1
|
Rouges C, Asad M, Laurent AD, Marchand P, Le Pape P. Is the C-Terminal Domain an Effective and Selective Target for the Design of Hsp90 Inhibitors against Candida Yeast? Microorganisms 2023; 11:2837. [PMID: 38137982 PMCID: PMC10745388 DOI: 10.3390/microorganisms11122837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
Improving the armamentarium to treat invasive candidiasis has become necessary to overcome drug resistance and the lack of alternative therapy. In the pathogenic fungus Candida albicans, the 90-kDa Heat-Shock Protein (Hsp90) has been described as a major regulator of virulence and resistance, offering a promising target. Some human Hsp90 inhibitors have shown activity against Candida spp. in vitro, but host toxicity has limited their use as antifungal drugs. The conservation of Hsp90 across all species leads to selectivity issues. To assess the potential of Hsp90 as a druggable antifungal target, the activity of nine structurally unrelated Hsp90 inhibitors with different binding domains was evaluated against a panel of Candida clinical isolates. The Hsp90 sequences from human and yeast species were aligned. Despite the degree of similarity between human and yeast N-terminal domain residues, the in vitro activities measured for the inhibitors interacting with this domain were not reproducible against all Candida species. Moreover, the inhibitors binding to the C-terminal domain (CTD) did not show any antifungal activity, with the exception of one of them. Given the greater sequence divergence in this domain, the identification of selective CTD inhibitors of fungal Hsp90 could be a promising strategy for the development of innovative antifungal drugs.
Collapse
Affiliation(s)
- Célia Rouges
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l’Immunité, IICiMed, UR 1155, F-44000 Nantes, France; (C.R.); (P.M.)
| | - Mohammad Asad
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Adèle D. Laurent
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Pascal Marchand
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l’Immunité, IICiMed, UR 1155, F-44000 Nantes, France; (C.R.); (P.M.)
| | - Patrice Le Pape
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l’Immunité, IICiMed, UR 1155, F-44000 Nantes, France; (C.R.); (P.M.)
| |
Collapse
|
2
|
Evaluation of Anti-Candida Potential of Piper nigrum Extract in Inhibiting Growth, Yeast-Hyphal Transition, Virulent Enzymes, and Biofilm Formation. J Fungi (Basel) 2022; 8:jof8080784. [PMID: 36012773 PMCID: PMC9409899 DOI: 10.3390/jof8080784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Due to the increased incidence of fungal infections and the emergence of antifungal resistance mainly by Candida species, the need for safe and effective novel therapies is imperative. Consequently, plants and herbs are a powerful source to combat infections. Here, we evaluated the anti-Candida potential of an ethanolic extract from Piper nigrum. The phytochemical analysis of P. nigrum revealed bioactive compounds such as alkaloids, terpenoids, and tannis. Our results showed that P. nigrum extract suppressed the virulence factors of C. albicans strains, including hyphae formation in both liquid and solid media, reduced secretion of phospholipases/proteinases, and affected biofilm formation. Furthermore, the P. nigrum extract showed no hemolytic effect in vitro and exhibited reduced cytotoxicity on Vero cells and G. mellonella larvae at concentrations that inhibited hyphae and biofilm in C. albicans. Moreover, the extract demonstrated antifungal activity against C. auris strains. In conclusion, the P. nigrum extract affected the growth and morphogenesis of Candida (even in resistant strains), demonstrating that this plant has an anti-candida activity and represents a promising resource for discovering novel antifungal compounds.
Collapse
|
3
|
CRISPR-Cas9 approach confirms Calcineurin-responsive zinc finger 1 (Crz1) transcription factor as a promising therapeutic target in echinocandin-resistant Candida glabrata. PLoS One 2022; 17:e0265777. [PMID: 35303047 PMCID: PMC8932611 DOI: 10.1371/journal.pone.0265777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
Invasive fungal infections, which kill more than 1.6 million patients each year worldwide, are difficult to treat due to the limited number of antifungal drugs (azoles, echinocandins, and polyenes) and the emergence of antifungal resistance. The transcription factor Crz1, a key regulator of cellular stress responses and virulence, is an attractive therapeutic target because this protein is absent in human cells. Here, we used a CRISPR-Cas9 approach to generate isogenic crz1Δ strains in two clinical isolates of caspofungin-resistant C. glabrata to analyze the role of this transcription factor in susceptibility to echinocandins, stress tolerance, biofilm formation, and pathogenicity in both non-vertebrate (Galleria mellonella) and vertebrate (mice) models of candidiasis. In these clinical isolates, CRZ1 disruption restores the susceptibility to echinocandins in both in vitro and in vivo models, and affects their oxidative stress response, biofilm formation, cell size, and pathogenicity. These results strongly suggest that Crz1 inhibitors may play an important role in the development of novel therapeutic agents against fungal infections considering the emergence of antifungal resistance and the low number of available antifungal drugs.
