1
|
O'Hara E, Zaheer R, Andrés-Lasheras S, McAllister TA, Gruninger RJ. Evaluating the liver abscess microbiota of beef cattle during a reduction in tylosin supplementation shows differences according to abscess size and fraction. FEMS Microbiol Ecol 2024; 100:fiae002. [PMID: 38373802 PMCID: PMC10960635 DOI: 10.1093/femsec/fiae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/04/2024] [Accepted: 02/19/2024] [Indexed: 02/21/2024] Open
Abstract
Liver abscesses (LA) resulting from bacterial infection in cattle pose a significant global challenge to the beef and dairy industries. Economic losses from liver discounts at slaughter and reduced animal performance drive the need for effective mitigation strategies. Tylosin phosphate supplementation is widely used to reduce LA occurrence, but concerns over antimicrobial overuse emphasize the urgency to explore alternative approaches. Understanding the microbial ecology of LA is crucial to this, and we hypothesized that a reduced timeframe of tylosin delivery would alter LA microbiomes. We conducted 16S rRNA sequencing to assess severe liver abscess bacteriomes in beef cattle supplemented with in-feed tylosin. Our findings revealed that shortening tylosin supplementation did not notably alter microbial communities. Additionally, our findings highlighted the significance of sample processing methods, showing differing communities in bulk purulent material and the capsule-adhered material. Fusobacterium or Bacteroides ASVs dominated LA, alongside probable opportunistic gut pathogens and other microbes. Moreover, we suggest that liver abscess size correlates with microbial community composition. These insights contribute to our understanding of factors impacting liver abscess microbial ecology and will be valuable in identifying antibiotic alternatives. They underscore the importance of exploring varied approaches to address LA while reducing reliance on in-feed antibiotics.
Collapse
Affiliation(s)
- Eóin O'Hara
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Ave S, Lethbridge, AB, T1J 4B1, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Ave S, Lethbridge, AB, T1J 4B1, Canada
| | - Sara Andrés-Lasheras
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Ave S, Lethbridge, AB, T1J 4B1, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Ave S, Lethbridge, AB, T1J 4B1, Canada
| | - Robert J Gruninger
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Ave S, Lethbridge, AB, T1J 4B1, Canada
| |
Collapse
|
2
|
Cunha F, Burne A, Casaro S, Brown MB, Bisinotto RS, Galvao KN. Establishing Galleria mellonella as an invertebrate model for the emerging multi-host pathogen Helcococcus ovis. Virulence 2023; 14:2186377. [PMID: 36862000 PMCID: PMC10026881 DOI: 10.1080/21505594.2023.2186377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Helcococcus ovis (H. ovis) can cause disease in a broad range of animal hosts, including humans, and has been described as an emerging bacterial pathogen in bovine metritis, mastitis, and endocarditis. In this study, we developed an infection model that showed H. ovis can proliferate in the hemolymph and induce dose-dependent mortality in the invertebrate model organism Galleria mellonella (G. mellonella). We applied the model and identified H. ovis isolates with attenuated virulence originating from the uterus of a healthy post-partum dairy cow (KG38) and hypervirulent isolates (KG37, KG106) originating from the uterus of cows with metritis. Medium virulence isolates were also isolated (KG36, KG104) from the uterus of cows with metritis. A major advantage of this model is that a clear differentiation in induced mortality between H. ovis isolates was detected in just 48 h, resulting in an effective infection model able to identify virulence differences between H. ovis isolates with a short turnaround time. Histopathology showed G. mellonella employs hemocyte-mediated immune responses to H. ovis infection, which are analogous to the innate immune response in cows. In summary, G. mellonella can be used as an invertebrate infection model for the emerging multi-host pathogen Helcococcus ovis.
