1
|
Shariff M, Ramengmawi E. Antimicrobial resistance pattern of anaerobic bacteria causing lower respiratory tract infections. BMC Microbiol 2023; 23:301. [PMID: 37872502 PMCID: PMC10591390 DOI: 10.1186/s12866-023-03059-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Anaerobes are normal flora of the human body. However, they can cause serious infections in humans. Anaerobic bacteria are known to cause respiratory infections like pneumonia and acute exacerbation of chronic lower airway infections. These are often missed due to the complexity of their isolation and identification. Hence, this study aimed to study anaerobes causing respiratory tract infections and determine their antibiotic susceptibility. MATERIALS & METHODS Clinical specimens such as bronchial aspirates and pleural aspirates collected from patients with respiratory diseases attending Vallabhbhai Patel Chest Institute were processed, the anaerobes isolated were identified, and their susceptibilities to various groups of antimicrobials were studied using standard microbiological methods. RESULTS Three hundred and fourteen patients were included in the study, 154 males and 160 females. Of these 314 patients, 148 (47%) yielded anaerobes in their clinical samples. Seventy patients had more than one type of anaerobic organism. Hence, 235 isolates were recovered belonging to as many as 17 genera. The MIC of seven antibiotics on 154 isolates was tested. The isolates belonged mostly to the genera Bacteroides, Prevotella, Veillonella, and Actinomyces. Variable resistance was observed to most classes of antibiotics by many genera. CONCLUSIONS Metronidazole is commonly used against anaerobes, but the study showed that the isolates were 20-30% resistant to the antibiotic. Starting this as an empirical therapy might lead to treatment failure.
Collapse
Affiliation(s)
- Malini Shariff
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007 India
| | - Elizabeth Ramengmawi
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007 India
| |
Collapse
|
2
|
Reissier S, Penven M, Guérin F, Cattoir V. Recent Trends in Antimicrobial Resistance among Anaerobic Clinical Isolates. Microorganisms 2023; 11:1474. [PMID: 37374976 DOI: 10.3390/microorganisms11061474] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Anaerobic bacteria are normal inhabitants of the human commensal microbiota and play an important role in various human infections. Tedious and time-consuming, antibiotic susceptibility testing is not routinely performed in all clinical microbiology laboratories, despite the increase in antibiotic resistance among clinically relevant anaerobes since the 1990s. β-lactam and metronidazole are the key molecules in the management of anaerobic infections, to the detriment of clindamycin. β-lactam resistance is usually mediated by the production of β-lactamases. Metronidazole resistance remains uncommon, complex, and not fully elucidated, while metronidazole inactivation appears to be a key mechanism. The use of clindamycin, a broad-spectrum anti-anaerobic agent, is becoming problematic due to the increase in resistance rate in all anaerobic bacteria, mainly mediated by Erm-type rRNA methylases. Second-line anti-anaerobes are fluoroquinolones, tetracyclines, chloramphenicol, and linezolid. This review aims to describe the up-to-date evolution of antibiotic resistance, give an overview, and understand the main mechanisms of resistance in a wide range of anaerobes.