Collapse
|
4
|
Ceballos-Garzon A, Monteoliva L, Gil C, Alvarez-Moreno C, Vega-Vela NE, Engelthaler DM, Bowers J, Le Pape P, Parra-Giraldo CM. Genotypic, proteomic, and phenotypic approaches to decipher the response to caspofungin and calcineurin inhibitors in clinical isolates of echinocandin-resistant Candida glabrata. J Antimicrob Chemother 2021; 77:585-597. [PMID: 34893830 PMCID: PMC8865013 DOI: 10.1093/jac/dkab454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/09/2021] [Indexed: 01/20/2023] Open
Abstract
Background Echinocandin resistance represents a great concern, as these drugs are recommended as first-line therapy for invasive candidiasis. Echinocandin resistance is conferred by mutations in FKS genes. Nevertheless, pathways are crucial for enabling tolerance, evolution, and maintenance of resistance. Therefore, understanding the biological processes and proteins involved in the response to caspofungin may provide clues indicating new therapeutic targets. Objectives We determined the resistance mechanism and assessed the proteome response to caspofungin exposure. We then evaluated the phenotypic impact of calcineurin inhibition by FK506 and cephalosporine A (CsA) on caspofungin-resistant Candida glabrata isolates. Methods Twenty-five genes associated with caspofungin resistance were analysed by NGS, followed by studies of the quantitative proteomic response to caspofungin exposure. Then, susceptibility testing of caspofungin in presence of FK506 and CsA was performed. The effects of calcineurin inhibitor/caspofungin combinations on heat stress (40°C), oxidative stress (0.2 and 0.4 mM menadione) and on biofilm formation (polyurethane catheter) were analysed. Finally, a Galleria mellonella model using blastospores (1 × 109 cfu/mL) was developed to evaluate the impact of the combinations on larval survival. Results F659-del was found in the FKS2 gene of resistant strains. Proteomics data showed some up-regulated proteins are involved in cell-wall biosynthesis, response to stress and pathogenesis, some of them being members of calmodulin–calcineurin pathway. Therefore, the impact of calmodulin inhibition was explored. Calmodulin inhibition restored caspofungin susceptibility, decreased capacity to respond to stress conditions, and reduced biofilm formation and in vivo pathogenicity. Conclusions Our findings confirm that calmodulin-calcineurin-Crz1 could provide a relevant target in life-threatening invasive candidiasis.
Collapse
Affiliation(s)
- Andres Ceballos-Garzon
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
- Department of Parasitology and Medical Mycology, Faculty of Pharmacy, University of Nantes, Nantes Atlantique Universities, Nantes, France
| | - Lucia Monteoliva
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Concha Gil
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
- Unidad de Proteómica, Universidad Complutense de Madrid, Madrid, Spain
| | - Carlos Alvarez-Moreno
- Department of Internal Medicine, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- Clínica Universitaria Colombia, Clinica Colsanitas, Bogotá, Colombia
| | - Nelson E Vega-Vela
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | | | - Jolene Bowers
- Translational Genomics Research Institute, Flagstaff, AZ, USA
| | - Patrice Le Pape
- Department of Parasitology and Medical Mycology, Faculty of Pharmacy, University of Nantes, Nantes Atlantique Universities, Nantes, France
| | - Claudia M Parra-Giraldo
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
- Corresponding author. E-mail:
| |
Collapse
|
5
|
Hernando-Ortiz A, Eraso E, Quindós G, Mateo E. Candidiasis by Candida glabrata, Candida nivariensis and Candida bracarensis in Galleria mellonella: Virulence and Therapeutic Responses to Echinocandins. J Fungi (Basel) 2021; 7:jof7120998. [PMID: 34946981 PMCID: PMC8708380 DOI: 10.3390/jof7120998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
Candida albicans is the major etiological agent of invasive candidiasis but the increasing prevalence of emerging species of Candida, such as Candida glabrata and phylogenetically closely related species, Candida nivariensis and Candida bracarensis, requires special attention. Differences in virulence among these species and their therapeutic responses using in vivo non-mammalian models are scarcely analysed. The aim of this study was analyse the survival of G. mellonella and host-pathogen interactions during infection by C. glabrata, C. nivariensis and C. bracarensis. Moreover, therapeutic responses to echinocandins were also assessed in the G. mellonella model of candidiasis. These three species produced lethal infection in G. mellonella; C. glabrata was the most virulent species and C. bracarensis the less. Haemocytes of G. mellonella phagocytised C. bracarensis cells more effectively than those of the other two species. Treatment with caspofungin and micafungin was most effective to protect larvae during C. glabrata and C. nivariensis infections while anidulafungin was during C. bracarensis infection. The model of candidiasis in G. mellonella is simple and appropriate to assess the virulence and therapeutic response of these emerging Candida species. Moreover, it successfully allows for detecting differences in the immune system of the host depending on the virulence of pathogens.
