1
|
Yao S, Zhang Y, Chen J, Lu Q, Zhao Z. Enhancing identification performance of cognitive impairment high-risk based on a semi-supervised learning method. J Biomed Inform 2024; 157:104699. [PMID: 39033866 DOI: 10.1016/j.jbi.2024.104699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/21/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Cognitive assessment plays a pivotal role in the early detection of cognitive impairment, particularly in the prevention and management of cognitive diseases such as Alzheimer's and Lewy body dementia. Large-scale screening relies heavily on cognitive assessment scales as primary tools, with some low sensitivity and others expensive. Despite significant progress in machine learning for cognitive function assessment, its application in this particular screening domain remains underexplored, often requiring labor-intensive expert annotations. AIMS This paper introduces a semi-supervised learning algorithm based on pseudo-label with putback (SS-PP), aiming to enhance model efficiency in predicting the high risk of cognitive impairment (HR-CI) by utilizing the distribution of unlabeled samples. DATA The study involved 189 labeled samples and 215,078 unlabeled samples from real world. A semi-supervised classification algorithm was designed and evaluated by comparison with supervised methods composed by 14 traditional machine-learning methods and other advanced semi-supervised algorithms. RESULTS The optimal SS-PP model, based on GBDT, achieved an AUC of 0.947. Comparative analysis with supervised learning models and semi-supervised methods demonstrated an average AUC improvement of 8% and state-of-art performance, repectively. CONCLUSION This study pioneers the exploration of utilizing limited labeled data for HR-CI predictions and evaluates the benefits of incorporating physical examination data, holding significant implications for the development of cost-effective strategies in relevant healthcare domains.
Collapse
Affiliation(s)
- Sumei Yao
- Center for Studies of Information Resources, Wuhan University, Wuhan, China; School of Information Management, Wuhan University, Wuhan, China; Big Data Institute, Wuhan University, Wuhan, China.
| | - Yan Zhang
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Jing Chen
- School of Information Management, Central China Normal University, Wuhan, China
| | - Quan Lu
- Center for Studies of Information Resources, Wuhan University, Wuhan, China; School of Information Management, Wuhan University, Wuhan, China; Big Data Institute, Wuhan University, Wuhan, China.
| | - Zhiguang Zhao
- Shenzhen Center for Chronic Disease Control, Shenzhen, China.
| |
Collapse
|
2
|
Giacobbe DR, Marelli C, Guastavino S, Signori A, Mora S, Rosso N, Campi C, Piana M, Murgia Y, Giacomini M, Bassetti M. Artificial intelligence and prescription of antibiotic therapy: present and future. Expert Rev Anti Infect Ther 2024:1-15. [PMID: 39155449 DOI: 10.1080/14787210.2024.2386669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/28/2024] [Indexed: 08/20/2024]
Abstract
INTRODUCTION In the past few years, the use of artificial intelligence in healthcare has grown exponentially. Prescription of antibiotics is not exempt from its rapid diffusion, and various machine learning (ML) techniques, from logistic regression to deep neural networks and large language models, have been explored in the literature to support decisions regarding antibiotic prescription. AREAS COVERED In this narrative review, we discuss promises and challenges of the application of ML-based clinical decision support systems (ML-CDSSs) for antibiotic prescription. A search was conducted in PubMed up to April 2024. EXPERT OPINION Prescribing antibiotics is a complex process involving various dynamic phases. In each of these phases, the support of ML-CDSSs has shown the potential, and also the actual ability in some studies, to favorably impacting relevant clinical outcomes. Nonetheless, before widely exploiting this massive potential, there are still crucial challenges ahead that are being intensively investigated, pertaining to the transparency of training data, the definition of the sufficient degree of prediction explanations when predictions are obtained through black box models, and the legal and ethical framework for decision responsibility whenever an antibiotic prescription is supported by ML-CDSSs.
