-resistance, among VRC-R isolates tested for ITC, nearly all were R (20/21;95%), compared to only 27% (20/74) of VRC-R among ITC-R isolates. The level of azole resistance remained somewhat stable over years but greatly varied according to the azole drug, patient origin, and clinical setting. Whereas azole resistance during invasive aspergillosis was very scarce, patients with cystic fibrosis were infected with multiple strains and presented the highest rate of resistance: 5% (27/539) isolates were VRC-R and 17.9% (78/436) were ITC-R. These results underline that the interpretation of the azole resistance level in Aspergilllus fumigatus in a routine setting may consider the huge variability depending on the azole drug, the clinical setting, the patient background and the type of infection.
Collapse
Affiliation(s)
- Hélène Guegan
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Rennes, Rennes, France.,Univ Rennes, CHU, Inserm, Irset (Institut de Recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Emilie Prat
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Florence Robert-Gangneux
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Rennes, Rennes, France.,Univ Rennes, CHU, Inserm, Irset (Institut de Recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Jean-Pierre Gangneux
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Rennes, Rennes, France.,Univ Rennes, CHU, Inserm, Irset (Institut de Recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| |
Collapse
|
15
|
Abstract
Posaconazole is typically used for preventing invasive yeast and mold infections such as invasive aspergillosis in high-risk immunocompromised patients. The oral suspension was the first released formulation and many pharmacokinetic and pharmacodynamic studies of this formulation have been published. Erratic absorption profiles associated with this formulation were widely reported. Posaconazole exposure was found to be significantly influenced by food and many gastrointestinal conditions, including pH and motility. As a result, low posaconazole plasma concentrations were obtained in large groups of patients. These issues of erratic absorption urged the development of the subsequently marketed delayed-release tablet, which proved to be associated with higher and more stable exposure profiles. Shortly thereafter, an intravenous formulation was released for patients who are not able to take oral formulations. Both new formulations require a loading dose on day 1 to achieve high posaconazole concentrations more quickly, which was not possible with the oral suspension. So far, there appears to be no evidence of increased toxicity correlated to the higher posaconazole exposure achieved with the regimen for these formulations. The higher systemic availability of posaconazole for the delayed-release tablet and intravenous formulation have resulted in these two formulations being preferable for both prophylaxis and treatment of invasive fungal disease. This review aimed to integrate the current knowledge on posaconazole pharmacokinetics, pharmacodynamics, major toxicity, existing resistance, clinical experience in special populations, and new therapeutic strategies in order to get a clear understanding of the clinical use of this drug.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Allergic bronchopulmonary aspergillosis (ABPA) is a disease frequently complicating asthma and cystic fibrosis. ABPA is increasingly recognized in other obstructive lung diseases (OLDs), including chronic obstructive pulmonary disease (COPD) and noncystic fibrosis bronchiectasis. Herein, we summarize the recent developments in ABPA complicating OLDs. RECENT FINDINGS Recent research has described the clinical features and natural history of ABPA complicating asthma in children and the elderly. We have gained insights into the pathophysiology of ABPA, especially the role of eosinophil extracellular trap cell death and mucus plugs. The utility of recombinant fungal antigens in the diagnosis of ABPA has been established. Newer, more sensitive criteria for the diagnosis of ABPA have been proposed. Although ABPA is uncommon in COPD and noncystic fibrosis bronchiectasis, aspergillus sensitization is more common and is associated with a higher exacerbation rate. SUMMARY Several advances have occurred in the diagnosis and treatment of ABPA in recent years. However, there is an unmet need for research into the genetic predisposition, pathophysiology, and treatment of ABPA. Apart from asthma and cystic fibrosis, patients with other OLDs also require evaluation for Aspergillus sensitization and ABPA.