Collapse
|
6
|
Arastehfar A, Gabaldón T, Garcia-Rubio R, Jenks JD, Hoenigl M, Salzer HJF, Ilkit M, Lass-Flörl C, Perlin DS. Drug-Resistant Fungi: An Emerging Challenge Threatening Our Limited Antifungal Armamentarium. Antibiotics (Basel) 2020; 9:antibiotics9120877. [PMID: 33302565 PMCID: PMC7764418 DOI: 10.3390/antibiotics9120877] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/02/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
The high clinical mortality and economic burden posed by invasive fungal infections (IFIs), along with significant agricultural crop loss caused by various fungal species, has resulted in the widespread use of antifungal agents. Selective drug pressure, fungal attributes, and host- and drug-related factors have counteracted the efficacy of the limited systemic antifungal drugs and changed the epidemiological landscape of IFIs. Species belonging to Candida, Aspergillus, Cryptococcus, and Pneumocystis are among the fungal pathogens showing notable rates of antifungal resistance. Drug-resistant fungi from the environment are increasingly identified in clinical settings. Furthermore, we have a limited understanding of drug class-specific resistance mechanisms in emerging Candida species. The establishment of antifungal stewardship programs in both clinical and agricultural fields and the inclusion of species identification, antifungal susceptibility testing, and therapeutic drug monitoring practices in the clinic can minimize the emergence of drug-resistant fungi. New antifungal drugs featuring promising therapeutic profiles have great promise to treat drug-resistant fungi in the clinical setting. Mitigating antifungal tolerance, a prelude to the emergence of resistance, also requires the development of effective and fungal-specific adjuvants to be used in combination with systemic antifungals.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (A.A.); (R.G.-R.)
| | - Toni Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Jordi Girona, 08034 Barcelona, Spain;
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), 08024 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies. Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Rocio Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (A.A.); (R.G.-R.)
| | - Jeffrey D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA 92103, USA;
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA 92093, USA;
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Martin Hoenigl
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA 92093, USA;
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | | | - Macit Ilkit
- Division of Mycology, University of Çukurova, 01330 Adana, Turkey
- Correspondence: (M.I.); (D.S.P.); Tel.: +90-532-286-0099 (M.I.); +1-201-880-3100 (D.S.P.)
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (A.A.); (R.G.-R.)
- Correspondence: (M.I.); (D.S.P.); Tel.: +90-532-286-0099 (M.I.); +1-201-880-3100 (D.S.P.)
| |
Collapse
|
7
|
Wojda I, Staniec B, Sułek M, Kordaczuk J. The greater wax moth Galleria mellonella: biology and use in immune studies. Pathog Dis 2020; 78:ftaa057. [PMID: 32970818 PMCID: PMC7683414 DOI: 10.1093/femspd/ftaa057] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/28/2020] [Indexed: 01/04/2023] Open
Abstract
The greater wax moth Galleria mellonella is an invertebrate that is increasingly being used in scientific research. Its ease of reproduction, numerous offspring, short development cycle, and finally, its known genome and immune-related transcriptome provide a convenient research model for investigation of insect immunity at biochemical and molecular levels. Galleria immunity, consisting of only innate mechanisms, shows adaptive plasticity, which has recently become the subject of intensive scientific research. This insect serves as a mini host in studies of the pathogenicity of microorganisms and in vivo tests of the effectiveness of single virulence factors as well as new antimicrobial compounds. Certainly, the Galleria mellonella species deserves our attention and appreciation for its contribution to the development of research on innate immune mechanisms. In this review article, we describe the biology of the greater wax moth, summarise the main advantages of using it as a model organism and present some of the main techniques facilitating work with this insect.