Collapse
Affiliation(s)
- Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Cristina Marelli
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Alessio Signori
- Section of Biostatistics, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Sara Mora
- UO Information and Communication Technologies, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Nicola Rosso
- UO Information and Communication Technologies, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Cristina Campi
- Department of Mathematics (DIMA), University of Genoa, Genoa, Italy
- Life Science Computational Laboratory (LISCOMP), IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michele Piana
- Department of Mathematics (DIMA), University of Genoa, Genoa, Italy
- Life Science Computational Laboratory (LISCOMP), IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Ylenia Murgia
- Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genoa, Genoa, Italy
| | - Mauro Giacomini
- Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genoa, Genoa, Italy
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
3
|
Bashiri FS, Carey KA, Martin J, Koyner JL, Edelson DP, Gilbert ER, Mayampurath A, Afshar M, Churpek MM. Development and external validation of deep learning clinical prediction models using variable-length time series data. J Am Med Inform Assoc 2024; 31:1322-1330. [PMID: 38679906 PMCID: PMC11105134 DOI: 10.1093/jamia/ocae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/27/2024] [Accepted: 04/05/2024] [Indexed: 05/01/2024] Open
Abstract
OBJECTIVES To compare and externally validate popular deep learning model architectures and data transformation methods for variable-length time series data in 3 clinical tasks (clinical deterioration, severe acute kidney injury [AKI], and suspected infection). MATERIALS AND METHODS This multicenter retrospective study included admissions at 2 medical centers that spanned 2007-2022. Distinct datasets were created for each clinical task, with 1 site used for training and the other for testing. Three feature engineering methods (normalization, standardization, and piece-wise linear encoding with decision trees [PLE-DTs]) and 3 architectures (long short-term memory/gated recurrent unit [LSTM/GRU], temporal convolutional network, and time-distributed wrapper with convolutional neural network [TDW-CNN]) were compared in each clinical task. Model discrimination was evaluated using the area under the precision-recall curve (AUPRC) and the area under the receiver operating characteristic curve (AUROC). RESULTS The study comprised 373 825 admissions for training and 256 128 admissions for testing. LSTM/GRU models tied with TDW-CNN models with both obtaining the highest mean AUPRC in 2 tasks, and LSTM/GRU had the highest mean AUROC across all tasks (deterioration: 0.81, AKI: 0.92, infection: 0.87). PLE-DT with LSTM/GRU achieved the highest AUPRC in all tasks. DISCUSSION When externally validated in 3 clinical tasks, the LSTM/GRU model architecture with PLE-DT transformed data demonstrated the highest AUPRC in all tasks. Multiple models achieved similar performance when evaluated using AUROC. CONCLUSION The LSTM architecture performs as well or better than some newer architectures, and PLE-DT may enhance the AUPRC in variable-length time series data for predicting clinical outcomes during external validation.
Collapse
Affiliation(s)
- Fereshteh S Bashiri
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53792, United States
| | - Kyle A Carey
- Department of Medicine, University of Chicago, Chicago, IL 60637, United States
| | - Jennie Martin
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53792, United States
| | - Jay L Koyner
- Department of Medicine, University of Chicago, Chicago, IL 60637, United States
| | - Dana P Edelson
- Department of Medicine, University of Chicago, Chicago, IL 60637, United States
| | - Emily R Gilbert
- Department of Medicine, Loyola University, Chicago, IL 60153, United States
| | - Anoop Mayampurath
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53792, United States
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, United States
| | - Majid Afshar
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53792, United States
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, United States
| | - Matthew M Churpek
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53792, United States
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, United States
| |
Collapse
|
4
|
Karway GK, Koyner JL, Caskey J, Spicer AB, Carey KA, Gilbert ER, Dligach D, Mayampurath A, Afshar M, Churpek MM. Development and external validation of multimodal postoperative acute kidney injury risk machine learning models. JAMIA Open 2023; 6:ooad109. [PMID: 38144168 PMCID: PMC10746378 DOI: 10.1093/jamiaopen/ooad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/18/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023] Open
Abstract
Objectives To develop and externally validate machine learning models using structured and unstructured electronic health record data to predict postoperative acute kidney injury (AKI) across inpatient settings. Materials and Methods Data for adult postoperative admissions to the Loyola University Medical Center (2009-2017) were used for model development and admissions to the University of Wisconsin-Madison (2009-2020) were used for validation. Structured features included demographics, vital signs, laboratory results, and nurse-documented scores. Unstructured text from clinical notes were converted into concept unique identifiers (CUIs) using the clinical Text Analysis and Knowledge Extraction System. The primary outcome was the development of Kidney Disease Improvement Global Outcomes stage 2 AKI within 7 days after leaving the operating room. We derived unimodal extreme gradient boosting machines (XGBoost) and elastic net logistic regression (GLMNET) models using structured-only data and multimodal models combining structured data with CUI features. Model comparison was performed using the receiver operating characteristic curve (AUROC), with Delong's test for statistical differences. Results The study cohort included 138 389 adult patient admissions (mean [SD] age 58 [16] years; 11 506 [8%] African-American; and 70 826 [51%] female) across the 2 sites. Of those, 2959 (2.1%) developed stage 2 AKI or higher. Across all data types, XGBoost outperformed GLMNET (mean AUROC 0.81 [95% confidence interval (CI), 0.80-0.82] vs 0.78 [95% CI, 0.77-0.79]). The multimodal XGBoost model incorporating CUIs parameterized as term frequency-inverse document frequency (TF-IDF) showed the highest discrimination performance (AUROC 0.82 [95% CI, 0.81-0.83]) over unimodal models (AUROC 0.79 [95% CI, 0.78-0.80]). Discussion A multimodality approach with structured data and TF-IDF weighting of CUIs increased model performance over structured data-only models. Conclusion These findings highlight the predictive power of CUIs when merged with structured data for clinical prediction models, which may improve the detection of postoperative AKI.
Collapse
Affiliation(s)
- George K Karway
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53792, United States
| | - Jay L Koyner
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, IL 60637, United States
| | - John Caskey
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53792, United States
| | - Alexandra B Spicer
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53792, United States
| | - Kyle A Carey
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, IL 60637, United States
| | - Emily R Gilbert
- Department of Medicine, Loyola University Chicago, Chicago, IL 60153, United States
| | - Dmitriy Dligach
- Department of Computer Science, Loyola University Chicago, Chicago, IL 60626, United States
| | - Anoop Mayampurath
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53792, United States
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, United States
| | - Majid Afshar
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53792, United States
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, United States
| | - Matthew M Churpek
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53792, United States
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, United States
| |
Collapse
|