1
|
Kola Srinivas NS, Yarlagadda DL, Bheemishetty B, Lewis S, Dengale SJ, Bhat K. Raloxifene HCl - Naringin co-amorphous system: Preparation, characterization and pharmacokinetic studies. Eur J Pharm Biopharm 2025; 209:114667. [PMID: 39961419 DOI: 10.1016/j.ejpb.2025.114667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 03/10/2025]
Abstract
Approximately 90 % of NCEs in development and 40 % of recently approved drugs are poorly water-soluble. To improve solubility and stability, co-amorphous systems (CAMs) are used, involving the amorphization of an API with a co-former through interactions like hydrogen bonding. This study explores the co-amorphization of Raloxifene HCl (RLX) and Naringin (NRG). RLX, a BCS class II drug, has limited oral bioavailability of only 2 % due to its poor solubility (0.5 μg/mL) and extensive pre-systemic metabolism. Additionally, it interacts with CYP3A4 and P-glycoprotein (P-gp). NRG, a compound found in citrus fruits, inhibits both CYP3A4 and P-gp. Therefore, utilizing NRG to prepare RLX CAMs could result in a compound with improved solubility and enhanced bioavailability. CAMs were prepared using the solvent evaporation technique, followed by solid-state characterization at the molecular level. Solubility, drug release, and both ex vivo and in vitro studies were conducted. CAMs showed a 3.5-fold solubility increase and a 10-fold increase in ex-vivo permeation compared to RLX. In vivo studies showed an 8.1-fold improvement in Cmax and a 2.8-fold increase in AUC, indicating significantly enhanced bioavailability. These results suggest that co-amorphization could be a viable platform technology for improving API properties at the molecular level.
Collapse
Affiliation(s)
- Navya Sree Kola Srinivas
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Dani Lakshman Yarlagadda
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Brahmam Bheemishetty
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shaila Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Swapnil Jayant Dengale
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research (NIPER) Guwahati, Assam 781101, India
| | - Krishnamurthy Bhat
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
2
|
Bakheit AH, Abdelrazaq K, Alkahtani HM, Albalawi FS, Bin Jardan YA, Al-Majed A. Dronedarone a comprehensive drug profile. PROFILES OF DRUG SUBSTANCES, EXCIPIENTS, AND RELATED METHODOLOGY 2024; 50:125-181. [PMID: 39855775 DOI: 10.1016/bs.podrm.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
This comprehensive drug profile provides a detailed exploration of Dronedarone, an antiarrhythmic medication used for regulating irregular heartbeats. This chapter covers various aspects of Dronedarone, including its nomenclature, formulae, physical characteristics, methods of preparation, and analytical methods. The nomenclature section presents the IUPAC and nonproprietary names of Dronedarone, along with its proprietary names. The empirical formula, molecular weight, and CAS number are provided for both Dronedarone and its hydrochloride salt. The document also explores the physical characteristics, including color, form, and optical activity, as well as the melting point, solubility, and spectroscopic analysis. Stability, clinical applications, pharmacology, mechanism of action, and pharmacokinetics are discussed.
Collapse
Affiliation(s)
- Ahmed H Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia; Department of Chemistry, Faculty of Science and Technology, Al-Neelain University, Khartoum, Sudan.
| | - Khaled Abdelrazaq
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Fatemah S Albalawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman Al-Majed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Khuanekkaphan M, Netsomboon K, Fristiohady A, Asasutjarit R. Development of Quercetin Solid Dispersion-Loaded Dissolving Microneedles and In Vitro Investigation of Their Anti-Melanoma Activities. Pharmaceutics 2024; 16:1276. [PMID: 39458607 PMCID: PMC11514592 DOI: 10.3390/pharmaceutics16101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Melanoma is a skin cancer that requires early treatment to prevent metastasis. In particular, the superficial spreading melanoma, excisional surgery with local administration of anti-cancer drugs via microneedles is currently considered a potential combination therapy. Quercetin is a natural flavonoid having activities against melanoma cells. Unfortunately, the therapeutic effect is limited by its poor water solubility. Objectives: This study aimed to develop formulations of solid dispersion-loaded dissolving microneedles (SD-DMNs) of quercetin and to investigate their in vitro activities against melanoma cells. Methods: Quercetin solid dispersions (Q-SDs) were prepared using polyvinylpyrrolidone K30 (PVP) via a solvent technique. The optimized Q-SD was selected for preparing Q-SD-loaded dissolving microneedles (Q-SD-DMNs) using a mold casting method. Results: Q-SDs had higher water solubility than that of quercetin by 5-10 times depending on the ratio of quercetin-to-PVP. The presence of quercetin in the Q-SD and Q-SD-DMN were in an amorphous form. The obtained Q-SD-DMNs had pyramid-shaped microneedles. Their strength depended on the compositions, i.e., ratios of hyaluronic acid-to-sodium carboxymethylcellulose and the content of Q-SD. An optimized Q-SD-DMN increased the in vitro skin permeation of quercetin compared to that of microneedles containing quercetin (without being processed). From the molecular investigations, the optimized Q-SD-DMN reduced the viability of the A375 cells (melanoma cells) through the induction of cell apoptosis. It suppressed Bcl-2 gene expression and led to a lower content of Bcl-2 in the cells. Conclusions: The optimized Q-SD-DMN has a potential for use in further in vivo studies as a synergistic method of melanoma treatment.
