1
|
Amaral RM, Rodrigues MT, Schultz EB, Reis CER. A Dynamic Tool to Describe Lamb Growth and Its Use as a Decision Support System. Animals (Basel) 2024; 14:2246. [PMID: 39123772 PMCID: PMC11311011 DOI: 10.3390/ani14152246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024] Open
Abstract
A dynamic model has been developed to simulate aspects of feedlot lamb growth and body composition, including energy and protein requirements, growth rate, composition of gain, and body mass. Model inputs include initial body mass (kg), standard final mass (kg), age (days), and dietary energy concentration (Mcal·kg-1). The model was assessed as a decision support tool using a dataset of 564 individual measures of final body mass and diet energy. The simulations provide graphical and numerical descriptions of nutrient requirements, composition of gain, and estimates of animal performance over time. The model is accurate and precise, with a root mean squared error of 7.79% of the observed final body mass and a coefficient of determination of 0.89 when simulating the same variable. The model can be used as a reliable decision support tool to estimate final body mass and the days on feed required to reach a certain final mass with precision and accuracy. Moreover, the dynamic model can also serve as a learning tool to illustrate practical principles of animal nutrition, nutrient requirement relationships, and body composition changes. This model holds the potential to enhance livestock management practices and assist producers in making informed decisions about feedlot lamb production.
Collapse
Affiliation(s)
- Rafael Marzall Amaral
- EARTH University, San José 4442-1000, Costa Rica
- Department of Animal Science, Federal University of Viçosa, Viçosa 36570-000, Brazil (E.B.S.)
| | | | - Erica Beatriz Schultz
- Department of Animal Science, Federal University of Viçosa, Viçosa 36570-000, Brazil (E.B.S.)
| | | |
Collapse
|
2
|
Tedeschi LO. Review: The prevailing mathematical modeling classifications and paradigms to support the advancement of sustainable animal production. Animal 2023; 17 Suppl 5:100813. [PMID: 37169649 DOI: 10.1016/j.animal.2023.100813] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
Mathematical modeling is typically framed as the art of reductionism of scientific knowledge into an arithmetical layout. However, most untrained people get the art of modeling wrong and end up neglecting it because modeling is not simply about writing equations and generating numbers through simulations. Models tell not only about a story; they are spoken to by the circumstances under which they are envisioned. They guide apprentice and experienced modelers to build better models by preventing known pitfalls and invalid assumptions in the virtual world and, most importantly, learn from them through simulation and identify gaps in pushing scientific knowledge further. The power of the human mind is well-documented for idealizing concepts and creating virtual reality models, and as our hypotheses grow more complicated and more complex data become available, modeling earns more noticeable footing in biological sciences. The fundamental modeling paradigms include discrete-events, dynamic systems, agent-based (AB), and system dynamics (SD). The source of knowledge is the most critical step in the model-building process regardless of the paradigm, and the necessary expertise includes (a) clear and concise mental concepts acquired through different ways that provide the fundamental structure and expected behaviors of the model and (b) numerical data necessary for statistical analysis, not for building the model. The unreasonable effectiveness of models to grow scientific learning and knowledge in sciences arise because different researchers would model the same problem differently, given their knowledge and experiential background, leading to choosing different variables and model structures. Secondly, different researchers might use different paradigms and even unalike mathematics to resolve the same problem; thus, model needs are intrinsic to their perceived assumptions and structures. Thirdly, models evolve as the scientific community knowledge accumulates and matures over time, hopefully resulting in improved modeling efforts; thus, the perfect model is fictional. Some paradigms are most appropriate for macro, high abstraction with less detailed-oriented scenarios, while others are most suitable for micro, low abstraction with higher detailed-oriented strategies. Modern hybridization aggregating artificial intelligence (AI) to mathematical models can become the next technological wave in modeling. AI can be an integral part of the SD/AB models and, before long, write the model code by itself. Success and failures in model building are more related to the ability of the researcher to interpret the data and understand the underlying principles and mechanisms to formulate the correct relationship among variables rather than profound mathematical knowledge.
Collapse
Affiliation(s)
- L O Tedeschi
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, United States.