Collapse
|
17
|
Epps QJ, Epps KL, Zobell JT, Young DC. Optimization of antimicrobials in the treatment of cystic fibrosis pulmonary exacerbations: II. Therapies for allergic bronchopulmonary aspergillosis. Pediatr Pulmonol 2020; 55:3541-3572. [PMID: 32946194 DOI: 10.1002/ppul.25080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
This review is the second article in the State-of-the-Art series and aims to evaluate medications used in the treatment of allergic bronchopulmonary aspergillosis (ABPA) in pediatric and adult patients with cystic fibrosis (CF). ABPA is one of several organisms that are found in the airways of CF patients. This review provides an evidence-based summary of pharmacokinetic (PK)/pharmacodynamic (PD), tolerability, and efficacy studies of medications including corticosteroids, amphotericin B, azole antifungals (isavuconazole, itraconazole, posaconazole, and voriconazole), and a monoclonal antibody omalizumab in the treatment of ABPA and identifies areas where further study is warranted.
Collapse
Affiliation(s)
- Quovadis J Epps
- Florida Agricultural and Mechanical University College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Jacksonville, Florida, USA
| | - Kevin L Epps
- Department of Pharmacy, The Mayo Clinic, Jacksonville, Florida, USA
| | - Jeffery T Zobell
- Department of Pharmacy, Intermountain Primary Children's Hospital, Salt Lake City, Utah, USA.,Intermountain Healthcare, Primary Children's Cystic Fibrosis Pediatric Center, Salt Lake City, Utah, USA
| | - David C Young
- Department of Pharmacy Practice, L.S. Skaggs Pharmacy Institute, University of Utah College of Pharmacy, Salt Lake City, Utah, USA.,University of Utah, University of Utah Adult Cystic Fibrosis Center, Salt Lake City, Utah, USA
| |
Collapse
|
18
|
Lattanzi C, Messina G, Fainardi V, Tripodi MC, Pisi G, Esposito S. Allergic Bronchopulmonary Aspergillosis in Children with Cystic Fibrosis: An Update on the Newest Diagnostic Tools and Therapeutic Approaches. Pathogens 2020; 9:E716. [PMID: 32878014 PMCID: PMC7559707 DOI: 10.3390/pathogens9090716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 11/30/2022] Open
Abstract
Cystic fibrosis (CF), the most common autosomal-recessive genetic disease in the Caucasian population, is characterized by frequent respiratory infections and progressive lung disease. Fungal species are commonly found in patients with CF, and among them, Aspergillus fumigatus is the most frequently isolated. While bacteria, particularly Pseudomonas aeruginosa, have a well-established negative effect on CF lung disease, the impact of fungal infections remains unclear. In patients with CF, inhalation of Aspergillus conidia can cause allergic bronchopulmonary aspergillosis (ABPA), a Th2-mediated lung disease that can contribute to disease progression. Clinical features, diagnostic criteria and treatment of ABPA are still a matter of debate. Given the consequences of a late ABPA diagnosis or the risk of ABPA overdiagnosis, it is imperative that the diagnostic criteria guidelines are reviewed and standardized. Along with traditional criteria, radiological features are emerging as tools for further classification as well as novel immunological tests. Corticosteroids, itraconazole and voriconazole continue to be the bedrock of ABPA therapy, but other molecules, such as posaconazole, vitamin D, recombinant INF-γ and Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) modulators, have been showing positive results. However, few studies have been conducted recruiting CF patients, and more research is needed to improve the prevention and the classification of clinical manifestations as well as to personalize treatment. Early recognition and early treatment of fungal infections may be fundamental to prevent progression of CF disease. The aim of this narrative review is to give an update on ABPA in children with CF.
Collapse
Affiliation(s)
| | | | | | | | | | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (C.L.); (G.M.); (V.F.); (M.C.T.); (G.P.)
