1
|
Khan MZ, Li L, Zhan Y, Binjiang H, Liu X, Kou X, Khan A, Qadeer A, Ullah Q, Alzahrani KJ, Wang T, Wang C, Zahoor M. Targeting Nrf2/KEAP1 signaling pathway using bioactive compounds to combat mastitis. Front Immunol 2025; 16:1425901. [PMID: 39991157 PMCID: PMC11842335 DOI: 10.3389/fimmu.2025.1425901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
Mastitis is a common inflammation of mammary glands that has a significantly impact on dairy production and animal health, causing considerable economic burdens worldwide. Elevated reactive oxygen species (ROS) followed by oxidative stress, apoptosis, inflammatory changes and suppressed immunity are considered the key biomarkers observed during mastitis. The Nrf2/KEAP1 signaling pathway plays a critical role in regulating antioxidant responses and cellular defense mechanisms. When activated by bioactive compound treatment, Nrf2 translocates to the nucleus and induces the expression of its target genes to exert antioxidant responses. This reduces pathogen-induced oxidative stress and inflammation by inhibiting NF-kB signaling in the mammary glands, one of the prominent pro-inflammatory signaling pathway. Here, we summarize recent studies to highlight the therapeutic potential of Nrf2/KEAP1 pathway in the prevention and treatment of mastitis. Collectively this review article aims to explore the potential of bioactive compounds in mitigating mastitis by targeting the Nrf2/KEAP1 signaling pathway.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Liangliang Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yandong Zhan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Huang Binjiang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Xiaotong Liu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Qudrat Ullah
- Department of Theriogenology, Faculty of Veterinary and Animal Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Punjab, Pakistan
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Tongtong Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Lendzioszek M, Mrugacz M, Bryl A, Poppe E, Zorena K. Prevention and Treatment of Retinal Vein Occlusion: The Role of Diet-A Review. Nutrients 2023; 15:3237. [PMID: 37513655 PMCID: PMC10383741 DOI: 10.3390/nu15143237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Retinal vein occlusion (RVO) is the second most common retinal disorder. In comparison to diabetic retinopathy or age-related macular degeneration, RVO is usually an unexpected event that carries a greater psychological impact. There is strong evidence to suggest that cardiovascular diseases are the most common risk factors in this pathology and it has long been known that a higher consumption of fish, nuts, fruits, and vegetables has a protective effect against these types of conditions. In the last several years, interest in plant-based diets has grown in both the general population and in the scientific community, to the point to which it has become one of the main dietary patterns adopted in Western countries. The aim of this review is to investigate the potential impact of macro- and micronutrients on retinal vein occlusion.
Collapse
Affiliation(s)
- Maja Lendzioszek
- Department of Ophthalmology, Voivodship Hospital in Lomza, 18-400 Lomza, Poland
| | - Małgorzata Mrugacz
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Anna Bryl
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Ewa Poppe
- Department of Ophthalmology, Voivodship Hospital in Lomza, 18-400 Lomza, Poland
| | - Katarzyna Zorena
- Department of Immunobiology and Environmental Microbiology, Medical University of Gdansk, 80-211 Gdansk, Poland
| |
Collapse
|
3
|
Lauretani F, Salvi M, Zucchini I, Testa C, Cattabiani C, Arisi A, Maggio M. Relationship between Vitamin D and Immunity in Older People with COVID-19. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085432. [PMID: 37107714 PMCID: PMC10138672 DOI: 10.3390/ijerph20085432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 05/11/2023]
Abstract
Vitamin D is a group of lipophilic hormones with pleiotropic actions. It has been traditionally related to bone metabolism, although several studies in the last decade have suggested its role in sarcopenia, cardiovascular and neurological diseases, insulin-resistance and diabetes, malignancies, and autoimmune diseases and infections. In the pandemic era, by considering the response of the different branches of the immune system to SARS-CoV-2 infection, our aims are both to analyse, among the pleiotropic effects of vitamin D, how its strong multimodal modulatory effect on the immune system is able to affect the pathophysiology of COVID-19 disease and to emphasise a possible relationship between the well-known circannual fluctuations in blood levels of this hormone and the epidemiological trend of this