1
|
Biedrzycka M, Urbanowicz P, Brisse S, Palma F, Żabicka D, Gniadkowski M, Izdebski R. Multiple regional outbreaks caused by global and local VIM-producing Klebsiella pneumoniae clones in Poland, 2006-2019. Eur J Clin Microbiol Infect Dis 2024:10.1007/s10096-024-05016-1. [PMID: 39708274 DOI: 10.1007/s10096-024-05016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
PURPOSE This study was aimed at comprehensive genomic analysis of VIM-type carbapenemase-producing Klebsiella pneumoniae species complex (KpSC) in Poland. METHODS All non-duplicate 214 VIM-producing KpSC isolates reported in Poland in 2006-2019 were short-read sequenced and re-identified by the average nucleotide identity scoring. Their clonality/phylogeny was assessed by cgMLST and SNP in comparison with genomes from international databases. Serotypes, VIM-encoding integrons, resistomes, virulomes and plasmid replicons were identified by various bioinformatic tools. Structures of plasmids and genomic islands with VIM integrons were analysed for representative long-read sequenced isolates. RESULTS The KpSC isolates were the second most prevalent VIM-positive Enterobacterales (23.1%) in Poland in 2006-2019, following Enterobacter spp. (40.1%). Their significance emerged in 2014 and then grew consequently, owing to eight regional outbreaks of K. pneumoniae sequence types (STs) ST437, ST147, ST15, ST277 and ST392. These carried different VIM integrons, mainly In238 and In916 types, located on IncFIB + IncHI2 (pNDM-MAR)-, IncA- or IncM-like plasmids, or clc-type integrative and conjugative elements. Despite relatedness of the outbreak clusters to isolates from other countries, e.g. Greece, Spain, Slovakia or Germany, most of them have apparently emerged on site by horizontal acquisition of resistance determinants from other species, including Enterobacter spp. and Pseudomonas spp. CONCLUSIONS This work shows dynamic epidemiology of VIM-producing organisms, driven by a mix of circulation of different VIM-encoding elements, and parallel clonal spread of multiple organisms.
Collapse
Affiliation(s)
- Marta Biedrzycka
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - Paweł Urbanowicz
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - Sylvain Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Université Paris Cité, Paris, France
| | - Federica Palma
- Biological Resource Center of the Institut Pasteur, Institut Pasteur, Université Paris Cité, Paris, France
| | - Dorota Żabicka
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - Marek Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - Radosław Izdebski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland.
| |
Collapse
|
2
|
Piotrowski M, Alekseeva I, Arnet U, Yücel E. Insights into the Rising Threat of Carbapenem-Resistant Enterobacterales and Pseudomonas aeruginosa Epidemic Infections in Eastern Europe: A Systematic Literature Review. Antibiotics (Basel) 2024; 13:978. [PMID: 39452244 PMCID: PMC11505456 DOI: 10.3390/antibiotics13100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/20/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Antimicrobial resistance is a major global public health challenge, particularly with the rise of carbapenem-resistant Enterobacterales (CRE) and Pseudomonas aeruginosa (CRPA). This study aimed to describe the characteristics of CRE and CRPA infections in Eastern Europe, focusing on Bulgaria, Croatia, Czechia, Greece, Hungary, Poland, Romania, Serbia, Slovakia, and Slovenia. METHODS Following MOOSE and PRISMA guidelines, a systematic literature review of articles published between 1 November 2017 and 1 November 2023 was conducted using the MEDLINE, Embase, Web of Science, CDSR, DARE, and CENTRAL databases. The search strategy used a combination of free text and subject headings to gather pertinent literature regarding the incidence and treatment patterns of CRE and CRPA infections. A total of 104 studies focusing on infections in both children and adults were included in this review. RESULTS This review revealed a significant prevalence of carbapenem-resistant Gram-negative isolates and underscored the effectiveness of imipenem/relebactam and ceftazidime/avibactam (CAZ/AVI) against Klebsiella pneumoniae carbapenemase-producing Enterobacterales and of ceftolozane/tazobactam, imipenem/relebactam and ceftazidime/avibactam against non-metallo-β-lactamase-producing CRPA strains. CONCLUSIONS This study highlights the urgent need for comprehensive measures to combat the escalating threat of CRE and CRPA infections in Eastern European countries. At the same time, it shows the activity of the standard of care and new antimicrobials against carbapenem-resistant Gram-negative pathogens in Eastern Europe. Clinical real-world data on the treatment of carbapenem-resistant infections in Eastern Europe are needed.
