1
|
Deng J, Zhang J, Chang Y, Wang S, Shi M, Miao Z. Effects of Chinese yam polysaccharides on the immune function and serum biochemical indexes of broilers. Front Vet Sci 2022; 9:1013888. [PMID: 36148469 PMCID: PMC9485930 DOI: 10.3389/fvets.2022.1013888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this experiment was to investigate the effects of Chinese yam polysaccharides (CYP) in diets on the immune function of broilers. A total of 360 (1-day-old, sex balance) healthy growing broilers with similar body weight (39.54 ± 0.51 g) were randomly divided into control (0.00 g/kg), CYP I (0.25 g/kg), CYP II (0.50 g/kg), and CYP III (1.00 g/kg) groups. Each group contains 3 replicates with 30 broilers in each replicate, and the feeding trial lasted 48 d. The results showed that compared with the control group, the CYP II group had higher thymus index, serum IgA, complement C3, C4, IGF-I, T3, T4, INS, GH, IL-2, IL-4, IL-6, and TNF-α levels (P < 0.05) at 28, 48 d, respectively. In addition, the spleen index, serum IgM and IgG concentrations in CYP II group were higher than those in the control group at 28 d (P < 0.05). Results indicated that 0.50 g/kg CYP supplementation improved the immune function of broilers, and the CYP has a potential biological function as a green additive in broilers.
Collapse
Affiliation(s)
- Jiahua Deng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jinzhou Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yadi Chang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Suli Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Mingyan Shi
- Life Science College, Luoyang Normal University, Luoyang, China
| | - Zhiguo Miao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- *Correspondence: Zhiguo Miao
| |
Collapse
|
2
|
Malau-Aduli AEO, Curran J, Gall H, Henriksen E, O'Connor A, Paine L, Richardson B, van Sliedregt H, Smith L. Genetics and nutrition impacts on herd productivity in the Northern Australian beef cattle production cycle. Vet Anim Sci 2022; 15:100228. [PMID: 35024494 PMCID: PMC8724957 DOI: 10.1016/j.vas.2021.100228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Genetics and nutrition drive herd productivity due to significant impacts on all components of the beef cattle production cycle. In northern Australia, the beef production system is largely extensive and relies heavily on tropical cattle grazing low quality, phosphorus-deficient pastures with seasonal variations in nutritive value. The existing feedlots are predominantly grain-based; providing high-energy rations, faster turn-off and finishing of backgrounded cattle to meet market specifications. This review focusses on the beef cattle production cycle components of maternal nutrition, foetal development, bull fertility, post-natal to weaning, backgrounding, feedlotting, rumen microbes and carcass quality as influenced by genetics and nutrition. This student-driven review identified the following knowledge gaps in the published literature on northern Australian beef cattle production cycle: 1. Long-term benefits and effects of maternal supplementation to alter foetal enzymes on the performance and productivity of beef cattle; 2. Exogenous fibrolytic enzymes to increase nutrient availability from the cell wall and better utilisation of fibrous and phosphorus deficient pasture feedbase during backgrounding; 3. Supplementation with novel encapsulated calcium butyrate and probiotics to stimulate the early development of rumen papillae and enhance early weaning of calves; 4. The use of single nucleotide polymorphisms as genetic markers for the early selection of tropical beef cattle for carcass and meat eating quality traits prior to feedlotting; The review concludes by recommending future research in whole genome sequencing to target specific genes associated with meat quality characteristics in order to explore the development of breeds with superior genes more suited to the North Australian beef industry. Further research into diverse nutritional strategies of phosphorus supplementation and fortifying tropically adapted grasses with protein-rich legumes and forages for backgrounding and supplementing lot-fed beef cattle with omega-3 oil of plant origin will ensure sustainable production of beef with a healthy composition, tenderness, taste and eating quality.
Collapse
Affiliation(s)
- Aduli E O Malau-Aduli
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Jessica Curran
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Holly Gall
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Erica Henriksen
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Alina O'Connor
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Lydia Paine
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Bailey Richardson
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Hannake van Sliedregt
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Lucy Smith
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|