Collapse
Affiliation(s)
- Federico Cunha
- Department of Large Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
- Department of Animal Sciences, University of Florida College of Agriculture and Life Sciences, Gainesville, FL, USA
| | - Alexandra Burne
- D. H. Barron Reproductive and PerinatalBiology Research Program, University of Florida, Gainesville, FL, USA
| | - Segundo Casaro
- Department of Large Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Mary B Brown
- D. H. Barron Reproductive and PerinatalBiology Research Program, University of Florida, Gainesville, FL, USA
| | - Rafael S Bisinotto
- Department of Large Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Klibs N Galvao
- Department of Large Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
- Department of Infectious Diseases and Immunology, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| |
Collapse
|
3
|
Pinnell LJ, Young JD, Thompson TW, Wolfe CA, Bryant TC, Nair MN, Richeson JT, Morley PS. Establishing the link between microbial communities in bovine liver abscesses and the gastrointestinal tract. Anim Microbiome 2023; 5:58. [PMID: 37986094 PMCID: PMC10662489 DOI: 10.1186/s42523-023-00278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Liver abscesses (LAs) are one of the most common and important problems faced by the beef industry. The most efficacious method for the prevention of LAs in North America is through dietary inclusion of low doses of antimicrobial drugs such as tylosin, but the mechanisms by which this treatment prevents LAs are not fully understood. LAs are believed to result from mucosal barrier dysfunction in the gastrointestinal tract (GIT) allowing bacterial translocation to the liver via the portal vein, yet differences in the GIT microbiome of cattle with and without LAs have not been explored. Here, we characterized microbial communities from LAs, rumen, ileum, and colon from the same cattle for the first time. RESULTS Results demonstrate that tylosin supplementation was associated with differences in microbial community structure in the rumen and small intestine, largely because of differences in the predominance of Clostridia. Importantly, we show for the first time that microbial communities from multiple LAs in one animal's liver are highly similar, suggesting that abscesses found at different locations in the liver may originate from a localized source in the GIT (rather than disparate locations). A large portion of abscesses were dominated by microbial taxa that were most abundant in the hindgut. Further, we identified taxa throughout the GIT that were differentially abundant between animals with and without liver abscesses. Bifidobacterium spp.-a bacteria commonly associated with a healthy GIT in several species-were more abundant in the rumen and ileum of animals without LAs compared to those with LAs. CONCLUSIONS Together these results provide the first direct comparison of GIT and LA microbial communities within the same animal, add considerable evidence to the hypothesis that some LA microbial communities arise from the hindgut, and suggest that barrier dysfunction throughout the GIT may be the underlying cause of LA formation in cattle.
Collapse
Affiliation(s)
- Lee J Pinnell
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX, 79015, USA
| | - J Daniel Young
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX, 79015, USA
| | - Tyler W Thompson
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Cory A Wolfe
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX, 79015, USA
| | - Tony C Bryant
- Five Rivers Cattle Feeding, Johnstown, CO, 80534, USA
| | - Mahesh N Nair
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - John T Richeson
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX, 79015, USA
| | - Paul S Morley
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX, 79015, USA.
| |
Collapse
|
4
|
Li W, Larsen A, Murphy B, Fregulia P. Liver microbial community and associated host transcriptome in calves with feed induced acidosis. Front Vet Sci 2023; 10:1193473. [PMID: 37941815 PMCID: PMC10630030 DOI: 10.3389/fvets.2023.1193473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction In the dairy industry, calves are typically fed diets rich in highly fermentable carbohydrates and low in fibrous feeds to maximize ruminal papillae and tissue development. Calves on such diets are vulnerable at developing ruminal acidosis. Prevalent in cattle, liver abscess (LA) is considered a sequela to ruminal acidosis. LAs can cause significant liver function condemnation and decreased growth and production. Currently, we know little about the liver microbiome in calves with feed-induced acidosis. Methods Using our established model of ruminal acidosis, where young calves were fed an acidosis-inducing (AC) or -blunting (control) diet starting at birth until 17-week of age, we investigated microbial community changes in the liver resultant from ruminal acidosis. Eight calves were randomly assigned to each diet, with four animals per treatment. Rumen epithelium and liver tissues were collected at 17 weeks of age right after euthanasia. Total RNAs were extracted and followed by whole transcriptome sequencing. Microbial RNA reads were enriched bioinformatically and used for microbial taxonomy classification using Kraken2. Results AC Calves showed significantly less weight gain over the course of the experiment, in addition to significantly lower ruminal pH, and rumen degradation comparison to the control group (p < 0.05). In the liver, a total of 29 genera showed a significant (p < 0.05) abundance change (> 2-fold) between the treatments at 17-week of age. Among these, Fibrobacter, Treponema, Lactobacillus, and Olsenella have been reported in abscessed liver in cattle. Concurrent abundance changes in 9 of the genera were observed in both the liver and rumen tissues collected at 17-week of age, indicating potential crosstalk between the liver and rumen epithelial microbial communities. Significant association was identified between host liver gene and its embedded microbial taxa. Aside from identifying previously reported microbial taxa in cattle abscessed liver, new repertoire of actively transcribed microbial taxa was identified in this study. Discussion By employing metatranscriptome sequencing, our study painted a picture of liver microbiome in young calves with or without feed induced acidosis. Our study suggested that liver microbiome may have a critical impact on host liver physiology. Novel findings of this study emphasize the need for further in-depth analysis to uncover the functional roles of liver resident microbiome in liver metabolic acidosis resultant from feed-related ruminal acidosis.