infection, particularly in the elderly population. The biologically active form of vitamin D, or calcitriol, can influence both the innate and the adaptive arm of the immune response. Calcifediol levels have been found to be inversely correlated with upper respiratory tract infections in several studies, and this activity seems to be related to its role in the innate immunity. Cathelicidin is one of the main underlying mechanisms since this peptide increases the phagocytic and germicidal activity acting as chemoattractant for neutrophils and monocytes, and representing the first barrier in the respiratory epithelium to pathogenic invasion. Furthermore, vitamin D exerts a predominantly inhibitory action on the adaptive immune response, and it influences either cell-mediated or humoral immunity through suppression of B cells proliferation, immunoglobulins production or plasma cells differentiation. This role is played by promoting the shift from a type 1 to a type 2 immune response. In particular, the suppression of Th1 response is due to the inhibition of T cells proliferation, pro-inflammatory cytokines production (e.g., INF-γ, TNF-α, IL-2, IL-17) and macrophage activation. Finally, T cells also play a fundamental role in viral infectious diseases. CD4 T cells provide support to B cells antibodies production and coordinate the activity of the other immunological cells; moreover, CD8 T lymphocytes remove infected cells and reduce viral load. For all these reasons, calcifediol could have a protective role in the lung damage produced by COVID-19 by both modulating the sensitivity of tissue to angiotensin II and promoting overexpression of ACE-2. Promising results for the potential effectiveness of vitamin D supplementation in reducing the severity of COVID-19 disease was demonstrated in a pilot clinical trial of 76 hospitalised patients with SARS-CoV-2 infection where oral calcifediol administration reduced the need for ICU treatment. These interesting results need to be confirmed in larger studies with available information on vitamin D serum levels.
Collapse
Affiliation(s)
- Fulvio Lauretani
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
- Correspondence: ; Tel.: +39-0521-703325
| | - Marco Salvi
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| | - Irene Zucchini
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| | - Crescenzo Testa
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| | - Chiara Cattabiani
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| | - Arianna Arisi
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Marcello Maggio
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
4
|
Wang Y, Meng S, Wang S, Wang Z, Dou X, Dou M, Li Y, Ma Y, He L, Shao Q, Zhang C. Monoammonium glycyrrhizinate improves antioxidant capacity of calf intestinal epithelial cells exposed to heat stress in vitro. J Anim Sci 2023; 101:skad142. [PMID: 37155664 PMCID: PMC10289279 DOI: 10.1093/jas/skad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023] Open
Abstract
Dairy calves are highly susceptible to the negative effects of heat stress, which can cause organ hypoxia after blood redistribution, damage the intestinal barrier, and trigger intestinal oxidative stress. This study aimed to investigate the antioxidant effects of monoammonium glycyrrhizinate (MAG) on calf small intestinal epithelial cells under heat stress in vitro. Small intestinal epithelial cells were isolated from a 1-d-old healthy calf and purified by differential enzymatic detachment. The purified cells were divided into seven groups. The control group was cultured with DMEM/F-12 at 37 °C for 6 h, and the treatment groups were cultured with 0, 0.1, 0.25, 0.5, 1, or 5 μg/mL MAG at 42 °C for 6 h. Heat stress causes oxidative damage to cells. Adding MAG to the medium can significantly improve cell activity and reduce cellular oxidative stress. MAG significantly increased the total antioxidant capacity and superoxide dismutase activity caused by heat stress, and significantly decreased malondialdehyde and nitric oxide levels. The MAG treatment also reduced lactate dehydrogenase release, increased mitochondrial membrane potential, and decreased apoptosis under heat stress. MAG also upregulated the expression of the antioxidant-related genes, Nrf2 and GSTT1, in heat-stressed intestinal epithelial cells and significantly downregulated the expression of the heat shock response-related proteins, MAPK, HSP70, HSP90, and HSP27. From the above results, we conclude that 0.25 μg/mL MAG improves the capability of the antioxidant system in small intestinal epithelial cells to eliminate reactive oxygen species by activating antioxidant pathways, improving the oxidant/antioxidant balance, lowering excessive heat shock responses, and reducing intestinal oxidative stress.