| |
Collapse
|
3
|
Cresci R, Balkan BA, Tedeschi LO, Cannas A, Atzori AS. A system dynamics approach to model heat stress accumulation in dairy cows during a heatwave event. Animal 2023; 17 Suppl 5:101042. [PMID: 38142154 DOI: 10.1016/j.animal.2023.101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/25/2023] Open
Abstract
Climate change is expected to increase the number of heat wave events, leading to prolonged exposures to severe heat stress (HS) and the corresponding adverse effects on dairy cattle productivity. Modelling dairy cattle productivity under HS conditions is complicated because it requires comprehending the complexity, non-linearity, dynamicity, and delays in animal response. In this paper, we applied the System Dynamics methodology to understand the dynamics of animal response and system delays of observed milk yield (MY) in dairy cows under HS. Data on MY and temperature-humidity index were collected from a dairy cattle farm. Model development involved: (i) articulation of the problem, identification of the feedback mechanisms, and development of the dynamic hypothesis through a causal loop diagram; (ii) formulation of the quantitative model through a stock-and-flow structure; (iii) calibration of the model parameters; and (iv) analysis of results for individual cows. The model was successively evaluated with 20 cows in the case study farm, and the relevant parameters of their HS response were quantified with calibration. According to the evaluation of the results, the proposed model structure was able to capture the effect of HS for 11 cows with high accuracy with mean absolute percent error <5%, concordance correlation coefficient >0.6, and R2 > 0.6, except for two cows (ID #13 and #20) with R2 less than 0.6, implying that the rest of the nine animals do not exhibit heat-sensitive behaviour for the defined parameter space. The presented HS model considered non-linear feedback mechanisms as an attempt to help farmers and decision makers quantify the animal response to HS, predict MY under HS conditions, and distinguish the heat-sensitive cows from heat-tolerant cows at the farm level.
Collapse
Affiliation(s)
- R Cresci
- Department of Agricultural Sciences, University of Sassari, Sassari, 07100, Italy; University School for Advanced Studies IUSS Pavia, Pavia, 27100, Italy; Department of Animal Science, Texas A&M University, College Station TX 77843-2471, USA
| | - B Atamer Balkan
- Department of Agricultural Sciences, University of Sassari, Sassari, 07100, Italy
| | - L O Tedeschi
- Department of Animal Science, Texas A&M University, College Station TX 77843-2471, USA
| | - A Cannas
- Department of Agricultural Sciences, University of Sassari, Sassari, 07100, Italy
| | - A S Atzori
- Department of Agricultural Sciences, University of Sassari, Sassari, 07100, Italy.
| |
Collapse
|
4
|
Pomar C, Remus A. Review: Fundamentals, limitations and pitfalls on the development and application of precision nutrition techniques for precision livestock farming. Animal 2023; 17 Suppl 2:100763. [PMID: 36966025 DOI: 10.1016/j.animal.2023.100763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Precision livestock farming (PLF) concerns the management of livestock using the principles and technologies of process engineering. Precision nutrition (PN) is part of the PLF approach and involves the use of feeding techniques that allow the proper amount of feed with the suitable composition to be supplied in a timely manner to individual animals or groups of animals. Automatic data collection, data processing, and control actions are required activities for PN applications. Despite the benefits that PN offers to producers, few systems have been successfully implemented so far. Besides the economical and logistical challenges, there are conceptual limitations and pitfalls that threaten the widespread adoption of PN. Developers have to avoid the temptation of looking for the application of available sensors and instead concentrate on identifying the most appropriate and relevant information needed for the optimal functioning of PN applications. Efficient PN applications are obtained by controlling the nutrient requirement variations occurring between animals and over time. The utilization of feedback control algorithms for the automatic determination of optimal nutrient supply is not recommended. Mathematical models are the preferred data processing method for PN, but these models have to be designed to operate in real time using up-to-date information. These models are therefore structurally different than traditional nutrition or growth models. Combining knowledge- and data-driven models using machine learning and deep learning algorithms will enhance our ability to use real-time farm data, thus opening up new opportunities for PN. To facilitate the implementation of PN in farms, different experts and stakeholders should be involved in the development of the fully integrated and automatic PLF system. Precision livestock farming and PN should not be seen as just being a question of technology, but a successful marriage between knowledge and technology.
Collapse
Affiliation(s)
- Candido Pomar
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, Quebec J1M 0C8, Canada.
| | - Aline Remus
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, Quebec J1M 0C8, Canada
| |
Collapse
|
5
|
Brennan JR, Menendez HM, Ehlert K, Tedeschi LO. ASAS-NANP symposium: mathematical modeling in animal nutrition-Making sense of big data and machine learning: how open-source code can advance training of animal scientists. J Anim Sci 2023; 101:skad317. [PMID: 37997926 PMCID: PMC10664406 DOI: 10.1093/jas/skad317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/21/2023] [Indexed: 11/25/2023] Open
Abstract
Advancements in precision livestock technology have resulted in an unprecedented amount of data being collected on individual animals. Throughout the data analysis chain, many bottlenecks occur, including processing raw sensor data, integrating multiple streams of information, incorporating data into animal growth and nutrition models, developing decision support tools for producers, and training animal science students as data scientists. To realize the promise of precision livestock management technologies, open-source tools and tutorials must be developed to reduce these bottlenecks, which are a direct result of the tremendous time and effort required to create data pipelines from scratch. Open-source programming languages (e.g., R or Python) can provide users with tools to automate many data processing steps for cleaning, aggregating, and integrating data. However, the steps from data collection to training artificial intelligence models and integrating predictions into mathematical models can be tedious for those new to statistical programming, with few examples pertaining to animal science. To address this issue, we outline how open-source code can help overcome many of the bottlenecks that occur in the era of big data and precision livestock technology, with an emphasis on how routine use and publication of open-source code can help facilitate training the next generation of animal scientists. In addition, two case studies are presented with publicly available data and code to demonstrate how open-source tutorials can be utilized to streamline data processing, train machine learning models, integrate with animal nutrition models, and facilitate learning. The National Animal Nutrition Program focuses on providing research-based data on animal performance and feeding strategies. Open-source data and code repositories with examples specific to animal science can help create a reinforcing mechanism aimed at advancing animal science research.