Collapse
Affiliation(s)
- Sophie Reissier
- Rennes University Hospital, Department of Clinical Microbiology, F-35033 Rennes, France
- UMR_S1230 BRM, Inserm, University of Rennes, F-35043 Rennes, France
| | - Malo Penven
- Rennes University Hospital, Department of Clinical Microbiology, F-35033 Rennes, France
- UMR_S1230 BRM, Inserm, University of Rennes, F-35043 Rennes, France
| | - François Guérin
- Rennes University Hospital, Department of Clinical Microbiology, F-35033 Rennes, France
- UMR_S1230 BRM, Inserm, University of Rennes, F-35043 Rennes, France
| | - Vincent Cattoir
- Rennes University Hospital, Department of Clinical Microbiology, F-35033 Rennes, France
- UMR_S1230 BRM, Inserm, University of Rennes, F-35043 Rennes, France
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière, 2 Rue Henri Le Guilloux, CEDEX 9, F-35033 Rennes, France
| |
Collapse
|
3
|
Sood A, Ray P, Angrup A. Anaerobic Gram-Negative Bacteria: Role as a Reservoir of Antibiotic Resistance. Antibiotics (Basel) 2023; 12:antibiotics12050942. [PMID: 37237845 DOI: 10.3390/antibiotics12050942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Anaerobic Gram-negative bacteria (AGNB) play a significant role as both pathogens and essential members of the human microbiota. Despite their clinical importance, there remains limited understanding regarding their antimicrobial resistance (AMR) patterns. This knowledge gap poses challenges in effectively managing AGNB-associated infections, as empirical treatment approaches may not adequately address the evolving resistance landscape. To bridge this research gap, we conducted a comprehensive study aimed at exploring the role of human AGNB as a reservoir of AMR. This can provide valuable insights for the prevention and management of anaerobic infections. METHODS We studied the prevalence of AMR and AMR determinants conferring resistance to metronidazole (nimE), imipenem (cfiA), piperacillin-tazobactam (cepA), cefoxitin (cfxA), clindamycin (ermF), chloramphenicol (cat) and mobile genetic elements (MGEs) such as cfiAIS and IS1186 associated with the cfiA and nim gene expression. These parameters were studied in Bacteroides spp., Fusobacterium spp., Prevotella spp., Veillonella spp., Sutterella spp., and other clinical AGNB. RESULTS Resistance to metronidazole, clindamycin, imipenem, piperacillin-tazobactam, cefoxitin and chloramphenicol was 29%, 33.5%, 0.5%, 27.5%, 26.5% and 0%, respectively. The presence of resistance genes, viz., nim, ermF, cfiA, cepA, cfxA, was detected in 24%, 33.5%, 10%, 9.5%, 21.5% isolates, respectively. None of the tested isolates showed the presence of a cat gene and MGEs, viz., cfiAIS and IS1186. The highest resistance to all antimicrobial agents was exhibited by Bacteroides spp. The association between resistant phenotypes and genotypes was complete in clindamycin, as all clindamycin-resistant isolates showed the presence of ermF gene, and none of the susceptible strains harbored this gene; similarly, all isolates were chloramphenicol-susceptible and also lacked the cat gene, whereas the association was low among imipenem and piperacillin-tazobactam. Metronidazole and imipenem resistance was seen to be dependent on insertion sequences for the expression of AMR genes. A constrained co-existence of cepA and cfiA gene in B. fragilis species was seen. Based on the absence and presence of the cfiA gene, we divided B. fragilis into two categories, Division I (72.6%) and Division II (27.3%), respectively. CONCLUSION AGNB acts as a reservoir of specific AMR genes, which may pose a threat to other anaerobes due to functional compatibility and acquisition of these genes. Thus, AST-complying standard guidelines must be performed periodically to monitor the local and institutional susceptibility trends, and rational therapeutic strategies must be adopted to direct empirical management.