Collapse
Affiliation(s)
- Michal Piotrowski
- Proper Medical Writing Sp. z o.o., Panieńska 9/12, 03-704 Warsaw, Poland;
| | - Irina Alekseeva
- Merck Sharp & Dohme, Dubai Healthcare City, Bldg #39, Dubai 2096, United Arab Emirates;
| | - Urs Arnet
- MSD Innovation GmbH, The Circle 66, 8058 Zurich, Switzerland;
| | - Emre Yücel
- Merck & Co., Inc., Rahway, NJ 07065, USA
| |
Collapse
|
3
|
Tu Y, Gao H, Zhao R, Yan J, Wu X. Molecular characteristics and pathogenic mechanisms of KPC-3 producing hypervirulent carbapenem-resistant Klebsiella pneumoniae (ST23-K1). Front Cell Infect Microbiol 2024; 14:1407219. [PMID: 39211794 PMCID: PMC11358127 DOI: 10.3389/fcimb.2024.1407219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Objective This study aimed to comprehensively investigate hypervirulent carbapenem-resistant Klebsiella pneumoniae (CR-hvKP) in the Ningbo region. Importantly, we sought to elucidate its molecular characteristics and pathogenic mechanisms. This information will provide evidence-based insights for preventing and controlling nosocomial infections and facilitate improved clinical diagnosis and treatment in this region. Methods 96 carbapenem-resistant Klebsiella pneumoniae strains were collected from the Ningbo region between January 2021 and December 2022. Whole genome sequencing and bioinformatic methods were employed to identify and characterize CR-hvKP strains at the molecular level. The minimum inhibitory concentrations (MICs) of common clinical antibiotics were determined using the VITEK-2 Compact automatic microbiological analyzer. Plasmid conjugation experiments evaluated the transferability of resistance plasmids. Finally, mouse virulence assays were conducted to explore the pathogenic mechanisms. Results Among the 96 strains, a single CR-hvKP strain, designated CR-hvKP57, was identified, with an isolation frequency of 1.04%. Whole-genome sequencing revealed the strain to be ST23 serotype with a K1 capsule. This strain harbored three plasmids. Plasmid 1, a pLVPK-like virulence plasmid, carried multiple virulence genes, including rmpA, rmpA2, iroB, iucA, and terB. Plasmid 2 contained transposable element sequences such as IS15 and IS26. Plasmid 3, classified as a resistance plasmid, harbored the bla KPC-3 carbapenem resistance gene. Mouse virulence assays demonstrated a high mortality rate associated with CR-hvKP57 infection. Additionally, there was a significant increase in IL-1β, IL-6, and TNF-α levels in response to CR-hvKP57 infection, indicating varying degrees of inflammatory response. Western blot experiments further suggested that the pathogenic mechanism involves activation of the NF-κB signaling pathway. Conclusion This study confirms the emergence of hypervirulent CR-hvKP in the Ningbo region, which likely resulted from the acquisition of a pLVPK-like virulence plasmid and a bla KPC-3 resistance plasmid by the ST23-K1 type Klebsiella pneumoniae. Our findings highlight the urgent need for more judicious use of antibiotics to limit the emergence of resistance. Additionally, strengthening infection prevention and control measures is crucial to minimize the spread of virulence and resistance plasmids.
Collapse
|
4
|
Biedrzycka M, Urbanowicz P, Żabicka D, Hryniewicz W, Gniadkowski M, Izdebski R. Country-wide expansion of a VIM-1 carbapenemase-producing Klebsiella oxytoca ST145 lineage in Poland, 2009-2019. Eur J Clin Microbiol Infect Dis 2023; 42:1449-1457. [PMID: 37857919 PMCID: PMC10651708 DOI: 10.1007/s10096-023-04682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
PURPOSE To elucidate the role of the Klebsiella oxytoca species complex (KoSC) in epidemiology of VIM-type MBL-producing Enterobacterales in Poland. METHODS The study comprised all 106 VIM-positive KoSC isolates collected by the Polish National Reference Centre for Susceptibility Testing during 2009-2019 from 60 institutions in 35 towns. All isolates were sequenced by Illumina MiSeq, followed by MinION sequencing of selected organisms. Genomes were subjected to bioinformatic analysis, addressing taxonomy, clonality, phylogeny and structural characterisation of key resistance determinants within their chromosomal and plasmidic loci. RESULTS Among five species identified, K. oxytoca was predominant (n = 92), followed by Klebsiella michiganensis (n = 11). MLST distinguished 18 STs, with the most prevalent Klebsiella oxytoca ST145 (n = 83). The clone segregated a lineage with the In237-like integron [blaVIM-1-aacA4 genes; n = 78], recorded in 28 cities almost all over the country. The integron was located in a ~ 49-50 kb chromosomal mosaic region with multiple other resistance genes, linked to a ~ 51 kb phage-like element. The organism might have originated from Greece, and its evolution in Poland included several events of chromosomal ~ 54-258 kb deletions, comprising the natural β-lactamase blaOXY gene. A group of other isolates of various species and clones (n = 12) carried the integron In916 on self-transmissible IncA-type plasmids, effectively spreading in Italy, France and Poland. CONCLUSION KoSC has been one of the major VIM producers in Poland, owing largely to clonal expansion of the specific K. oxytoca-In237-like lineage. Its apparently enhanced epidemic potential may create a danger on international scale.
Collapse
Affiliation(s)
- M Biedrzycka
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - P Urbanowicz
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - D Żabicka
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - W Hryniewicz
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - M Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - R Izdebski
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland.
| |
Collapse
|
5
|
Izdebski R, Biedrzycka M, Urbanowicz P, Żabicka D, Gniadkowski M. Genome-Based Epidemiologic Analysis of VIM/IMP Carbapenemase-Producing Enterobacter spp., Poland. Emerg Infect Dis 2023; 29:1618-1626. [PMID: 37486192 PMCID: PMC10370858 DOI: 10.3201/eid2908.230199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
We sequenced all nonduplicate 934 VIM/IMP carbapenemase-producing Enterobacterales (CPE) reported in Poland during 2006-2019 and found ≈40% of the isolates (n = 375) were Enterobacter spp. During the study period, incidence of those bacteria gradually grew in nearly the entire country. The major factor affecting the increase was clonal spread of several E. hormaechei lineages responsible for multiregional and interregional outbreaks (≈64% of all isolates), representing mainly the pandemic sequence type (ST) 90 or the internationally rare ST89 and ST121 clones. Three main VIM-encoding integron types efficiently disseminated across the clone variants (subclones) with various molecular platforms. Those variants were predominantly Pseudomonas aeruginosa-derived In238-like elements, present with IncHI2+HI2A, IncFII+FIA, IncFIB, or IncN3 plasmids, or chromosomal genomic islands in 30 Enterobacter STs. Another prevalent type, found in 34 STs, were In916-like elements, spreading in Europe recently with a lineage of IncA-like plasmids.