Collapse
Affiliation(s)
- Jameson R Brennan
- Department of Animal Science, South Dakota State University West River Research and Extension Center, Rapid City, SD 57701, USA
| | - Hector M Menendez
- Department of Animal Science, South Dakota State University West River Research and Extension Center, Rapid City, SD 57701, USA
| | - Krista Ehlert
- Department of Natural Resource Management, South Dakota State University West River Research and Extension Center, Rapid City, SD 57701, USA
| | - Luis O Tedeschi
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| |
Collapse
|
6
|
Tedeschi LO, Menendez HM, Remus A. ASAS-NANP SYMPOSIUM: Mathematical Modeling in Animal Nutrition: Training the Future Generation in Data and Predictive Analytics for Sustainable Development. A Summary of the 2021 and 2022 Symposia. J Anim Sci 2023; 101:skad318. [PMID: 37997923 PMCID: PMC10664387 DOI: 10.1093/jas/skad318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023] Open
Affiliation(s)
- Luis O Tedeschi
- Texas A&M University, Department of Animal Science, College Station, TX 77843-2471, USA
| | - Hector M Menendez
- South Dakota State University West River Research and Extension Center, 711 N. Creek Dr. Rapid City, SD, 57701, USA
| | - Aline Remus
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 1Z3, Canada
| |
Collapse
|
7
|
Kaur U, Malacco VMR, Bai H, Price TP, Datta A, Xin L, Sen S, Nawrocki RA, Chiu G, Sundaram S, Min BC, Daniels KM, White RR, Donkin SS, Brito LF, Voyles RM. Invited review: integration of technologies and systems for precision animal agriculture-a case study on precision dairy farming. J Anim Sci 2023; 101:skad206. [PMID: 37335911 PMCID: PMC10370899 DOI: 10.1093/jas/skad206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/17/2023] [Indexed: 06/21/2023] Open
Abstract
Precision livestock farming (PLF) offers a strategic solution to enhance the management capacity of large animal groups, while simultaneously improving profitability, efficiency, and minimizing environmental impacts associated with livestock production systems. Additionally, PLF contributes to optimizing the ability to manage and monitor animal welfare while providing solutions to global grand challenges posed by the growing demand for animal products and ensuring global food security. By enabling a return to the "per animal" approach by harnessing technological advancements, PLF enables cost-effective, individualized care for animals through enhanced monitoring and control capabilities within complex farming systems. Meeting the nutritional requirements of a global population exponentially approaching ten billion people will likely require the density of animal proteins for decades to come. The development and application of digital technologies are critical to facilitate the responsible and sustainable intensification of livestock production over the next several decades to maximize the potential benefits of PLF. Real-time continuous monitoring of each animal is expected to enable more precise and accurate tracking and management of health and well-being. Importantly, the digitalization of agriculture is expected to provide collateral benefits of ensuring auditability in value chains while assuaging concerns associated with labor shortages. Despite notable advances in PLF technology adoption, a number of critical concerns currently limit the viability of these state-of-the-art technologies. The potential benefits of PLF for livestock management systems which are enabled by autonomous continuous monitoring and environmental control can be rapidly enhanced through an Internet of Things approach to monitoring and (where appropriate) closed-loop management. In this paper, we analyze the multilayered network of sensors, actuators, communication, networking, and analytics currently used in PLF, focusing on dairy farming as an illustrative example. We explore the current state-of-the-art, identify key shortcomings, and propose potential solutions to bridge the gap between technology and animal agriculture. Additionally, we examine the potential implications of advancements in communication, robotics, and artificial intelligence on the health, security, and welfare of animals.
Collapse
Affiliation(s)
- Upinder Kaur
- School of Engineering Technology, Purdue University, West Lafayette, IN, 47907, USA
| | - Victor M R Malacco
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Huiwen Bai
- School of Engineering Technology, Purdue University, West Lafayette, IN, 47907, USA
| | - Tanner P Price
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Arunashish Datta
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Lei Xin
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Shreyas Sen
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Robert A Nawrocki
- School of Engineering Technology, Purdue University, West Lafayette, IN, 47907, USA
| | - George Chiu
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Shreyas Sundaram
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Byung-Cheol Min
- Department of Computer and Information Technology, West Lafayette, IN, 47907, USA
| | - Kristy M Daniels
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Robin R White
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Shawn S Donkin
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Richard M Voyles
- School of Engineering Technology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|