Collapse
Affiliation(s)
- Anshul Sood
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Pallab Ray
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Archana Angrup
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
4
|
Sood A, Sharma V, Ray P, Angrup A. Can beta-lactamase resistance genes in anaerobic Gram-negative gut bacteria transfer to gut aerobes? J Antibiot (Tokyo) 2023; 76:355-359. [PMID: 36997726 DOI: 10.1038/s41429-023-00608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/20/2023] [Accepted: 02/26/2023] [Indexed: 04/01/2023]
Abstract
The study was conceived with the hypothesis that human aerobic gut flora could act as a reservoir of ß-lactamases and contribute to the emergence of ß-lactam resistance by transferring ß-lactamase genes to resident anaerobes. Thus, we studied the repertoire of ß-lactam resistance determinants (ß-lactamases associated with aerobes and anaerobes) in Gram-negative anaerobes. The phenotypic resistance against ß-lactams and the presence of aerobic and anaerobic ß-lactamases were tested in Gram-negative anaerobic isolates (n = 200) by agar dilution method and targeted PCR, respectively. In addition, whole-genome sequencing (WGS) was used to study the ß-lactam resistance determinants in 4/200 multi-drug resistant (MDR) strains. The resistance to ß-lactams was as follows: imipenem (0.5%), cefoxitin (26.5%), and piperacillin-tazobactam (27.5%). None of the isolates showed the presence of ß-lactamases found in aerobic microorganisms. The presence of anaerobic ß-lactamase genes viz. cfiA, cepA, cfxA, cfiAIS [the intact segment containing cfiA gene (350 bp) and upstream IS elements (1.6-1.7 kb)] was detected in 10%, 9.5%, 21.5%, and 0% isolates, respectively. The WGS data showed the presence of cfiA, cfiA4, cfxA, cfxA2, cfxA3, cfxA4, cfxA5 in MDR strains. The study showed a distinct dichotomy in repertoires of ß-lactamases between aerobes and anaerobes.
Collapse
Affiliation(s)
- Anshul Sood
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Vikas Sharma
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Pallab Ray
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Archana Angrup
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
5
|
Jha L, Y BL, Ragupathi NKD, Veeraraghavan B, Prakash JAJ. Phenotypic and Genotypic Correlation of Antimicrobial Susceptibility of Bacteroides fragilis: Lessons Learnt. Cureus 2023; 15:e36268. [PMID: 37073211 PMCID: PMC10105825 DOI: 10.7759/cureus.36268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
Background Bacteroides fragilis is an opportunistic pathogen causing severe infections, including bacteremia. There have been increased reports of antimicrobial resistance in B. fragilis. However, phenotypic testing of susceptibility is time consuming and not cost effective for anaerobes. The present study investigates the correlation of phenotypic susceptibility with genotypic markers; to determine if these could be considered for deciding empirical therapy for B. fragilis. Material and methods Bacteroides fragilis isolates from various clinical samples including exudates, tissue, and body fluids were collected between November 2018 and January 2020 in the Department of Clinical Microbiology, Christian Medical College (CMC) Vellore. Species identification was done by Matrix Assisted Laser Desorption Ionization time of flight mass spectrometry (MALDI TOF) according to the manufacturer's instructions. A total number of 51 B. fragilis isolates were tested against metronidazole, clindamycin, piperacillin/tazobactam, and meropenem phenotypically by agar dilution method using Clinical & Laboratory Standards Institute (CLSI) 2019 guidelines and minimum inhibitory concentrations (MIC) were interpretated. The genotypic markers for antimicrobial resistance genes (nim, emrF, and cfiA) were studied by polymerase chain reaction (PCR) assay as per the standard protocol on all isolates to detect resistance genes. Results B. fragilis isolates in this study expressed 45%, 41%, and 16% phenotypic resistance to clindamycin, metronidazole, and meropenem, respectively, with least resistance to piperacillin/tazobactam (6%). Among the metronidazole resistant isolates, 52% harbored nim gene. Nim gene was also present in 76% (23/30) of the metronidazole susceptible isolates. Similarly, cfiA was present in all eight meropenem resistant isolates in addition to 22% (9/41) of the susceptible isolates. All cfiA negative isolates were phenotypically susceptible. Interestingly, 74% (17/23) of the clindamycin resistant isolates were positive for ermF. Conclusions Detection of a limited set of genes does not always correlate with phenotypic resistance to metronidazole and clindamycin due to the reported influence of insertion sequence (IS) elements, efflux, and other genetic determinants. Certainly, the absence of the cfiA gene can be employed to rule out meropenem resistance. However, redundant use of antibiotics such as meropenem along with metronidazole could be avoided for B. fragilis, which might otherwise elevate meropenem resistance. Recommendation of metronidazole requires prior phenotypic testing due to the reported 41% resistance.