Collapse
Affiliation(s)
- Wenli Li
- US Dairy Forage Research Center, USDA-Agricultural Research Service, Madison, WI, United States
| | - Anna Larsen
- US Dairy Forage Research Center, USDA-Agricultural Research Service, Madison, WI, United States
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Brianna Murphy
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Priscila Fregulia
- US Dairy Forage Research Center, USDA-Agricultural Research Service, Madison, WI, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| |
Collapse
|
5
|
Luecke SM, Holman DB, Schmidt KN, Gzyl KE, Hurlbert JL, Menezes ACB, Bochantin KA, Kirsch JD, Baumgaertner F, Sedivec KK, Swanson KC, Dahlen CR, Amat S. Whole-body microbiota of newborn calves and their response to prenatal vitamin and mineral supplementation. Front Microbiol 2023; 14:1207601. [PMID: 37434710 PMCID: PMC10331429 DOI: 10.3389/fmicb.2023.1207601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/08/2023] [Indexed: 07/13/2023] Open
Abstract
Early life microbial colonization and factors affecting colonization patterns are gaining interest due to recent developments suggesting that early life microbiome may play a role in Developmental Origins of Health and Disease. In cattle, limited information exists on the early microbial colonization of anatomical sites involved in bovine health beyond the gastrointestinal tract. Here, we investigated 1) the initial microbial colonization of seven different anatomical locations in newborn calves and 2) whether these early life microbial communities and 3) serum cytokine profiles are influenced by prenatal vitamin and mineral (VTM) supplementation. Samples were collected from the hoof, liver, lung, nasal cavity, eye, rumen (tissue and fluid), and vagina of beef calves that were born from dams that either received or did not receive VTM supplementation throughout gestation (n = 7/group). Calves were separated from dams immediately after birth and fed commercial colostrum and milk replacer until euthanasia at 30 h post-initial colostrum feeding. The microbiota of all samples was assessed using 16S rRNA gene sequencing and qPCR. Calf serum was subjected to multiplex quantification of 15 bovine cytokines and chemokines. Our results indicated that the hoof, eye, liver, lung, nasal cavity, and vagina of newborn calves were colonized by site-specific microbiota, whose community structure differed from the ruminal-associated communities (0.64 ≥ R2 ≥ 0.12, p ≤ 0.003). The ruminal fluid microbial community was the only one that differed by treatment (p < 0.01). However, differences (p < 0.05) by treatment were detected in microbial richness (vagina); diversity (ruminal tissue, fluid, and eye); composition at the phylum and genus level (ruminal tissue, fluid, and vagina); and in total bacterial abundance (eye and vagina). From serum cytokines evaluated, concentration of chemokine IP-10 was greater (p = 0.02) in VTM calves compared to control calves. Overall, our results suggest that upon birth, the whole-body of newborn calves are colonized by relatively rich, diverse, and site-specific bacterial communities. Noticeable differences were observed in ruminal, vaginal, and ocular microbiota of newborn calves in response to prenatal VTM supplementation. These findings can derive future hypotheses regarding the initial microbial colonization of different body sites, and on maternal micronutrient consumption as a factor that may influence early life microbial colonization.