Collapse
|
6
|
Biedrzycka M, Izdebski R, Urbanowicz P, Polańska M, Hryniewicz W, Gniadkowski M, Literacka E. MDR carbapenemase-producing Klebsiella pneumoniae of the hypervirulence-associated ST23 clone in Poland, 2009-19. J Antimicrob Chemother 2022; 77:3367-3375. [PMID: 36177793 DOI: 10.1093/jac/dkac326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/05/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES To characterize carbapenemase-producing isolates of the Klebsiella pneumoniae hypervirulent (hvKp) clone ST23 in Poland. METHODS Fifteen K. pneumoniae ST23 isolates were identified by the Polish surveillance of carbapenemase-producing Enterobacterales. These comprised a cluster with KPC-2 + NDM-1 (n = 7), KPC-2 (n = 1) or NDM-1 (n = 1) enzymes from one hospital from 2018, and sporadic isolates with KPC-2 (n = 1), NDM-1 (n = 1), VIM-1 (n = 1) or OXA-48 (n = 3), recovered from 2009 to 2019 in different towns. The isolates were sequenced by Illumina MiSeq, followed by MinION for six representatives. Clonality, phylogeny, serotypes, virulomes, resistomes and plasmids of the isolates were analysed and compared with international ST23 strains, using various bioinformatic tools. RESULTS Only two diverse isolates with KPC-2 or VIM-1 were of typical hvKp ST23 serotypes K1 and O1v.2, and its predominant phylogenetic clade. These contained multiple chromosomal (ybt, clb) and pK2044/KpVP-1 plasmid (iuc, iro, rmpADC, rmpA2) virulence loci, whereas carbapenemase and other antimicrobial resistance (AMR) genes were on single additional plasmids. All remaining isolates were of K57 and O2v.2 serotypes, and a minor, distant clade of unclear phylogeny, including also ∼10 isolates from other European countries. These had fewer virulence loci (ybt, iuc, rmpADC, rmpA2) but abounded in plasmids, which with several chromosomal AMR mutations conferred more extensive MDR phenotypes than in K1 O1v.2. Lower clonal diversity than in K1, and numerous common characteristics of the isolates supported the hypothesis of the emerging character of the ST23 K57 clade. CONCLUSIONS A new MDR ST23 lineage has emerged in Europe, causing a potential threat to public health.
Collapse
Affiliation(s)
| | - R Izdebski
- National Medicines Institute, Warsaw, Poland
| | | | - M Polańska
- Faculty of Biology, Warsaw University, Warsaw, Poland
| | | | | | - E Literacka
- National Medicines Institute, Warsaw, Poland
| |
Collapse
|
7
|
OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1561-1569. [DOI: 10.1093/jac/dkac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/16/2022] [Indexed: 11/14/2022] Open
|
8
|
Zhao Y, Liao Y, Zhang N, Liu S, Zhang J, Hu X, Zhou D, Deng Q, Shi Y, Gu B, Hou T. Four Types of ST11 Novel Mutations From Increasing Carbapenem-Resistant Klebsiella pneumoniae in Guangdong, 2016-2020. Front Microbiol 2021; 12:702941. [PMID: 34659140 PMCID: PMC8517524 DOI: 10.3389/fmicb.2021.702941] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: This study aimed to explore changes in carbapenem-resistant Klebsiella pneumoniae (CR-KP) isolates collected in Guangdong over the period of 2016–2020. Methods: Antibacterial susceptibility was quantified through VITEK 2 compact and K-B method. Carbapenemase phenotypes and genotypes were characterized by modified carbapenem inactivation method (mCIM), EDTA-carbapenem inactivation method (eCIM), and polymerase chain reaction (PCR). Molecular characteristics and evolutionary trends were analyzed by multilocus sequence typing and evolutionary tree. Results: Isolates (2,847) of K. pneumoniae were separated in 2016–2020, and the separate rate of CR-KP increased from 5.65 to 9.90% (p = 0.009). The top 3 wards were intensive care unit (ICU) (21.92%), neonatal wards (13.70%), and respiratory wards (12.33%). In 146 CR-KP strains, serine carbapenemase was the main phenotype, and KPC was the main genotype, and 57 contained two resistant genes, and 1 contained three resistant genes. Two polygenic strains were first found: IMP + GES and KPC + NDM + VIM, but all the phenotypes were metalloenzyme, which indicated that metalloenzyme was usually the first choice for CR-KP resistance. In addition, all the ST54 of metalloenzyme type contained IMP, and all the ST45, ST37, and ST76 contained OXA. ST11 was the most prevalent (42.47%); ST11 and its mutants proved the predominant sequence type making up 51.1% of the carbapenemase-producing isolates. A novel type of ST11 mutation, the rpoB was mutated from sequence 1 to sequence 146, was in an independent separate branch on the evolutionary tree and was resistant to all antibacterial agents. The other three mutants, rpoB 1–15, infB 3–148, and infB 3–80, are also resistant to all antibacteria. Of note, all the four mutants produced serine carbapenemase and contained KPC, and indicated that the prevalent strain in China, ST11, has serious consequences and potential outbreaks. Conclusion: The infection rate of CR-KP has increased, and ICU and neonatal wards have become the key infection areas. Producing serine enzyme, the KPC genotype, and ST11 are the predominant CR-KP. Polygenic strains and ST11 mutation made clinical treatment difficult and may become a potential threat.
