1
|
The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2020/2021. EFSA J 2023; 21:e07867. [PMID: 36891283 PMCID: PMC9987209 DOI: 10.2903/j.efsa.2023.7867] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Antimicrobial resistance (AMR) data on zoonotic and indicator bacteria from humans, animals and food are collected annually by the EU Member States (MSs) and reporting countries, jointly analysed by EFSA and ECDC and presented in a yearly EU Summary Report. This report provides an overview of the main findings of the 2020-2021 harmonised AMR monitoring in Salmonella spp., Campylobacter jejuni and C. coli in humans and food-producing animals (broilers, laying hens and turkeys, fattening pigs and bovines under 1 year of age) and relevant meat thereof. For animals and meat thereof, indicator E. coli data on the occurrence of AMR and presumptive Extended spectrum β-lactamases (ESBL)-/AmpC β-lactamases (AmpC)-/carbapenemases (CP)-producers, as well as the occurrence of methicillin-resistant Staphylococcus aureus are also analysed. In 2021, MSs submitted for the first time AMR data on E. coli isolates from meat sampled at border control posts. Where available, monitoring data from humans, food-producing animals and meat thereof were combined and compared at the EU level, with emphasis on multidrug resistance, complete susceptibility and combined resistance patterns to selected and critically important antimicrobials, as well as Salmonella and E. coli isolates exhibiting ESBL-/AmpC-/carbapenemase phenotypes. Resistance was frequently found to commonly used antimicrobials in Salmonella spp. and Campylobacter isolates from humans and animals. Combined resistance to critically important antimicrobials was mainly observed at low levels except in some Salmonella serotypes and in C. coli in some countries. The reporting of a number of CP-producing E. coli isolates (harbouring bla OXA-48, bla OXA-181, and bla NDM-5 genes) in pigs, bovines and meat thereof by a limited number of MSs (4) in 2021, requests a thorough follow-up. The temporal trend analyses in both key outcome indicators (rate of complete susceptibility and prevalence of ESBL-/AmpC- producers) showed that encouraging progress have been registered in reducing AMR in food-producing animals in several EU MSs over the last years.
Collapse
|
2
|
Gonçalves JL, de Campos JL, Steinberger AJ, Safdar N, Kates A, Sethi A, Shutske J, Suen G, Goldberg T, Cue RI, Ruegg PL. Incidence and Treatments of Bovine Mastitis and Other Diseases on 37 Dairy Farms in Wisconsin. Pathogens 2022; 11:1282. [PMID: 36365033 PMCID: PMC9698317 DOI: 10.3390/pathogens11111282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 08/31/2023] Open
Abstract
The aim of this research was to describe the incidence and treatments of mastitis and other common bovine diseases using one year of retrospective observational data (n = 50,329 cow-lactations) obtained from herd management software of 37 large dairy farms in Wisconsin. Incidence rate (IR) was defined as the number of first cases of each disease divided by the number of lactations per farm. Clinical mastitis (CM) remains the most diagnosed disease of dairy cows. Across all herds, the mean IR (cases per 100 cow-lactations) was 24.4 for clinical mastitis, 14.5 for foot disorders (FD), 11.2 for metritis (ME), 8.6 for ketosis (KE), 7.4 for retained fetal membranes (RFM), 4.5 for diarrhea (DI), 3.1 for displaced abomasum (DA), 2.9 for pneumonia (PN) and 1.9 for milk fever (MF). More than 30% of cows that had first cases of CM, DA, RFM, DI, and FD did not receive antibiotics. Of those treated, more than 50% of cows diagnosed with PN, ME and CM received ceftiofur as a treatment. The IR of mastitis and most other diseases was greater in older cows (parity ≥ 3) during the first 100 days of lactation and these cows were more likely to receive antibiotic treatments (as compared to younger cows diagnosed in later lactation). Cows of first and second parities in early lactation were more likely to remain in the herd after diagnosis of disease, as compared to older cows and cows in later stages of lactation. Most older cows diagnosed with CM in later lactation were culled before completion of the lactation. These results provide baseline data for disease incidence in dairy cows on modern U.S. dairy farms and reinforce the role of mastitis as an important cause of dairy cow morbidity.