Collapse
|
6
|
Jamir I, Biswas R, Gulati R, Kumar P, Radjendirane A. Intra-spinal abscess due to Bacteroides fragilis and Klebsiella pneumoniae co-infection in a child with spinal dysraphism. Anaerobe 2023; 79:102673. [PMID: 36503026 DOI: 10.1016/j.anaerobe.2022.102673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022]
Abstract
Bacteroides fragilis (B. fragilis) is an uncommon cause of spinal abscess. We present a case of an 18-month-old child, with spinal dysraphism-Spina bifida occulta, who developed intra-spinal abscess infection with B. fragilis and Klebsiella pneumoniae. Magnetic resonance imaging (MRI) of the brain and spine showed multiple abscesses extending through the presacral fistula into the spinal cord. Patient was surgically treated along with administration of antimicrobial agents (ceftriaxone and metronidazole), resulting in an excellent clinical outcome.
Collapse
Affiliation(s)
- Imola Jamir
- Department of Microbiology, JIPMER, Puducherry, India
| | - Rakhi Biswas
- Department of Microbiology, JIPMER, Puducherry, India.
| | - Reena Gulati
- Department of Paediatrics, JIPMER, Puducherry, India
| | - Pradeep Kumar
- Department of Microbiology, JIPMER, Puducherry, India
| | | |
Collapse
|
7
|
Jahan L, Biswas R. Molecular study on metronidazole resistance in Bacteroides fragilis group isolates from a South Indian tertiary care center. Anaerobe 2023; 80:102692. [PMID: 36642289 DOI: 10.1016/j.anaerobe.2023.102692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Bacteroides species are an important part of human intestinal microbiota. They can cause infections of significant mortality and morbidity when moved out of their niche in the gut. The cornerstone drug for prophylaxis and therapy, metronidazole, is exhibiting signs of resistance, which are frequently attributed to nitroimidazole (nim) resistance genes. The aim of this study was to use Epsilometer test (E-test) to assess the metronidazole susceptibility and conventional PCR methodology to map the distribution of nim genes in Bacteroides fragilis group (BFG) isolates. METHODS MALDI-TOF MS was used to identify BFG isolates. Using the E-test methodology, metronidazole minimum inhibitory concentrations (MICs) were determined. The presence of nim genes in these isolates were checked by conventional PCR methodology. Sequencing was done on selected amplicons for determining the nim gene types. RESULTS Bacteroides fragilis accounted for 55.3% of the total 273 BFG members identified. Of these, 196 (71.8%) were susceptible, 43 (15.8%) intermediate and 34 (12.5%) resistant to metronidazole as determined by the E-test. nim gene was present in 101 (37%) of the total 273 isolates. Out of the 34 phenotypically resistant isolates (MIC ≥32 μg/ml), 29 harboured nim gene (Chi-square test, p < 0.0000001) but nim gene was absent in 5 (14.7%) isolates. Also, nim gene was detected in 72 (30.1%) of the 239 isolates with susceptible and intermediate metronidazole MIC. Sequencing of 20 amplicons gave a nimE gene type. CONCLUSIONS In view of the rising metronidazole resistance among BFG and its close association with nim genes, there is a need for implementing routine metronidazole susceptibility testing and more researches are needed to find the molecular basis of these nim genes.