Collapse
Affiliation(s)
- Yuexin Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, China
- Innovative Research Team of Livestock Intelligent Breeding and Equipment, Longmen Laboratory, Luoyang 471023, China
| | - Sudan Meng
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, China
- Innovative Research Team of Livestock Intelligent Breeding and Equipment, Longmen Laboratory, Luoyang 471023, China
| | - Shuai Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhaojun Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, China
| | - Xueru Dou
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, China
| | - Mengying Dou
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, China
| | - Yuanxiao Li
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, China
| | - Yanbo Ma
- Innovative Research Team of Livestock Intelligent Breeding and Equipment, Longmen Laboratory, Luoyang 471023, China
| | - Lei He
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, China
| | - Qi Shao
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, China
| | - Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang 471023, China
| |
Collapse
|
5
|
Chen TW, Wu PY, Wen YT, Desai TD, Huang CT, Liu PK, Tsai RK. Vitamin B3 Provides Neuroprotection via Antioxidative Stress in a Rat Model of Anterior Ischemic Optic Neuropathy. Antioxidants (Basel) 2022; 11:antiox11122422. [PMID: 36552630 PMCID: PMC9774344 DOI: 10.3390/antiox11122422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Supplementing with vitamin B3 has been reported to protect against retinal ganglion cell (RGC) damage events and exhibit multiple neuroprotective properties in a mouse model of optic nerve injury. In this study, a rat model of anterior ischemic optic neuropathy was used to assess the neuroprotective benefits of vitamin B3 (rAION). Vitamin B3 (500 mg/kg/day) or phosphate-buffered saline (PBS) was administered to the rAION-induced rats every day for 28 days. The vitamin B3-treated group had significantly higher first positive and second negative peak (P1-N2) amplitudes of flash visual-evoked potentials and RGC densities than the PBS-treated group (p < 0.05). A terminal deoxynucleotidyl transferase dUTP nick end labeling assay conducted on vitamin B3-treated rats revealed a significant reduction in apoptotic cells (p < 0.05). Superoxide dismutase and thiobarbituric acid reactive substance activity showed that vitamin B3 treatment decreased reactive oxygen species (p < 0.05). Therefore, vitamin B3 supplementation preserves vision in rAION-induced rats by reducing oxidative stress, neuroinflammation, and mitochondrial apoptosis.
Collapse
Affiliation(s)
- Tu-Wen Chen
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Po-Ying Wu
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yao-Tseng Wen
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Tushar Dnyaneshwar Desai
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Chin-Te Huang
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Ophthalmology, School of Medicine, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan
| | - Pei-Kang Liu
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Rong-Kung Tsai
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
- Doctoral Degree Program in Translational Medicine, Tzu Chi University and Academia Sinica, Hualien 970, Taiwan
- Correspondence:
| |
Collapse
|
6
|
Meng M, Huo R, Wang Y, Ma N, Shi X, Shen X, Chang G. Lentinan inhibits oxidative stress and alleviates LPS-induced inflammation and apoptosis of BMECs by activating the Nrf2 signaling pathway. Int J Biol Macromol 2022; 222:2375-2391. [PMID: 36243161 DOI: 10.1016/j.ijbiomac.2022.10.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
Lentinan (LNT) has been reported to have a wide range of functions, including anti-inflammatory, antioxidant and anticancer properties. LNT may provide a protective effect in dairy cow mastitis. In this study, we investigated the effect of LNT on lipopolysaccharide (LPS)-induced injury of bovine mammary epithelial cells (BMECs) and the possible mechanism. First, we treated BMECs with different concentrations of LPS to study the effects of LPS on oxidative stress and inflammation in BMECs. Then, we examined the effects of LNT by dividing the cells into seven groups: the control group (CON), LPS treatment group (LPS), Acetyl-l-cysteine (NAC) pretreatment group (NAC + LPS), LNT pretreatment group (LNT + LPS), ML385 and LNT pretreatment group (ML385 + LNT + LPS), LNT treatment group (LNT) and NAC treatment group (NAC). The results showed that LPS-triggered intracellular ROS production and the downregulation of Nrf-2 and HO-1 in BMECs were blocked by LNT pretreatment. LNT inhibited the expression of inflammatory genes and proteins by inhibiting of NF-κB and MAPK. In addition, LNT attenuated LPS induced-apoptosis in BMECs. However, ML385 reversed the protective effect of LNT. Taken together, LNT can be used as a natural protective agent against LPS-triggered BMECs damage through its anti-inflammatory, antioxidant and antiapoptotic effects through modulation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Meijuan Meng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Ran Huo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Nana Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Xiaoli Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Xiangzhen Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Guangjun Chang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Animal Disease Prevention and Control Center of Ningxia Hui Autonomous Region, Yinchuan 750001, Ningxia, China.