Collapse
Affiliation(s)
- Juliano L. Gonçalves
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48864, USA
| | - Juliana L. de Campos
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48864, USA
| | | | - Nasia Safdar
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | - Ashley Kates
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | - Ajay Sethi
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | - John Shutske
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | - Tony Goldberg
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | - Roger I. Cue
- Department of Animal Science, Macdonald Campus, McGill University, Montreal, QC H9X 3V9, Canada
| | - Pamela L. Ruegg
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48864, USA
| |
Collapse
|
3
|
Realities, Challenges and Benefits of Antimicrobial Stewardship in Dairy Practice in the United States. Microorganisms 2022; 10:microorganisms10081626. [PMID: 36014044 PMCID: PMC9415423 DOI: 10.3390/microorganisms10081626] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
The use of antimicrobials for the treatment of food-producing animals is increasingly scrutinized and regulated based on concerns about maintaining the efficacy of antimicrobials used to treat important human diseases. Consumers are skeptical about the use of antibiotics in dairy cows, while dairy producers and veterinarians demonstrate ambivalence about maintaining animal welfare with reduced antimicrobial usage. Antimicrobial stewardship refers to proactive actions taken to preserve the efficacy of antimicrobials and emphasizes the prevention of bacterial diseases and use of evidence-based treatment protocols. The ability to broadly implement antimicrobial stewardship in the dairy industry is based on the recognition of appropriate antimicrobial usage as well as an understanding of the benefits of participating in such programs. The most common reason for the use of antimicrobials on dairy farms is the intramammary treatment of cows affected with clinical mastitis or at dry off. Based on national sales data, intramammary treatments comprise < 1% of overall antimicrobial use for food-producing animals, but a large proportion of that usage is a third-generation cephalosporin, which is classified as a highest-priority, critically important antimicrobial. Opportunities exist to improve the use of antimicrobials in dairy practice. While there are barriers to the increased adoption of antimicrobial stewardship principles, the structured nature of dairy practice and existing emphasis on disease prevention provides an opportunity to easily integrate principles of antimicrobial stewardship into daily veterinary practice. The purpose of this paper is to define elements of antimicrobial stewardship in dairy practice and discuss the challenges and potential benefits associated with these concepts.
Collapse
|
4
|
Nüesch‐Inderbinen M, Hänni C, Zurfluh K, Hartnack S, Stephan R. Antimicrobial resistance profiles of
Escherichia coli
and prevalence of extended‐spectrum beta‐lactamase‐producing Enterobacteriaceae in calves from organic and conventional dairy farms in Switzerland. Microbiologyopen 2022; 11:e1269. [PMID: 35478290 PMCID: PMC8924695 DOI: 10.1002/mbo3.1269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022] Open
Abstract
This study compared the antimicrobial resistance (AMR) among commensal Escherichia coli in the fecal microbiota of young calves raised on organic and on conventional dairy farms in Switzerland. Further, fecal carriage of extended‐spectrum beta‐lactamase (ESBL) producing Enterobacteriaceae was assessed for calves from both farming systems. Where possible, data on antimicrobial usage (AMU) were obtained. Antimicrobial susceptibility testing was performed on a total of 71 isolates using the disk diffusion method. ESBL producers were characterized by polymerase chain reaction‐based multilocus sequence typing and sequencing of the blaESBL genes. Organically raised calves were significantly more likely to harbor E. coli that showed AMR to ampicillin (odds ratio [OR]: 2.78, 95% confidence interval [CI]: 1.02–7.61, p = 0.046), streptomycin (OR: 3.22, 95% CI: 1.17–8.92, p = 0.046), kanamycin (OR: 11.3, 95% CI: 2.94–43.50, p < 0.001), and tetracycline (OR: 3.25, 95% CI: 1.13–9.31, p = 0.028). Calves with reported AMU were significantly more likely to harbor E. coli with resistance to ampicillin (OR: 3.91, 95% CI: 1.03–14.85, p = 0.045), streptomycin (OR: 4.35, 95% CI: 1.13–16.7, p = 0.045), and kanamycin (OR: 8.69, 95% CI: 2.01–37.7, p = 0.004). ESBL‐producing Enterobacteriaceae (18 E. coli and 3 Citrobacter braakii) were detected exclusively among samples from conventionally farmed calves (OR: infinity [∞], 95% CI: 2.3–∞, p < 0.0013). The observations from this study suggest that AMR is highly prevalent among commensal E. coli in young dairy calves, irrespective of the farm management system, with proportions of certain resistance phenotypes higher among organic calves. By contrast, the occurrence of ESBL producers among young dairy calves may be linked to factors associated with conventional farming.