Collapse
Affiliation(s)
- Lulu Jahan
- Department of Microbiology, Jawaharlal Institute of Post-Graduate Medical Education and Research (JIPMER), Puducherry, 605 006, India
| | - Rakhi Biswas
- Department of Microbiology, Jawaharlal Institute of Post-Graduate Medical Education and Research (JIPMER), Puducherry, 605 006, India.
| |
Collapse
|
8
|
Comparative genomics reveals the evolution of antimicrobial resistance in Bacteroides nordii. Microb Pathog 2022; 173:105811. [PMID: 36183960 DOI: 10.1016/j.micpath.2022.105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022]
Abstract
Bacteroides nordii, is an understudied member of the pathogenic B. fragilis group which comprises several multidrug-resistant (MDR) strains. Thus, it is of great interest to study the genome biology of Bacteroides nordii. However, no detailed study is available that characterized B. nordii at the genetic level and explored its role as a potential pathogen. We isolated an MDR strain viz., B. nordii PGMM4098 from the pus sample and subjected it to whole genome sequencing using Illumina technology. The draft genome was de-novo assembled and annotated, followed by comprehensive comparative genomics analyses using the publicly available genome dataset of B. nordii. The pan-genome analysis revealed the open nature of B. nordii, indicating the continuous accumulation of novel genes in non-core components leading to the emergence of new strains of this species. The thirteen antimicrobial resistance (AMR) genes identified in the genomes of all B. nordii strains were part of the non-core component of the pan-genome. Of these, four AMR genes, nimE, aadS, mef(En2), and ermB/F/G were found to be acquired via the process of horizontal gene transfer (HGT) from anaerobic Bacteroidetes. Importantly, the nimE gene conferring metronidazole resistance was found to be present only in B. nordii PGMM4098, which harbors five other AMR genes encoded in its genome. Of these, nimE (metronidazole resistance), ermB/F/G (macrolide-lincosamide-streptogramin B resistance), and cfxA2/A3 (class A β-lactam resistance) genes were further validated using targeted polymerase chain reaction assay. Notably, these three genes were also found to be under the operation of positive selective pressure suggesting the diversification of these genes, which might lead to the emergence of new MDR strains of B. nordii in the near future. Our study reported and characterized the genome of the first MDR strain of B. nordii and revealed the AMR evolution in this species using a comprehensive comparative genomics approach.
Collapse
|
9
|
Antimicrobial susceptibility testing of anaerobic bacteria: In routine and research. Anaerobe 2022; 75:102559. [DOI: 10.1016/j.anaerobe.2022.102559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/22/2022] [Accepted: 04/07/2022] [Indexed: 11/21/2022]
|
10
|
Vu H, Hayashi M, Nguyen TN, Khong DT, Tran HT, Yamamoto Y, Tanaka K. Comparison of Phenotypic and Genotypic Patterns of Antimicrobial-Resistant Bacteroides fragilis Group Isolated from Healthy Individuals in Vietnam and Japan. Infect Drug Resist 2021; 14:5313-5323. [PMID: 34924764 PMCID: PMC8674666 DOI: 10.2147/idr.s341571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Normal non-pathogenic flora can harm the host by acting as a reservoir of resistance determinants that are potentially transferable to human pathogens. This study aimed to assess the phenotypic and genotypic antimicrobial susceptibility patterns of the Bacteroides fragilis group (BFG) isolated from healthy individuals in Vietnam and Japan in order to elucidate the prevalence of antimicrobial resistance in human flora in the two economically and geographically different countries. Materials and Methods BFG was isolated from fecal samples of 80 healthy individuals in Vietnam (n=51) and Japan (n=29). Isolated strains were identified using MALDI-TOF MS, and the minimum inhibitory concentration (MIC) of 18 antibiotics was determined using the agar dilution method. Additionally, 20 antimicrobial resistance genes were detected using standard PCR. Results A total of 139 BFG strains belonging to 11 BFG species were isolated from the two countries, with diversity in the prevalence of each species. B. fragilis was not the predominant species. Isolations from Vietnam and Japan showed some similarities in terms of MIC50 values, MIC90 values, and the percentage of resistant strains. However, isolations from Vietnam showed significantly higher resistance to piperacillin, cefmetazole, clindamycin, tetracycline, and minocycline. ErmB, tet36, tetM, nim, catA, and qnrA were not found in either country. CepA was more common in B. fragilis than in non-fragilis Bacteroides. In contrast, cfiA, ermG, mefA, msrSA, tetX, tetX1, bexA, qnrB, and qnrS were found only in non-fragilis Bacteroides. There were differences in the prevalence of ermG, linA, mefA, msrSA, and qnrS between isolates from Vietnam and Japan. Conclusion This study is the first report on the antimicrobial susceptibility patterns in the BFG isolated from healthy individuals in Vietnam and Japan. Compared to isolations from Japan, isolations from Vietnam showed significantly higher resistance to antimicrobial agents. The distribution of various antibiotic resistance genes also differed between the two countries.