Collapse
Affiliation(s)
- Sarah M. Luecke
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Devin B. Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Kaycie N. Schmidt
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Katherine E. Gzyl
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Jennifer L. Hurlbert
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Ana Clara B. Menezes
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Kerri A. Bochantin
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - James D. Kirsch
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Friederike Baumgaertner
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Kevin K. Sedivec
- Central Grasslands Research Extension Center, North Dakota State University, Streeter, ND, United States
| | - Kendall C. Swanson
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Carl R. Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
6
|
Owen H, Jones E, Kowald C, Hand S, McGowan M, Cobbold R, Barnes TS, Gibson JS, Ranjbar S, Palmieri C, Allavena R. Development and application of a new liver pathology recording system for use in cattle abattoirs. Res Vet Sci 2023; 158:164-184. [PMID: 37023570 DOI: 10.1016/j.rvsc.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/01/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Liver disease in beef cattle has a significant global economic impact on feedlot and abattoir industries due to reduced animal performance, carcase yield, and carcase quality. This study aimed to create a post-mortem data collection tool which could be deployed at chain speed on an abattoir floor, as well as to evaluate pathological findings in both normal and condemned livers from an Australian beef cattle population. The first 1006 livers were used to formulate a user-friendly, high-throughput liver grading tool for use in an abattoir setting and to evaluate the histological features of common liver abnormalities. Subsequently, over 11,000 livers from a Southeast Queensland abattoir were analyzed. The most observed defects in condemned livers were liver abscessation, fibrosis, adhesions, and liver fluke, with histological features similar to previous reports. Bacterial culture was performed in 29 cases of liver abscessation, revealing a different balance of flora to that reported internationally. This study has developed an easy to use, efficient data collection tool that enables rapid, highly detailed assessment of large numbers of beef cattle livers at slaughter. This tool will allow thorough investigation into the effect of liver disease on beef production, in both industry and research contexts.
Collapse
Affiliation(s)
- Helen Owen
- The University of Queensland, School of Veterinary Science, Gatton, QLD 4343, Australia
| | - Emily Jones
- The University of Queensland, School of Veterinary Science, Gatton, QLD 4343, Australia.
| | - Carla Kowald
- The University of Queensland, School of Veterinary Science, Gatton, QLD 4343, Australia
| | - Sebastian Hand
- The University of Queensland, School of Veterinary Science, Gatton, QLD 4343, Australia
| | - Michael McGowan
- The University of Queensland, School of Veterinary Science, Gatton, QLD 4343, Australia
| | - Rowland Cobbold
- The University of Queensland, School of Veterinary Science, Gatton, QLD 4343, Australia
| | - Tamsin S Barnes
- The University of Queensland, School of Veterinary Science, Gatton, QLD 4343, Australia
| | - Justine S Gibson
- The University of Queensland, School of Veterinary Science, Gatton, QLD 4343, Australia
| | - Shahab Ranjbar
- The University of Queensland, School of Veterinary Science, Gatton, QLD 4343, Australia
| | - Chiara Palmieri
- The University of Queensland, School of Veterinary Science, Gatton, QLD 4343, Australia
| | - Rachel Allavena
- The University of Queensland, School of Veterinary Science, Gatton, QLD 4343, Australia
| |
Collapse
|
7
|
The Microbial Ecology of Liver Abscesses in Cattle. Vet Clin North Am Food Anim Pract 2022; 38:367-381. [DOI: 10.1016/j.cvfa.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
8
|
Fuerniss LK, Davis HE, Belk AD, Metcalf JL, Engle TE, Scanga JA, Garry FB, Bryant TC, Martin JN. Liver abscess microbiota of feedlot steers finished in natural and traditional management programs. J Anim Sci 2022; 100:skac252. [PMID: 35938914 PMCID: PMC9645556 DOI: 10.1093/jas/skac252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/04/2022] [Indexed: 11/14/2022] Open
Abstract