| |
Collapse
|
19
|
Posaconazole-Induced Hypertension Masquerading as Congenital Adrenal Hyperplasia in a Child with Cystic Fibrosis. Case Rep Med 2020; 2020:8153012. [PMID: 32908540 PMCID: PMC7474764 DOI: 10.1155/2020/8153012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/17/2020] [Indexed: 12/31/2022] Open
Abstract
Background Deficiency of 11β-hydroxylase is the second most common cause of congenital adrenal hyperplasia (CAH), presenting with hypertension, hypokalaemia, precocious puberty, and adrenal insufficiency. We report the case of a 6-year-old boy with cystic fibrosis (CF) found to have hypertension and cortisol insufficiency, which were initially suspected to be due to CAH, but were subsequently identified as being secondary to posaconazole therapy. Case Presentation. A 6-year-old boy with CF was noted to have developed hypertension after administration of two doses of Orkambi™ (ivacaftor/lumacaftor), which was subsequently discontinued, but the hypertension persisted. Further investigations, including echocardiogram, abdominal Doppler, thyroid function, and urinary catecholamine levels, were normal. A urine steroid profile analysis raised the possibility of CAH due to 11β-hydroxylase deficiency, and a standard short synacthen test (SST) revealed suboptimal cortisol response. Clinically, there were no features of androgen excess. Detailed evaluation of the medical history revealed exposure to posaconazole for more than 2 months, and the hypertension had been noted to develop two weeks after the initiation of posaconazole. Hence, posaconazole was discontinued, following which the blood pressure, cortisol response to the SST, and urine steroid profile were normalized. Conclusion Posaconazole can induce a clinical and biochemical picture similar to CAH due to 11β-hydroxylase deficiency, which is reversible. It is prudent to monitor patients on posaconazole for cortisol insufficiency, hypertension, and electrolyte abnormalities.
Collapse
|
20
|
Risum M, Hare RK, Gertsen JB, Kristensen L, Johansen HK, Helweg-Larsen J, Abou-Chakra N, Pressler T, Skov M, Jensen-Fangel S, Arendrup MC. Azole-Resistant Aspergillus fumigatus Among Danish Cystic Fibrosis Patients: Increasing Prevalence and Dominance of TR 34/L98H. Front Microbiol 2020; 11:1850. [PMID: 32903400 PMCID: PMC7438406 DOI: 10.3389/fmicb.2020.01850] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/15/2020] [Indexed: 12/18/2022] Open
Abstract
Azole-resistant (azole-R) Aspergillus is an increasing challenge worldwide. Patients with cystic fibrosis (CF) are at risk of Aspergillus colonization and disease due to a favorable lung environment for microorganisms. We performed a nationwide study in 2018 of azole-non-susceptible Aspergillus in CF patients and compared with data from two prior studies. All airway samples with mold isolates from patients monitored at the two CF centers in Denmark (RH, Jan-Sept and AUH, Jan-Jun) were included. Classical species identification (morphology and thermo-tolerance) was performed and MALDI-TOF/β-tubulin sequencing was performed if needed. Susceptibility was determined using EUCAST E.Def 10.1, and E.Def 9.3.2. cyp51A sequencing and STRAf genotyping were performed for azole-non-susceptible isolates and relevant sequential isolates. In total, 340 mold isolates from 159 CF patients were obtained. The most frequent species were Aspergillus fumigatus (266/340, 78.2%) and Aspergillus terreus (26/340, 7.6%). Azole-R A. fumigatus was cultured from 7.3% (10/137) of patients, including 9.5% (9/95) of patients at RH and 2.4% at AUH (1/42), respectively. In a 10-year perspective, azole-non-susceptibility increased numerically among patients at RH (10.5% in 2018 vs 4.5% in 2007-2009). Cyp51A resistance mechanisms were found in nine azole-R A. fumigatus from eight CF patients. Five were of environmental origin (TR34/L98H), three were human medicine-driven (two M220K and one M220R), and one was novel (TR34 3/L98H) and found in a patient who also harbored a TR34/L98H isolate. STRAf genotyping identified 27 unique genotypes among 45 isolates and ≥2 genotypes in 8 of 12 patients. This included one patient carrying two unique TR34/L98H isolates, a rare phenomenon. Genotyping of sequential TR34 3/L98H and TR34/L98H isolates from the same patient showed only minor differences in 1/9 markers. Finally, azole-R A. terreus was found in three patients including two with Cyp51A alterations (M217I and G51A, respectively). Azole-R A. fumigatus is increasing among CF patients in Denmark with the environmentally associated resistance TR34/L98H mechanism being dominant. Mixed infections (wildtype/non-wildtype and several non-wildtypes) and a case of potential additional tandem repeat acquisition in vivo were found. However, similar genotypes were identified from another patient (and outside this study), potentially suggesting a predominant TR34/L98H clone in DK. These findings suggest an increasing prevalence and complexity of azole resistance in A. fumigatus.