Collapse
Affiliation(s)
- Hanh Vu
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu City, Gifu, Japan
| | - Masahiro Hayashi
- Life Science Research Center, Gifu University, Gifu City, Gifu, Japan.,Institute for Glyco-core Research (iGCORE), Gifu University, Gifu City, Gifu, Japan
| | - Thang Nam Nguyen
- Center for Medical and Pharmaceutical Research and Service, Thai Binh University of Medicine and Pharmacy, Thai Binh City, Thai Binh, Vietnam
| | - Diep Thi Khong
- Center for Medical and Pharmaceutical Research and Service, Thai Binh University of Medicine and Pharmacy, Thai Binh City, Thai Binh, Vietnam
| | - Hoa Thi Tran
- Center for Medical and Pharmaceutical Research and Service, Thai Binh University of Medicine and Pharmacy, Thai Binh City, Thai Binh, Vietnam
| | - Yoshimasa Yamamoto
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu City, Gifu, Japan
| | - Kaori Tanaka
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu City, Gifu, Japan.,Life Science Research Center, Gifu University, Gifu City, Gifu, Japan.,Institute for Glyco-core Research (iGCORE), Gifu University, Gifu City, Gifu, Japan
| |
Collapse
|
11
|
Angrup A, Sood A, Ray P, Bala K. Clinical anaerobic infections in an Indian tertiary care hospital: A two-year retrospective study. Anaerobe 2021; 73:102482. [PMID: 34861364 DOI: 10.1016/j.anaerobe.2021.102482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/10/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To study the spectrum of anaerobic infections and the frequency of clinically relevant anaerobes in various infections in a tertiary care hospital in North India. METHOD In this two-year (2018-2019) retrospective study, a total of 22,177 samples were processed both anaerobically and aerobically. The samples included blood, pus, body fluids, necrotic tissues, abscess, peritoneal fluids, and other specimens of conditions predisposing to anaerobic infections. The recovered bacterial isolates were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). RESULT Of the 22,177 samples processed anaerobically, 1094 showed significant anaerobic growth yielding 1464 anaerobes. Bacteroides fragilis (12.7%) and Peptoniphilus harei (12.2%) were the most predominant anaerobes, whereas Escherichia coli (32.6%) and Staphylococcus aureus (13.2%) were the most frequently recovered facultative anaerobes in polymicrobial growth. Both aerobic and anaerobic data were available for 673/1094 samples, of which 68% represented a polymicrobial etiology and 32% as monomicrobial. Of the cases where complete clinical information was available (504/1094), the majority of the anaerobes were recovered from the skin and soft tissue infections (36.3%) and intra-abdominal infections (17.1%). The clinical specimen most frequently growing anaerobes was abscess (29.1%), followed by diabetic foot ulcers (14.1%). CONCLUSION The study documents the frequency of clinically significant anaerobic bacteria in various infections, and their associations with aerobes in polymicrobial growth. The present study may aid us in devising better therapeutic strategies against both aerobes and anaerobes in anaerobic infections, which is often empirical. Besides, the data can update clinicians with the changing patterns of anaerobic infections, which remains a neglected concern.
Collapse
Affiliation(s)
- Archana Angrup
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| | - Anshul Sood
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| | - Pallab Ray
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| | - Kiran Bala
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|