Collapse
Affiliation(s)
- Yunhu Zhao
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yalong Liao
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ni Zhang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Suling Liu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiao Zhang
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Xuejiao Hu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dianrong Zhou
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qianyun Deng
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanping Shi
- General Hospital of Southern Theatre Command, Guangzhou, China
| | - Bing Gu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tieying Hou
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
9
|
Findlay J, Poirel L, Kessler J, Kronenberg A, Nordmann P. New Delhi Metallo-β-Lactamase-Producing Enterobacterales Bacteria, Switzerland, 2019-2020. Emerg Infect Dis 2021; 27:2628-2637. [PMID: 34545787 PMCID: PMC8462332 DOI: 10.3201/eid2710.211265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Carbapenemase-producing Enterobacterales (CPE) bacteria are a critical global health concern; New Delhi metallo-β-lactamase (NDM) enzymes account for >25% of all CPE found in Switzerland. We characterized NDM-positive CPE submitted to the Swiss National Reference Center for Emerging Antibiotic Resistance during a 2-year period (January 2019–December 2020) phenotypically and by using whole-genome sequencing. Most isolates were either Klebsiella pneumoniae (59/141) or Escherichia coli (52/141), and >50% were obtained from screening swabs. Among the 108 sequenced isolates, NDM-1 was the most prevalent variant, occurring in 56 isolates, mostly K. pneumoniae (34/56); the next most prevalent was NDM-5, which occurred in 49 isolates, mostly E. coli (40/49). Fourteen isolates coproduced a second carbapenemase, predominantly an OXA-48-like enzyme, and almost one third of isolates produced a 16S rRNA methylase conferring panresistance to aminoglycosides. We identified successful plasmids and global lineages as major factors contributing to the increasing prevalence of NDMs in Switzerland.
Collapse
|
10
|
Biedrzycka M, Urbanowicz P, Guzek A, Brisse S, Gniadkowski M, Izdebski R. Dissemination of Klebsiella pneumoniae ST147 NDM-1 in Poland, 2015-19. J Antimicrob Chemother 2021; 76:2538-2545. [PMID: 34164678 DOI: 10.1093/jac/dkab207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/29/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To assess the spread of New Delhi metallo-β-lactamase-1 (NDM-1)-producing Klebsiella pneumoniae ST147 organisms in Poland since an introduction from Tunisia in March 2015, including their phylogenetic position in the global population of the high-risk clone. METHODS Out of 8925 unique NDM-positive K. pneumoniae isolates identified in Poland from April 2015 till December 2019, 126 isolates, including the Tunisian imports, were related by PFGE and blaNDM gene-carrying Tn125 transposon derivatives. Forty-seven representative isolates were sequenced by Illumina MiSeq. The phylogeny, resistome, virulome and plasmid replicons were analysed and compared with the international ST147 strains. Plasmids of six isolates were studied by the MinION sequencing. RESULTS A high homogeneity of the 47 isolates was observed, with minor variations in their resistomes and plasmid replicon profiles. However, the detailed SNP comparison discerned a strict outbreak cluster of 40 isolates. All of the organisms were grouped within the ST147 phylogenetic international lineage, and four NDM-1 producers from Tunisia, Egypt and France were the closest relatives of the Polish isolates. Yersiniabactin genes (YbST280 type) were located within the ICEKpn12-like element in most of the outbreak isolates, characterized by O2v1 and KL64 antigen loci. The blaNDM-1 genes were located in double-replicon IncFIIK2+IncFIBK plasmids. CONCLUSIONS The continuous spread of K. pneumoniae ST147 NDM-1 in Poland since 2015, largely in the Warsaw area, is demonstrated by this genomic analysis. The isolates showed a high degree of homogeneity, and close relatedness to organisms spreading in the Mediterranean region.