Collapse
Affiliation(s)
- Malene Risum
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
| | | | - Jan Berg Gertsen
- Department of Clinical Microbiology, Aarhus University Hospital, Aarhus, Denmark
| | - Lise Kristensen
- Department of Clinical Microbiology, Aarhus University Hospital, Aarhus, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Tacjana Pressler
- Cystic Fibrosis Center Copenhagen, Department of Pediatrics and Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Marianne Skov
- Cystic Fibrosis Center Copenhagen, Department of Pediatrics and Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Søren Jensen-Fangel
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark.,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Aspergillus spp. cause a clinical spectrum of disease with severity of disease dependent on degree of immune compromise, nature and intensity of inflammatory host response, and/or underlying lung disease. Chronic pulmonary aspergillosis encompasses a spectrum of diseases including aspergilloma, Aspergillus nodules, chronic cavitary pulmonary aspergillosis, chronic fibrosing pulmonary aspergillosis, and subacute invasive pulmonary aspergillosis. Allergic bronchopulmonary aspergillosis (ABPA) paradoxically is an immune hypersensitivity manifestation in the lungs that almost always occurs in the setting of underlying asthma or cystic fibrosis. These chronic Aspergillus conditions are now becoming more prevalent than invasive Aspergillus, thus it is important to be aware of the current literature of these conditions. RECENT FINDINGS High-level research assessing the clinical significance and treatment options of these chronic diseases are lacking. Recent literature suggests colonization is antecedent for local airway infection (Aspergillus bronchitis), chronic or allergic bronchopulmonary disease, or invasive and potentially disseminated disease. There have been few advances in assessment of treatment of ABPA. SUMMARY Research assessing the clinical significance and treatment options is currently needed.
Collapse
Affiliation(s)
- Archana Chacko
- Queensland Respiratory and Sleep Department, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - Richard B Moss
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
22
|
Efficacy of Voriconazole against Aspergillus fumigatus Infection Depends on Host Immune Function. Antimicrob Agents Chemother 2020; 64:AAC.00917-19. [PMID: 31740552 DOI: 10.1128/aac.00917-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/10/2019] [Indexed: 12/17/2022] Open
Abstract
Antifungal therapy can fail in a remarkable number of patients with invasive fungal disease, resulting in significant morbidity worldwide. A major contributor to this failure is that while these drugs have high potency in vitro, we do not fully understand how they work inside infected hosts. Here, we used a transparent larval zebrafish model of Aspergillus fumigatus infection amenable to real-time imaging of invasive disease as an in vivo intermediate vertebrate model to investigate the efficacy and mechanism of the antifungal drug voriconazole. We found that the ability of voriconazole to protect against A. fumigatus infection depends on host innate immune cells and, specifically, on the presence of macrophages. While voriconazole inhibits fungal spore germination and growth in vitro, it does not do so in larval zebrafish. Instead, live imaging of whole, intact larvae over a multiday course of infection revealed that macrophages slow down initial fungal growth, allowing voriconazole time to target and kill A. fumigatus hyphae postgermination. These findings shed light on how antifungal drugs such as voriconazole may synergize with the immune response in living hosts.
Collapse
|
23
|
Sunman B, Ademhan Tural D, Ozsezen B, Emiralioglu N, Yalcin E, Özçelik U. Current Approach in the Diagnosis and Management of Allergic Bronchopulmonary Aspergillosis in Children With Cystic Fibrosis. Front Pediatr 2020; 8:582964. [PMID: 33194914 PMCID: PMC7606581 DOI: 10.3389/fped.2020.582964] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/16/2020] [Indexed: 12/19/2022] Open
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is a complex pulmonary disorder characterized by a hypersensitivity reaction to Aspergillus fumigatus, and almost always seen in patients with cystic fibrosis (CF) and asthma. Fungal hyphae leads to an ongoing inflammation in the airways that may result in bronchiectasis, fibrosis, and eventually loss of lung function. Despite the fact that ABPA is thought to be more prevalent in CF than in asthma, the literature on ABPA in CF is more limited. The diagnosis is challenging and may be delayed because it is made based on a combination of clinical features, and radiologic and immunologic findings. With clinical deterioration of a patient with CF, ABPA is important to be kept in mind because clinical manifestations mimic pulmonary exacerbations of CF. Early diagnosis and appropriate treatment are important in preventing complications related to ABPA. Treatment modalities involve the use of anti-inflammatory agents to suppress the immune hyperreactivity and the use of antifungal agents to reduce fungal burden. Recently, in an effort to treat refractory patients or to reduce adverse effects of steroids, other treatment options such as monoclonal antibodies have started to be used. Intensive research of these new agents in the treatment of children is being conducted to address insufficient data.