Collapse
Affiliation(s)
| | - Claudia Hänni
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich Zurich Switzerland
| | - Katrin Zurfluh
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich Zurich Switzerland
| | - Sonja Hartnack
- Section of Epidemiology, Vetsuisse Faculty, University of Zurich Zurich Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich Zurich Switzerland
| |
Collapse
|
5
|
Fonseca M, Heider LC, Léger D, Mcclure JT, Rizzo D, Dufour S, Kelton DF, Renaud D, Barkema HW, Sanchez J. Canadian Dairy Network for Antimicrobial Stewardship and Resistance (CaDNetASR): An On-Farm Surveillance System. Front Vet Sci 2022; 8:799622. [PMID: 35097047 PMCID: PMC8790291 DOI: 10.3389/fvets.2021.799622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Canada has implemented on-farm antimicrobial resistance (AMR) surveillance systems for food-producing animals under the Canadian Integrated Program for Antimicrobial Resistance (CIPARS); however, dairy cattle have not been included in that program yet. The objective of this manuscript was to describe the development and implementation of the Canadian Dairy Network for Antimicrobial Stewardship and Resistance (CaDNetASR). An Expert Panel (EP) of researchers was created to lead the development of the dairy surveillance system. The EP initiated a draft document outlining the essential elements of the surveillance framework. This document was then circulated to a Steering Committee (SC), which provided recommendations used by the EP to finalize the framework. CaDNetASR has the following components: (1) a herd-level antimicrobial use quantification system; (2) annually administered risk factor questionnaires; and (3) methods for herd-level detection of AMR in three sentinel enteric pathogens (generic Escherichia coli, Campylobacter spp., and Salmonella spp.) recovered from pooled fecal samples collected from calves, heifers, cows, and the manure pit. A total of 144 dairy farms were recruited in five Canadian provinces (British-Columbia, Alberta, Ontario, Québec, and Nova-Scotia), with the help of local herd veterinarians and regional field workers, and in September 2019, the surveillance system was launched. 97.1 and 94.4% of samples were positive for E. coli, 63.8, and 49.1% of samples were positive for Campylobacter spp., and 5.0 and 7.7% of samples were positive for Salmonella spp., in 2019 and 2020, respectively. E. coli was equally distributed among all sample types. However, it was more likely that Campylobacter spp. were recovered from heifer and cow samples. On the other hand, it was more common to isolate Salmonella spp. from the manure pit compared to samples from calves, heifers, or cows. CaDNetASR will continue sampling until 2022 after which time this system will be integrated into CIPARS. CaDNetASR will provide online access to farmers and veterinarians interested in visualizing benchmarking metrics regarding AMU practices and their relationship to AMR and animal health in dairy herds. This will provide an opportunity to enhance antimicrobial stewardship practices on dairy farms in Canada.
Collapse
Affiliation(s)
- Mariana Fonseca
- Health Management Department, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Luke C. Heider
- Health Management Department, University of Prince Edward Island, Charlottetown, PE, Canada
| | - David Léger
- Public Health Agency of Canada, Center for Foodborne, Environmental and Zoonotic Infectious Diseases, Guelph, ON, Canada
| | - J. Trenton Mcclure
- Health Management Department, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Daniella Rizzo
- Public Health Agency of Canada, Center for Foodborne, Environmental and Zoonotic Infectious Diseases, Guelph, ON, Canada
| | - Simon Dufour
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - David F. Kelton
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - David Renaud
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Herman W. Barkema
- Department of Production Animal Health, University of Calgary, Calgary, AB, Canada
| | - Javier Sanchez
- Health Management Department, University of Prince Edward Island, Charlottetown, PE, Canada
| |
Collapse
|
6
|
Gross JJ, Bruckmaier RM. The 17th International Conference on Production Diseases in Farm Animals: Editorial. J Anim Sci 2020; 98:S1-S3. [PMID: 32810246 PMCID: PMC7433906 DOI: 10.1093/jas/skaa150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/24/2020] [Indexed: 01/28/2023] Open
Affiliation(s)
- Josef J Gross
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | - Rupert M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|