Collapse
Affiliation(s)
- M Biedrzycka
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - P Urbanowicz
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - A Guzek
- Department of Laboratory Diagnostics, Section of Microbiology, Military Institute of Medicine, Warsaw, Poland
| | - S Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Paris, France
| | - M Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - R Izdebski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| |
Collapse
|
11
|
Wysocka M, Zamudio R, Oggioni MR, Gołębiewska J, Bronk M, Krawczyk B. Genetic Background and Antibiotic Resistance Profiles of K. pneumoniae NDM-1 Strains Isolated from UTI, ABU, and the GI Tract, from One Hospital in Poland, in Relation to Strains Nationally and Worldwide. Genes (Basel) 2021; 12:genes12081285. [PMID: 34440459 PMCID: PMC8394471 DOI: 10.3390/genes12081285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
In recent years, there has been an observed increase in infections caused by carbapenem-resistant Klebsiella pneumonia (Kp) strains. The aim of this study was the phenotypic and genotypic analysis of eight K. pneumoniae NDM (Kp NDM) isolates, recovered in Poland during the years 2016 and 2018 from seven patients with urinary tract infections (UTIs), asymptomatic bacteriuria (ABU), or colonization of the gut. PCR melting profile genotyping indicated a close relationship between the strains derived from 2018, which were not related to the strain isolated in 2016. WGS results were analyzed in relation to international Kp isolates. Clonal and phylogenetic analyses were performed based on multilocus sequence typing (MLST) and single nucleotide polymorphisms (SNPs) of the core genome. The metallo-β-lactamase was assigned to the NDM-1 type and the sequence was identified as ST11. Eleven antimicrobial resistance genes were detected, mostly from plasmid contigs. Unprecedented profiles of plasmid replicons were described with the IncFII/pKPX-1 dominant replicon. In terms of the KL24 and O2v1 capsular antigen profiles, these isolates corresponded to Greek strains. Strains isolated from UTI, ABU, and colonization GI tract patients were not carrying environment-specific virulence genes. Based on the assessment of strain relationships at the genome level and their direction of evolution, the international character of the sublines was demonstrated, with a documented epidemic potential in Poland and Greece. In conclusion, some groups of patients, e.g., renal transplant recipients or those with complicated UTIs, who are frequently hospitalized and undergoing antibiotic therapy, should be monitored not only for the risk of UTI, but also for colonization by Kp NDM strains.
Collapse
Affiliation(s)
- Magdalena Wysocka
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland;
| | - Roxana Zamudio
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK; (R.Z.); (M.R.O.)
| | - Marco R. Oggioni
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK; (R.Z.); (M.R.O.)
| | - Justyna Gołębiewska
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, ul. Dębinki 7, 80-952 Gdańsk, Poland;
| | - Marek Bronk
- Laboratory of Clinical Microbiology, University Centre for Laboratory Diagnostics, Medical University of Gdańsk Clinical Centre, ul. Dębinki 7, 80-952 Gdańsk, Poland;
| | - Beata Krawczyk
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland;
- Correspondence:
| |
Collapse
|
12
|
Hirabayashi A, Yahara K, Mitsuhashi S, Nakagawa S, Imanishi T, Ha VTT, Nguyen AV, Nguyen ST, Shibayama K, Suzuki M. Plasmid analysis of NDM metallo-β-lactamase-producing Enterobacterales isolated in Vietnam. PLoS One 2021; 16:e0231119. [PMID: 34319973 PMCID: PMC8318238 DOI: 10.1371/journal.pone.0231119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/21/2021] [Indexed: 11/19/2022] Open
Abstract
Carbapenem-resistant Enterobacterales (CRE) represent a serious threat to public health due to the lack of treatment and high mortality. The rate of antimicrobial resistance of Enterobacterales isolates to major antimicrobials, including carbapenems, is much higher in Vietnam than in Western countries, but the reasons remain unknown due to the lack of genomic epidemiology research. A previous study suggested that carbapenem resistance genes, such as the carbapenemase gene blaNDM, spread via plasmids among Enterobacterales in Vietnam. In this study, we characterized blaNDM-carrying plasmids in Enterobacterales isolated in Vietnam, and identified several possible cases of horizontal transfer of plasmids both within and among species of bacteria. Twenty-five carbapenem-nonsusceptible isolates from a medical institution in Hanoi were sequenced on Illumina short-read sequencers, and 13 blaNDM-positive isolates, including isolates of Klebsiella pneumoniae, Escherichia coli, Citrobacter freundii, Morganella morganii, and Proteus mirabilis, were further sequenced on an Oxford Nanopore Technologies long-read sequencer to obtain complete plasmid sequences. Almost identical 73 kb IncFII(pSE11)::IncN hybrid plasmids carrying blaNDM-1 were found in a P. mirabilis isolate and an M. morganii isolate. A 112 kb IncFII(pRSB107)::IncN hybrid plasmid carrying blaNDM-1 in an E. coli isolate had partially identical sequences with a 39 kb IncR plasmid carrying blaNDM-1 and an 88 kb IncFII(pHN7A8)::IncN hybrid plasmid in a C. freundii isolate. 148-149 kb IncFIA(Hl1)::IncA/C2 plasmids and 75-76 kb IncFII(Yp) plasmids, both carrying blaNDM-1 were shared among three sequence type 11 (ST11) isolates and three ST395 isolates of K. pneumoniae, respectively. Most of the plasmids co-carried genes conferring resistance to clinically relevant antimicrobials, including third-generation cephalosporins, aminoglycosides, and fluoroquinolones, in addition to blaNDM-1. These results provide insight into the genetic basis of CRE in Vietnam, and could help control nosocomial infections.