Collapse
Affiliation(s)
- Birce Sunman
- Department of Pediatric Pulmonology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Dilber Ademhan Tural
- Department of Pediatric Pulmonology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Beste Ozsezen
- Department of Pediatric Pulmonology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Nagehan Emiralioglu
- Department of Pediatric Pulmonology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ebru Yalcin
- Department of Pediatric Pulmonology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Uğur Özçelik
- Department of Pediatric Pulmonology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
24
|
Yakut N, Kadayifci EK, Eralp EE, Gokdemir Y. Successful treatment of allergic bronchopulmonary aspergillosis with posaconazole in a child with cystic fibrosis: Case report and review of the literature. Lung India 2020; 37:161-163. [PMID: 32108603 PMCID: PMC7065555 DOI: 10.4103/lungindia.lungindia_288_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is recognized as a rare, progressive, allergic disorder in patients with cystic fibrosis (CF) and asthma. Treatment of ABPA mainly includes systemic corticosteroids (CSs) and antifungal agents. Here, we report posaconazole treatment in a 9-year-old male child with ABPA and also review the literature on antifungal management of ABPA. The child with CF was admitted to the emergency room with complaints of fever, productive cough, and acute dyspnea. Auscultation of the lungs revealed obvious bilateral fine crackles and bilateral rhonchus. He was started with intravenous meropenem and amikacin for acute exacerbation. The patient was diagnosed with ABPA because of his failure to respond to antibiotherapy, elevated serum immunoglobulin (Ig) E, specific IgE, to Aspergillus fumigatus levels and sputum growth of A. fumigatus. He was successfully treated with posaconazole with marked clinical and laboratory improvement and no adverse effects. CSs and antifungal agents are the mainstay of therapy in patients with ABPA based on observational studies in children. Posaconazole is a useful treatment option for patients with ABPA.
Collapse
Affiliation(s)
- Nurhayat Yakut
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Marmara University School of Medicine, Istanbul, Turkey
| | - Eda Kepenekli Kadayifci
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Marmara University School of Medicine, Istanbul, Turkey
| | - Ela Erdem Eralp
- Department of Pediatrics, Division of Pediatric Pulmonology, Marmara University School of Medicine, Istanbul, Turkey
| | - Yasemin Gokdemir
- Department of Pediatrics, Division of Pediatric Pulmonology, Marmara University School of Medicine, Istanbul, Turkey
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Due to continuous development of new drugs and better treatment strategies, survival of patients with cystic fibrosis has changed dramatically. Recently, targeted therapy of cystic fibrosis transmembrane conductance regulator (CFTR) modulators have become available. Despite these promising developments, treatment of this complex multiorgan disease constitutes a high and variable amount of other drugs. Complications of pharmacotherapeutic treatment are, therefore, expected to become more prevalent. This gives cause to review drug-related side effects in this new era in cystic fibrosis treatment. RECENT FINDINGS We will discuss cystic fibrosis-related pharmacotherapies with a focus on indication of treatment, side effects and their complications, drug--drug interactions, and options to monitor and prevent drug-induced toxicity. Many recent publications about pharmacotherapy in cystic fibrosis, focus on antifungal therapy and CFTR modulators. We will give an overview of the most important studies. SUMMARY With increased life expectancy which is, in part, because of better treatment options, the burden of pharmacotherapy in cystic fibrosis patients will increase. This has a high impact on quality of life as pharmacotherapy is time consuming and may cause side effects. Therefore, it is very important to be aware of possible pharmacotherapy-related side effects and their complications, drug--drug interactions, and options to monitor and prevent drug-induced toxicity.
Collapse
|