Collapse
Affiliation(s)
- Iwona Wojda
- Maria Curie Sklodowska University, Institute of Biological Sciences, Department of Immunobiology, Akademicka 19, 20-033 Lublin, Poland
| | - Bernard Staniec
- Maria Curie Sklodowska University, Institute of Biological Sciences, Department of Zoology and Nature Protection, Akademicka 19, 20-033 Lublin, Poland
| | - Michał Sułek
- Maria Curie Sklodowska University, Institute of Biological Sciences, Department of Immunobiology, Akademicka 19, 20-033 Lublin, Poland
| | - Jakub Kordaczuk
- Maria Curie Sklodowska University, Institute of Biological Sciences, Department of Immunobiology, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
8
|
Tits J, Cammue BPA, Thevissen K. Combination Therapy to Treat Fungal Biofilm-Based Infections. Int J Mol Sci 2020; 21:ijms21228873. [PMID: 33238622 PMCID: PMC7700406 DOI: 10.3390/ijms21228873] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
An increasing number of people is affected by fungal biofilm-based infections, which are resistant to the majority of currently-used antifungal drugs. Such infections are often caused by species from the genera Candida, Aspergillus or Cryptococcus. Only a few antifungal drugs, including echinocandins and liposomal formulations of amphotericin B, are available to treat such biofilm-based fungal infections. This review discusses combination therapy as a novel antibiofilm strategy. More specifically, in vitro methods to discover new antibiofilm combinations will be discussed. Furthermore, an overview of the main modes of action of promising antibiofilm combination treatments will be provided as this knowledge may facilitate the optimization of existing antibiofilm combinations or the development of new ones with a similar mode of action.
Collapse
|
9
|
Bazin MA, Cojean S, Pagniez F, Bernadat G, Cavé C, Ourliac-Garnier I, Nourrisson MR, Morgado C, Picot C, Leclercq O, Baratte B, Robert T, Späth GF, Rachidi N, Bach S, Loiseau PM, Le Pape P, Marchand P. In vitro identification of imidazo[1,2-a]pyrazine-based antileishmanial agents and evaluation of L. major casein kinase 1 inhibition. Eur J Med Chem 2020; 210:112956. [PMID: 33148491 DOI: 10.1016/j.ejmech.2020.112956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Leishmaniasis constitutes a severe public health problem, with an estimated prevalence of 12 million cases. This potentially fatal disease has a worldwide distribution and in 2012, the fatal Visceral Leishmaniasis (VL) was declared as new emerging disease in Europe, mainly due to global warming, with expected important public health impact. The available treatments are toxic, costly or lead to parasite resistance, thus there is an urgent need for new drugs with new mechanism of action. Previously, we reported the discovery of CTN1122, a potent imidazo[1,2-a]pyrazine-based antileishmanial hit compound targeting L-CK1.2 at low micromolar ranges. Here, we described structurally related, safe and selective compounds endowed with antiparasitic properties, better than miltefosine, the reference therapy by oral route. L-CK1.2 homology model gave the first structural explanations of the role of 4-pyridyl (CTN1122) and 2-aminopyrimidin-4-yl (compound 21) moieties, at the position 3 of the central core, in the low micromolar to nanomolar L-CK1.2 inhibition, whereas N-methylpyrazole derivative 11 remained inactive against the parasite kinase.
Collapse
Affiliation(s)
- Marc-Antoine Bazin
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Sandrine Cojean
- BioCIS Biomolécules: Conception, Isolement, Synthèse, Chimiothérapie Antiparasitaire, UMR CNRS 8076, Univ. Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, F-92296, Châtenay-Malabry, France
| | - Fabrice Pagniez
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Guillaume Bernadat
- BioCIS Biomolécules: Conception, Isolement, Synthèse, Chimiothérapie Antiparasitaire, UMR CNRS 8076, Univ. Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, F-92296, Châtenay-Malabry, France
| | - Christian Cavé
- BioCIS Biomolécules: Conception, Isolement, Synthèse, Chimiothérapie Antiparasitaire, UMR CNRS 8076, Univ. Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, F-92296, Châtenay-Malabry, France
| | - Isabelle Ourliac-Garnier
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Marie-Renée Nourrisson
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Cathy Morgado
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Carine Picot
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Olivier Leclercq
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, F-75015, Paris, France
| | - Blandine Baratte
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, F-29680, Roscoff, France; Sorbonne Université, CNRS, FR2424, Kinase Inhibitor Specialized Screening Facility - KISSf, Station Biologique, F-29680, Roscoff, France
| | - Thomas Robert
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, F-29680, Roscoff, France; Sorbonne Université, CNRS, FR2424, Kinase Inhibitor Specialized Screening Facility - KISSf, Station Biologique, F-29680, Roscoff, France
| | - Gérald F Späth
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, F-75015, Paris, France
| | - Najma Rachidi
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, F-75015, Paris, France
| | - Stéphane Bach
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, F-29680, Roscoff, France; Sorbonne Université, CNRS, FR2424, Kinase Inhibitor Specialized Screening Facility - KISSf, Station Biologique, F-29680, Roscoff, France
| | - Philippe M Loiseau
- BioCIS Biomolécules: Conception, Isolement, Synthèse, Chimiothérapie Antiparasitaire, UMR CNRS 8076, Univ. Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, F-92296, Châtenay-Malabry, France
| | - Patrice Le Pape
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Pascal Marchand
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000, Nantes, France.