Collapse
Affiliation(s)
- Aki Hirabayashi
- AMR Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koji Yahara
- AMR Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Satomi Mitsuhashi
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Tadashi Imanishi
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Van Thi Thu Ha
- Microbiology Department, Hospital 103, Military Medical University, Hanoi, Vietnam
| | - An Van Nguyen
- Microbiology Department, Hospital 103, Military Medical University, Hanoi, Vietnam
| | - Son Thai Nguyen
- Microbiology Department, Hospital 103, Military Medical University, Hanoi, Vietnam
| | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masato Suzuki
- AMR Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
13
|
Sugawara Y, Akeda Y, Hagiya H, Zin KN, Aye MM, Takeuchi D, Matsumoto Y, Motooka D, Nishi I, Tomono K, Hamada S. Characterization of bla NDM-5-harbouring Klebsiella pneumoniae sequence type 11 international high-risk clones isolated from clinical samples in Yangon General Hospital, a tertiary-care hospital in Myanmar. J Med Microbiol 2021; 70. [PMID: 34038339 DOI: 10.1099/jmm.0.001348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fifteen Klebsiella pneumoniae isolates harbouring bla NDM genes were identified from blood and sputum specimens of patients at a tertiary-care facility (Yangon General Hospital, Yangon, Myanmar) in 2018. Two of the isolates belonged to sequence type (ST) 11, an international high-risk clone. Whole-genome sequencing and phylogenetic analyses revealed that these two isolates were clustered together with other ST11 isolates originating from other countries. The isolates harboured the bla NDM-5 gene on an IncFII-type plasmid that is prevalent among carbapenemase-producing Enterobacteriaceae in Yangon but has rarely been found in other ST11 isolates. Our data suggests the regional presence of the ST11 international high-risk clone and its acquisition of an endemic bla NDM-5-carrying plasmid.
Collapse
Affiliation(s)
- Yo Sugawara
- Japan-Thailand Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yukihiro Akeda
- Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Suita, Japan.,Japan-Thailand Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Hideharu Hagiya
- Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Khwar Nyo Zin
- Clinical Laboratory Department, Yangon General Hospital, Yangon, Myanmar
| | - Mya Mya Aye
- Bacteriology Research Division, Department of Medical Research, Yangon, Myanmar
| | - Dan Takeuchi
- Japan-Thailand Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yuki Matsumoto
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Isao Nishi
- Laboratory for Clinical Investigation, Osaka University Hospital, Suita, Japan
| | - Kazunori Tomono
- Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shigeyuki Hamada
- Japan-Thailand Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| |
Collapse
|
14
|
Qamar MU, Ejaz H, Walsh TR, Shah AA, Al Farraj DA, Alkufeidy RM, Alkubaisi NA, Saleem S, Jahan S. Clonal relatedness and plasmid profiling of extensively drug-resistant New Delhi metallo-β-lactamase-producing Klebsiella pneumoniae clinical isolates. Future Microbiol 2021; 16:229-239. [PMID: 33625250 DOI: 10.2217/fmb-2020-0315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: Carbapenem-resistant Klebsiella pneumoniae (CR-KP) particularly New Delhi metallo-β-lactamase (NDM) is a serious public health concern globally. The aim of the study to determine the molecular epidemiology of blaNDM-producing clinically isolated K. pneumoniae. Methods: Carbapenem-resistant K. pneumoniae isolates (n = 100) were collected from tertiary care hospital Lahore. Isolates were confirmed by VITEK® 2 system and MALDI-TOF. Minimum inhibitory concentration was performed by VITEK 2 and molecular characterization was done by PCR, PFGE, DNA hybridization and replicon typing. Results: Of 90 MBL-producing K. pneumoniae, 75 were NDM producers; 60 were NDM-1 and 11 NDM-5. A total of 27 K. pneumoniae belonged to ST11 and 14 to ST147. NDM-positive isolates were 100% resistant to β-lactam antibiotics except for colistin. 13.3% isolates carried blaNDM on ∼140 kb plasmids. A total of 32 (52.4%) isolates were positive for IncA/C and 18 (29.5%) IncF/II. Conclusion: The extensively resistant lineage of NDM-producing K. pneumoniae is prevalent in the clinical setting.
Collapse
Affiliation(s)
- Muhammad Usman Qamar
- Department of Microbiology, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan.,Department of Microbiology, University of Health Sciences, Lahore, 54600, Pakistan
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al Jouf, 72388, Saudi Arabia
| | - Timothy R Walsh
- Department of Medical Microbiology & Infectious Diseases, Institute of Infection & Immunity, School of Medicine, Cardiff University, CF10 3AT, Cardiff, UK
| | - Asad Ali Shah
- Department of Bioinformatic & Biotechnology, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Dunia A Al Farraj
- Department of Botany & Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Roua M Alkufeidy
- Department of Botany & Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Noorah A Alkubaisi
- Department of Botany & Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Sidrah Saleem
- Department of Microbiology, University of Health Sciences, Lahore, 54600, Pakistan
| | - Shah Jahan
- Department of Immunology, University of Health Sciences, Lahore, 54600, Pakistan
| |
Collapse
|
15
|
Ooi N, Lee VE, Chalam-Judge N, Newman R, Wilkinson AJ, Cooper IR, Orr D, Lee S, Savage VJ. Restoring carbapenem efficacy: a novel carbapenem companion targeting metallo-β-lactamases in carbapenem-resistant Enterobacterales. J Antimicrob Chemother 2021; 76:460-466. [PMID: 33152764 PMCID: PMC8600017 DOI: 10.1093/jac/dkaa455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/29/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The dissemination of MBLs compromises effective use of many β-lactams in the treatment of patients with life-threatening bacterial infections. Predicted global increases in the prevalence of MBL-producing carbapenem-resistant Enterobacterales (CRE) are being realized, yielding infections that are untreatable with existing therapies including newly approved β-lactam/β-lactamase inhibitor combinations. Developing MBL inhibitors (MBLIs) now is essential to address the growing threat that MBL-producing CRE pose to patients. METHODS A novel MBLI series was assessed by susceptibility testing and time-kill assays. Target activity and selectivity was evaluated using bacterial NDM, VIM and IMP enzyme assays and human matrix metallopeptidase enzyme assays, respectively, and cytotoxicity was assessed in HepG2 cells. In vivo efficacy of meropenem/MBLI combinations was evaluated in a mouse thigh infection model using an NDM-1-producing Escherichia coli strain. RESULTS Combination of MBLIs with carbapenems reduced MICs for NDM/IMP/VIM-producing Enterobacterales by up to 128-fold compared with the carbapenems alone. Supplementation of meropenem with the promising compound 272 reduced the MIC90 from 128 to 0.25 mg/L in a panel of MBL-producing CRE clinical isolates (n = 115). Compound 272 restored the bactericidal activity of meropenem and was non-cytotoxic, potentiating the antimicrobial action of meropenem through specific inhibition of NDM, IMP and VIM. In vivo efficacy was achieved in a mouse thigh infection model with meropenem/272 dosed subcutaneously. CONCLUSIONS We have developed a series of rationally designed MBLIs that restore activity of carbapenems against NDM/IMP/VIM-producing Enterobacterales. This series warrants further development towards a novel combination therapy that combats antibiotic-resistant organisms, which pose a critical threat to human health.