Collapse
Affiliation(s)
- Monsicha Khuanekkaphan
- Thammasat University Research Unit in Drug, Health Product Development and Application (DHP-DA), Department of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathum Thani 12120, Thailand;
| | - Kesinee Netsomboon
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathum Thani 12120, Thailand;
| | - Adryan Fristiohady
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Halu Oleo, Kendari 93132, Indonesia;
| | - Rathapon Asasutjarit
- Thammasat University Research Unit in Drug, Health Product Development and Application (DHP-DA), Department of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathum Thani 12120, Thailand;
| |
Collapse
|
4
|
Carvalho D, Jesus Â, Pinho C, Oliveira RF, Moreira F, Oliveira AI. Validation of an HPLC-DAD Method for Quercetin Quantification in Nanoparticles. Pharmaceuticals (Basel) 2023; 16:1736. [PMID: 38139862 PMCID: PMC10748265 DOI: 10.3390/ph16121736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
The evaluation of the efficacy of incorporation of quercetin in nanoparticles is crucial, both for the development and quality control of pharmaceutical formulations. The validation of analytical methods for the precise quantification of quercetin is useful for the evaluation of various potential quercetin delivery systems and quercetin pharmacokinetics. This work aimed to validate a high-performance liquid chromatography with diode array detection (HPLC-DAD) method for quercetin detection and quantification in nanoparticles. Different mobile phase conditions and detection wavelengths (254 and 368 nm) were tested, and the major validation parameters were assessed (precision, accuracy, linearity, sensitivity, stability, and selectivity). The best peak resolution was obtained when quercetin was analyzed at 368 nm with a mobile phase of 1.5% acetic acid and a water/acetonitrile/methanol ratio of 55:40:5. Under these conditions, quercetin also eluted rapidly (retention time of 3.6 min). The method proved to be linear (R2 > 0.995), specific, and repeatable (variation coefficient between 2.4% and 6.7%) and presented intermediate precision (variation coefficient between 7.2% and 9.4%). The accuracy of the analysis ranged between 88.6% and 110.7%, and detection and quantification limits were 0.046 and 0.14 µg/mL, respectively. Quercetin solutions were more stable when stored at 4 °C than at room temperature or -20 °C. This validated method satisfied more parameters of bias assessment than most recent methods for quercetin determination and presented itself as more sensitive and efficient than general spectrophotometric methods. The method was successfully used for the analysis of quercetin incorporation in nanoparticles and will be evaluated in the future for its adequacy for the determination of quercetin in more complex matrices.
Collapse
Affiliation(s)
- Daniel Carvalho
- Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (D.C.); (Â.J.); (C.P.); (R.F.O.); (A.I.O.)
| | - Ângelo Jesus
- Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (D.C.); (Â.J.); (C.P.); (R.F.O.); (A.I.O.)
- REQUIMTE-LAQV, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Cláudia Pinho
- Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (D.C.); (Â.J.); (C.P.); (R.F.O.); (A.I.O.)
- REQUIMTE-LAQV, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rita Ferraz Oliveira
- Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (D.C.); (Â.J.); (C.P.); (R.F.O.); (A.I.O.)
- REQUIMTE-LAQV, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Fernando Moreira
- Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (D.C.); (Â.J.); (C.P.); (R.F.O.); (A.I.O.)
- REQUIMTE-LAQV, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Ana Isabel Oliveira
- Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (D.C.); (Â.J.); (C.P.); (R.F.O.); (A.I.O.)
- REQUIMTE-LAQV, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| |
Collapse
|
5
|
Jadhav S, Bahl D, Stevens LL. Coformer-Dependent Physical Stability in a Series of Naringenin-Based Coamorphous Materials with Caffeine, Theophylline, and Theobromine. Pharm Res 2023; 40:2847-2858. [PMID: 37505378 DOI: 10.1007/s11095-023-03562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023]
Abstract
PURPOSE To investigate the production and physical stability of coamorphous materials (CAM) of naringenin (NAR) and coformers-caffeine, theophylline or theobromine (CAF/THY/THE, respectively). We independently assessed the impact of moisture and temperature on the physical stability of CAMs, and transformation products after destabilization were examined. METHODS Neat grinding, liquid assisted grinding and water slurry were selected to prepare multi-component materials with NAR and CAF, THY or THE. The physical stability of CAMs was investigated at 65°C/<10%RH, 21°C/85% RH and 21°C/<10% RH. Differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) were employed to monitor for recrystallization during the stability studies. Glass forming ability of amorphous NAR was assessed to understand CAM formation and physical stability. RESULTS NAR:THY and NAR:THE CAMs showed physical stability for approximately nine months, under 21°C/<10% RH while NAR:CAF CAMs destabilized in 2.5 weeks. All CAMs recrystallized within a week at 65°C/<10%RH, and the physical stability at 21°C/85% RH was in the order of - NAR:THY > NAR:THE > NAR:CAF. NAR:THY produced 1:1 cocrystal under all storage conditions, while NAR:CAF destabilized to a 1:1 cocrystal at high RH but a physical mixture at high temperature. NAR:THE was found to recrystallize as a physical mixture in all conditions. NAR was found to be strong glass, with moderate kinetic fragility and good glass forming ability. CONCLUSION Five naringenin-based multi-component solids were generated in this study: 3 new CAMs, 1 new cocrystal, and 1 previously reported cocrystal. Destabilization of CAMs was found to be exposure specific and coformer dependent.
Collapse
Affiliation(s)
- Sanika Jadhav
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
| | - Dherya Bahl
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
| | - Lewis L Stevens
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
6
|
K S NS, Dengale SJ, Mutalik S, Bhat K. Raloxifene HCl – Quercetin Co-amorphous System: Preparation, Characterization, and Investigation of its Behavior in Phosphate Buffer. Drug Dev Ind Pharm 2022; 48:227-238. [DOI: 10.1080/03639045.2022.2104308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Navya Sree K S
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India.
| | - Swapnil J Dengale
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India.
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research (NIPER) Guwahati, Assam-781101, India.
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Krishnamurthy Bhat
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India.
| |
Collapse
|