1
|
Ochsner SA, Abraham D, Martin K, Ding W, McOwiti A, Kankanamge W, Wang Z, Andreano K, Hamilton RA, Chen Y, Hamilton A, Gantner ML, Dehart M, Qu S, Hilsenbeck SG, Becnel LB, Bridges D, Ma'ayan A, Huss JM, Stossi F, Foulds CE, Kralli A, McDonnell DP, McKenna NJ. The Signaling Pathways Project, an integrated 'omics knowledgebase for mammalian cellular signaling pathways. Sci Data 2019; 6:252. [PMID: 31672983 PMCID: PMC6823428 DOI: 10.1038/s41597-019-0193-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/11/2019] [Indexed: 12/28/2022] Open
Abstract
Mining of integrated public transcriptomic and ChIP-Seq (cistromic) datasets can illuminate functions of mammalian cellular signaling pathways not yet explored in the research literature. Here, we designed a web knowledgebase, the Signaling Pathways Project (SPP), which incorporates community classifications of signaling pathway nodes (receptors, enzymes, transcription factors and co-nodes) and their cognate bioactive small molecules. We then mapped over 10,000 public transcriptomic or cistromic experiments to their pathway node or biosample of study. To enable prediction of pathway node-gene target transcriptional regulatory relationships through SPP, we generated consensus 'omics signatures, or consensomes, which ranked genes based on measures of their significant differential expression or promoter occupancy across transcriptomic or cistromic experiments mapped to a specific node family. Consensomes were validated using alignment with canonical literature knowledge, gene target-level integration of transcriptomic and cistromic data points, and in bench experiments confirming previously uncharacterized node-gene target regulatory relationships. To expose the SPP knowledgebase to researchers, a web browser interface was designed that accommodates numerous routine data mining strategies. SPP is freely accessible at https://www.signalingpathways.org .
Collapse
Affiliation(s)
- Scott A Ochsner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - David Abraham
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Kirt Martin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Wei Ding
- Duncan NCI Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Apollo McOwiti
- Duncan NCI Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Wasula Kankanamge
- Duncan NCI Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Zichen Wang
- Icahn School of Medicine, Mount Sinai University, New York, NY, 10029, USA
| | - Kaitlyn Andreano
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ross A Hamilton
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Yue Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Angelica Hamilton
- Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Marin L Gantner
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Michael Dehart
- Duncan NCI Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Shijing Qu
- Duncan NCI Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Susan G Hilsenbeck
- Duncan NCI Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Lauren B Becnel
- Duncan NCI Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Dave Bridges
- University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Avi Ma'ayan
- Icahn School of Medicine, Mount Sinai University, New York, NY, 10029, USA
| | - Janice M Huss
- Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Anastasia Kralli
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Neil J McKenna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030, USA.
| |
Collapse
|
5
|
Ochsner SA, Tsimelzon A, Dong J, Coarfa C, McKenna NJ. Research Resource: A Reference Transcriptome for Constitutive Androstane Receptor and Pregnane X Receptor Xenobiotic Signaling. Mol Endocrinol 2016; 30:937-48. [PMID: 27409825 DOI: 10.1210/me.2016-1095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The pregnane X receptor (PXR) (PXR/NR1I3) and constitutive androstane receptor (CAR) (CAR/NR1I2) members of the nuclear receptor (NR) superfamily of ligand-regulated transcription factors are well-characterized mediators of xenobiotic and endocrine-disrupting chemical signaling. The Nuclear Receptor Signaling Atlas maintains a growing library of transcriptomic datasets involving perturbations of NR signaling pathways, many of which involve perturbations relevant to PXR and CAR xenobiotic signaling. Here, we generated a reference transcriptome based on the frequency of differential expression of genes across 159 experiments compiled from 22 datasets involving perturbations of CAR and PXR signaling pathways. In addition to the anticipated overrepresentation in the reference transcriptome of genes encoding components of the xenobiotic stress response, the ranking of genes involved in carbohydrate metabolism and gonadotropin action sheds mechanistic light on the suspected role of xenobiotics in metabolic syndrome and reproductive disorders. Gene Set Enrichment Analysis showed that although acetaminophen, chlorpromazine, and phenobarbital impacted many similar gene sets, differences in direction of regulation were evident in a variety of processes. Strikingly, gene sets representing genes linked to Parkinson's, Huntington's, and Alzheimer's diseases were enriched in all 3 transcriptomes. The reference xenobiotic transcriptome will be supplemented with additional future datasets to provide the community with a continually updated reference transcriptomic dataset for CAR- and PXR-mediated xenobiotic signaling. Our study demonstrates how aggregating and annotating transcriptomic datasets, and making them available for routine data mining, facilitates research into the mechanisms by which xenobiotics and endocrine-disrupting chemicals subvert conventional NR signaling modalities.
Collapse
Affiliation(s)
- Scott A Ochsner
- Departments of Molecular and Cellular Biology (S.A.O., J.D., C.C., N.J.M.) and Lester and Sue Smith Breast Center (A.T.) and the Nuclear Receptor Signaling Atlas Informatics Group (S.A.O., N.J.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Anna Tsimelzon
- Departments of Molecular and Cellular Biology (S.A.O., J.D., C.C., N.J.M.) and Lester and Sue Smith Breast Center (A.T.) and the Nuclear Receptor Signaling Atlas Informatics Group (S.A.O., N.J.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Jianrong Dong
- Departments of Molecular and Cellular Biology (S.A.O., J.D., C.C., N.J.M.) and Lester and Sue Smith Breast Center (A.T.) and the Nuclear Receptor Signaling Atlas Informatics Group (S.A.O., N.J.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Cristian Coarfa
- Departments of Molecular and Cellular Biology (S.A.O., J.D., C.C., N.J.M.) and Lester and Sue Smith Breast Center (A.T.) and the Nuclear Receptor Signaling Atlas Informatics Group (S.A.O., N.J.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Neil J McKenna
- Departments of Molecular and Cellular Biology (S.A.O., J.D., C.C., N.J.M.) and Lester and Sue Smith Breast Center (A.T.) and the Nuclear Receptor Signaling Atlas Informatics Group (S.A.O., N.J.M.), Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|