Collapse
Affiliation(s)
- Nicola Ooi
- Infex Therapeutics Ltd, Alderley Park, Macclesfield, Cheshire, UK
| | - Victoria E Lee
- Infex Therapeutics Ltd, Alderley Park, Macclesfield, Cheshire, UK
| | | | - Rebecca Newman
- Infex Therapeutics Ltd, Alderley Park, Macclesfield, Cheshire, UK
| | | | - Ian R Cooper
- Infex Therapeutics Ltd, Alderley Park, Macclesfield, Cheshire, UK
| | - David Orr
- Infex Therapeutics Ltd, Alderley Park, Macclesfield, Cheshire, UK
| | - Sally Lee
- Infex Therapeutics Ltd, Alderley Park, Macclesfield, Cheshire, UK
| | | |
Collapse
|
16
|
Tavoschi L, Forni S, Porretta A, Righi L, Pieralli F, Menichetti F, Falcone M, Gemignani G, Sani S, Vivani P, Bellandi T, Tacconi D, Turini L, Toccafondi G, Privitera G, Lopalco P, Baggiani A, Gemmi F, Luchini G, Petrillo M, Roti L, Pezzotti P, Pantosti A, Iannazzo S, Mechi MT, Rossolini GM, On Behalf Of The Tuscan Clinical Microbiology Laboratory Network. Prolonged outbreak of New Delhi metallo-beta-lactamase-producing carbapenem-resistant Enterobacterales (NDM-CRE), Tuscany, Italy, 2018 to 2019. ACTA ACUST UNITED AC 2021; 25. [PMID: 32070467 PMCID: PMC7029447 DOI: 10.2807/1560-7917.es.2020.25.6.2000085] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Tuscany, Italy, New Delhi metallo-beta-lactamase-producing carbapenem-resistant Enterobacterales (NDM-CRE) have increased since November 2018. Between November 2018 and October 2019, 1,645 samples were NDM-CRE-positive: 1,270 (77.2%) cases of intestinal carriage, 129 (7.8%) bloodstream infections and 246 (14.9%) infections/colonisations at other sites. Klebsiella pneumoniae were prevalent (1,495; 90.9%), with ST147/NDM-1 the dominant clone. Delayed outbreak identification and response resulted in sustained NDM-CRE transmission in the North-West area of Tuscany, but successfully contained spread within the region.
Collapse
Affiliation(s)
- Lara Tavoschi
- Department of Translational Research and New technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Silvia Forni
- Regional Health Agency of Tuscany, Florence, Italy
| | - Andrea Porretta
- University Hospital of Pisa, Pisa, Italy.,Department of Translational Research and New technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Lorenzo Righi
- Quality of care and Clinical networks, Tuscany Region, Florence, Italy
| | | | | | | | | | - Spartaco Sani
- Livorno Hospital, Toscana North-West Health Authority, Livorno, Italy
| | - Paola Vivani
- Massa Carrara Hospital, Toscana North-West Health Authority, Massa Carrara, Italy
| | | | - Danilo Tacconi
- Arezzo Hospital, Toscana South-East Health Authority, Arezzo, Italy
| | - Lucia Turini
- Toscana North-West Health Authority, Pisa, Italy
| | - Giulio Toccafondi
- Quality of care and Clinical networks, Tuscany Region, Florence, Italy
| | - Gaetano Privitera
- University Hospital of Pisa, Pisa, Italy.,Department of Translational Research and New technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Pierluigi Lopalco
- University Hospital of Pisa, Pisa, Italy.,Department of Translational Research and New technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Angelo Baggiani
- University Hospital of Pisa, Pisa, Italy.,Department of Translational Research and New technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | | | - Lorenzo Roti
- Toscana North-West Health Authority, Pisa, Italy
| | | | | | | | | | - Gian Maria Rossolini
- Department of Experimental Medicine, University of Florence, Florence, Italy.,Florence Careggi University Hospital, Florence, Italy
| | | |
Collapse
|
17
|
Izdebski R, Sitkiewicz M, Urbanowicz P, Krawczyk M, Brisse S, Gniadkowski M. Genomic background of the Klebsiella pneumoniae NDM-1 outbreak in Poland, 2012-18. J Antimicrob Chemother 2020; 75:3156-3162. [PMID: 32790858 DOI: 10.1093/jac/dkaa339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/01/2020] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES To characterize genomes of Klebsiella pneumoniae ST11 NDM-1 responsible for a countrywide outbreak in Poland and compare them phylogenetically with other Polish and international ST11 strains. METHODS Seventy-one carbapenemase-producing K. pneumoniae ST11 isolates from Poland, including 66 representatives of the NDM-1 epidemic from 2012-18, were sequenced using Illumina MiSeq. Additionally, three outbreak isolates were also sequenced using MinION. The clonality and phylogenetic analysis was done by core-genome MLST and SNP approaches. Resistomes, virulomes, K/O antigens and plasmid replicons were screened for. The detailed plasmid analysis was based on full assemblies using Oxford Nanopore Technologies data. RESULTS Chromosomes of the outbreak isolates formed an essentially homogeneous cluster (though accumulating SNPs gradually with time), differing remarkably from other Polish NDM-1/-5-, KPC-2- or OXA-48-producing K. pneumoniae ST11 