Liver abscess etiology in feedlot steers involves the escape of bacteria from the digestive tract to form a polymicrobial abscess within or on the external surface of the liver. However, little is known about the effects of feedlot finishing systems on the microbial composition of the liver abscess purulent material. Liver abscesses were collected at the time of harvest from steers originating from a single feedlot managed in either a traditional program (which included tylosin phosphate supplementation) or a natural program (without tylosin phosphate supplementation). The purulent material of liver abscesses from traditionally managed steers (N = 53 abscesses) and that of naturally managed steers (N = 62 abscesses) was characterized using the V4 region of the 16S rRNA gene. Two phyla and three genera were found in greater than 1% relative abundance across all abscesses. The genus Fusobacterium was identified in all liver abscess samples and accounted for 64% of sequencing reads. Bacteroides and Porphyromonas genera accounted for 33% and 1% of reads, respectively. Trueperella was more likely to be found in the liver abscesses of naturally managed steers than traditionally managed steers (P = 0.022). Over 99% of the genus-level bacterial sequences observed across all liver abscesses belonged to Gram-negative genera. Bacteria known to colonize both the rumen and hindgut were identified within liver abscesses. No differences in alpha diversity or beta diversity were detected between liver abscess communities (between the two management programs or individual pens) when tested as richness, Shannon Diversity Index, or weighted UniFrac distances (P > 0.05). These results were consistent with previous identification of Fusobacterium necrophorum as the primary bacteriologic agent within liver abscesses and emphasized the relationship between the gastrointestinal microbiota and liver abscess formation. Though the microbiota of the liver abscess purulent material was similar between steers fed an antibiotic-free diet and those fed an antibiotic-containing diet from the same feedlot, divergence was detected in liver abscess communities with some being dominated by Fusobacterium and others being dominated by Bacteroides.
Collapse
Affiliation(s)
- Luke K Fuerniss
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Haley E Davis
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Aeriel D Belk
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Jessica L Metcalf
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Terry E Engle
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - John A Scanga
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Franklyn B Garry
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Tony C Bryant
- Five Rivers Cattle Feeding, LLC, Johnstown, Colorado, USA
| | | |
Collapse
|
9
|
Pinnell LJ, Whitlow CW, Huebner KL, Bryant TC, Martin J, Belk KE, Morley PS. Not All Liver Abscesses Are Created Equal: The Impact of Tylosin and Antibiotic Alternatives on Bovine Liver Abscess Microbial Communities and a First Look at Bacteroidetes-Dominated Communities. Front Microbiol 2022; 13:882419. [PMID: 35572696 PMCID: PMC9094069 DOI: 10.3389/fmicb.2022.882419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/08/2022] [Indexed: 01/04/2023] Open
Abstract
Liver abscesses (LAs) are extremely prevalent in cattle and result in significant economic losses due to liver condemnation, decreased growth and production, and lower carcass quality. LAs are commonly attributed to the transition to diets high in rapidly fermentable starch which results in rumen epithelial inflammation that allows pathogenic bacteria to gain entry to liver through transport via the hepatic portal vein. The most common intervention for LAs is the inclusion of antibiotics in feedlot diets, under the supervision of a veterinarian; this treatment is associated with reduced occurrence of LAs in this and other studies. Here, through the largest LA 16S rRNA gene sequencing study to date, we demonstrate that the inclusion of tylosin and antibiotic alternatives (the essential oil limonene and Saccharomyces cerevisiae fermentation product) had little impact on LA microbial community composition. Importantly, members of Bacteroidetes (Bacteroides spp. and Porphyromonas spp.) were identified as the dominant taxa in conjunction with low proportions of Fusobacteria in nearly a quarter (61/259) of all LA communities analyzed in this study. The relative abundances of the phyla Fusobacteria and Bacteroidetes had a strongly negative correlation, and LA microbial communities rarely contained high abundances of both of these dominant phyla. Further, based on the presence of taxa discriminant of Bacteroidetes-dominated LAs within over 400 bovine gut communities, we provide evidence suggestive of Bacteroidetes-dominated abscess communities originating in more distal portions of the bovine gut. Together, these findings suggest that some LA microbial communities may originate from portions of the gut other than the rumen.
Collapse
Affiliation(s)
- Lee J Pinnell
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX, United States
| | - Carla Weissend Whitlow
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Katherine L Huebner
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Tony C Bryant
- Five River Cattle Feeding, Johnstown, CO, United States
| | - Jennifer Martin
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Keith E Belk
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Paul S Morley
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX, United States.,Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|