| |
Collapse
|
10
|
Arastehfar A, Lass-Flörl C, Garcia-Rubio R, Daneshnia F, Ilkit M, Boekhout T, Gabaldon T, Perlin DS. The Quiet and Underappreciated Rise of Drug-Resistant Invasive Fungal Pathogens. J Fungi (Basel) 2020; 6:E138. [PMID: 32824785 PMCID: PMC7557958 DOI: 10.3390/jof6030138] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/22/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Human fungal pathogens are attributable to a significant economic burden and mortality worldwide. Antifungal treatments, although limited in number, play a pivotal role in decreasing mortality and morbidities posed by invasive fungal infections (IFIs). However, the recent emergence of multidrug-resistant Candida auris and Candida glabrata and acquiring invasive infections due to azole-resistant C. parapsilosis, C. tropicalis, and Aspergillus spp. in azole-naïve patients pose a serious health threat considering the limited number of systemic antifungals available to treat IFIs. Although advancing for major fungal pathogens, the understanding of fungal attributes contributing to antifungal resistance is just emerging for several clinically important MDR fungal pathogens. Further complicating the matter are the distinct differences in antifungal resistance mechanisms among various fungal species in which one or more mechanisms may contribute to the resistance phenotype. In this review, we attempt to summarize the burden of antifungal resistance for selected non-albicansCandida and clinically important Aspergillus species together with their phylogenetic placement on the tree of life. Moreover, we highlight the different molecular mechanisms between antifungal tolerance and resistance, and comprehensively discuss the molecular mechanisms of antifungal resistance in a species level.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Rocio Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| | - Farnaz Daneshnia
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands; (F.D.); (T.B.)
| | - Macit Ilkit
- Division of Mycology, University of Çukurova, 01330 Adana, Turkey;
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands; (F.D.); (T.B.)
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1012 WX Amsterdam, The Netherlands
| | - Toni Gabaldon
- Life Sciences Programme, Barcelona, Supercomputing Center (BSC-CNS), Jordi Girona, 08034 Barcelona, Spain;
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), 08024 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| |
Collapse
|
11
|
Vargas‐Casanova Y, Carlos Villamil Poveda J, Jenny Rivera‐Monroy Z, Ceballos Garzón A, Fierro‐Medina R, Le Pape P, Eduardo García‐Castañeda J, Marcela Parra Giraldo C. Palindromic Peptide LfcinB (21‐25)
Pal
Exhibited Antifungal Activity against Multidrug‐Resistant
Candida. ChemistrySelect 2020. [DOI: 10.1002/slct.202001329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yerly Vargas‐Casanova
- Departamento de Microbiología-Pontificia Universidad Javeriana Carrera 7 No. 40–62 Bogotá Colombia
| | | | - Zuly Jenny Rivera‐Monroy
- Facultad de Ciencias-Universidad Nacional de Colombia Carrera 45 No 26–85, Building 451, office 134 Bogotá Colombia
| | - Andrés Ceballos Garzón
- Departamento de Microbiología-Pontificia Universidad Javeriana Carrera 7 No. 40–62 Bogotá Colombia
| | - Ricardo Fierro‐Medina
- Facultad de Ciencias-Universidad Nacional de Colombia Carrera 45 No 26–85, Building 451, office 134 Bogotá Colombia
| | - Patrice Le Pape
- Department of Parasitology and Medical MycologyFaculty of Pharmacy-University of Nantes Nantes Atlantique Universities Nantes France
| | | | | |
Collapse
|