strains. The cluster belonged to a clade with 72 additional isolates identified worldwide, including closely related NDM-1 producers from several countries, including organisms from Bulgaria and Greece. All these had KL24 and O2v1 antigens and the chromosomal yersiniabactin locus YbST230 residing in the ICEKp11 element. The specific blaNDM-1-carrying Tn125 transposon derivative, named Tn125A, was located in IncFII/pKPX-1- and/or IncR-like plasmids; however, the IncRs rearranged extensively during the outbreak, contributing to highly dynamic plasmid profiles and resistomes. CONCLUSIONS The K. pneumoniae ST11 NDM-1 genotype that has been expanding in Poland since 2012 is largely monoclonal and represents a novel international high-risk lineage that is also spreading in other countries.
Collapse
Affiliation(s)
- R Izdebski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - M Sitkiewicz
- IT Department, National Medicines Institute, Warsaw, Poland
| | - P Urbanowicz
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | | | - S Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Paris, France
| | - M Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| |
Collapse
|
18
|
Liao W, Liu Y, Zhang W. Virulence evolution, molecular mechanisms of resistance and prevalence of ST11 carbapenem-resistant Klebsiella pneumoniae in China: A review over the last 10 years. J Glob Antimicrob Resist 2020; 23:174-180. [PMID: 32971292 DOI: 10.1016/j.jgar.2020.09.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 12/24/2022] Open
Abstract
Sequence type 11 (ST11) carbapenem-resistant Klebsiella pneumoniae (CRKP) has become the dominant clone in China. In this review, we trace the prevalence of ST11 CRKP in the China Antimicrobial Surveillance Network (CHINET), the key antimicrobial resistance mechanisms and virulence evolution. The recent emergence of ST11 carbapenem-resistant hypervirulent K. pneumoniae (CR-hvKP) strains in China due to the acquisition of a pLVPK-like virulence plasmid, which may cause severe infections in relatively healthy individuals that are difficult to treat with current antibiotics, has attracted worldwide attention. There is a very close linkage among IncF plasmids, NTEKPC and ST11 K. pneumoniae in China. Hybrid conjugative virulence plasmids are demonstrated to readily convert a ST11 CRKP strain to a CR-hvKP strain via conjugation. Understanding the molecular evolutionary mechanisms of resistance and virulence-bearing plasmids as well as the prevalence of ST11 CRKP in China allows improved tracking and control of such organisms.
Collapse
Affiliation(s)
- Wenjian Liao
- Department of Respiratory and Critical Care, First Affiliated Hospital of Nanchang University, Nanchang University, Yong wai zheng jie No. 17, Nanchang, Jiangxi 330006, PR China
| | - Yang Liu
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Yong wai zheng jie No. 17, Nanchang, Jiangxi 330006, PR China.
| | - Wei Zhang
- Department of Respiratory and Critical Care, First Affiliated Hospital of Nanchang University, Nanchang University, Yong wai zheng jie No. 17, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
19
|
Characteristics of Carbapenem-Resistant and Colistin-Resistant Escherichia coli Co-Producing NDM-1 and MCR-1 from Pig Farms in China. Microorganisms 2019; 7:microorganisms7110482. [PMID: 31652858 PMCID: PMC6920953 DOI: 10.3390/microorganisms7110482] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022] Open
Abstract
The emergence of carbapenem-resistant and colistin-resistant Enterobacteriaceae represents a great risk for public health. In this study, the phenotypical and genetic characteristics of eight carbapenem-resistant and colistin-resistant isolates from pig farms in China were determined by the broth microdilution method and whole genome sequencing. Antimicrobial susceptibility testing showed that the eight carbapenem-resistant and colistin-resistant strains were resistant to three aminoglycosides, twelve β-lactams, one of the phenicols, one of the tetracyclines, and one of the fluoroquinolones tested, simultaneously. The prediction of acquired resistant genes using the whole genome sequences revealed the co-existence of blaNDM-1 and mcr-1 as well as the other genes that were responsible for the multidrug-resistant phenotypes. Bioinformatics analysis also showed that the carbapenem-resistant gene blaNDM-1 was located on a putative IncFII-type plasmid, which also carried the other acquired resistant genes identified, including fosA3, blaTEM-1B and rmtB, while the colistin-resistant gene mcr-1 was carried by a putative IncX4-type plasmid. Finally, we found that these resistant genes/plasmids were conjugative, and they could be co-conjugated, conferring resistance to multiple types of antibiotics, including the carbapenems and colistin, to the recipient Escherichia coli strains.
Collapse
|