| |
Collapse
|
7
|
Liu N, Li G, Guan Y, Wang R, Ma Z, Zhao L, Yao S. N-acetylcysteine alleviates pulmonary alveolar proteinosis induced by indium-tin oxide nanoparticles in male rats: involvement of the NF-κB signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113812. [PMID: 36068741 DOI: 10.1016/j.ecoenv.2022.113812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/22/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Indium-tin oxide (ITO) was previously found to have a toxic effect on lung tissues, and oxidative stress and the inflammatory response are two important mechanisms of ITO‑induced lung injury. N-acetylcysteine (NAC) has been found to exhibit antioxidant and anti‑inflammatory properties. The current study aimed to evaluate the possible protective effects of NAC against ITO nanoparticle (Nano-ITO)-induced pulmonary alveolar proteinosis (PAP) in adult male Sprague-Dawley rats, especially via modulation of nuclear factor-kappa B (NF-κB) signaling. For this purpose, 50 rats were randomly allocated into five groups (10 rats each) as follows: (1) control group; (2) saline group; (3) NAC (200 mg/kg) group; (4) PAP model group receiving a repeated intratracheal dose of Nano-ITO (6 mg/kg); and (5) PAP model+NF-κB inhibitor (NAC) group pre-treated intraperitoneally with NAC (200 mg/kg) twice per week before the administration of an intratracheal dose of Nano-ITO (6 mg/kg). Rats were then euthanized under anesthesia, and their lungs were removed for histopathological and biochemical investigations. A 6 mg/kg dose of Nano-ITO markedly altered the levels of some oxidative stress biomarkers. The histological examination of Nano-ITO-exposed rats demonstrated diffused alveolar damage that involved PAP, cholesterol crystals, alveolar fibrosis, pulmonary fibrosis, and alveolar emphysema. The immunohistochemical results of Nano-ITO-exposed rats revealed strongly positive NF-κB p65 and inhibitory kappa B kinase (IKK)-β and weakly positive inhibitor of kappa-B subunit alpha (IκB-α) staining reactivity in the nuclei of cells lining the epithelium of the bronchioles and alveoli. Moreover, Nano-ITO activated the NF-κB pathway. However, pre-treatment with NAC significantly attenuated Nano-ITO-evoked alterations in the previously mentioned parameters, highlighting their antioxidant, anti-inflammatory, and anti-apoptotic potential. The results indicated that the degree of pulmonary fibrosis and proteinosis in the NAC‑treated group was improved compared with that in the Nano-ITO-induced PAP model group. The level of malondialdehyde was also decreased overall in the NAC-treated group compared with that in the Nano-ITO-induced model group, indicating that the pulmonary fibrosis degree and oxidation levels were decreased. The present study also demonstrated that NAC increased the activity of antioxidant enzyme superoxide dismutase and total antioxidant capacity, indicating that it could alleviate oxidative stress in the lung tissue of Nano-ITO‑exposed rats. In addition, NAC reduced the production of pro‑inflammatory cytokines interleukin (IL)‑1β, IL‑6, and tumor necrosis factor (TNF)‑α, and increased the levels of anti‑inflammatory factor IL‑10. The current study demonstrated that NAC can effectively attenuate Nano-ITO‑induced lung injury by reducing oxidative damage and the inflammatory response.
Collapse
Affiliation(s)
- Nan Liu
- School of Public Health, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Gai Li
- North China University of Science and Technology Affiliated Hospital, Tangshan 063000, Hebei, China
| | - Yi Guan
- School of Public Health, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Rui Wang
- North China University of Science and Technology Affiliated Hospital, Tangshan 063000, Hebei, China
| | - Zhanfei Ma
- Institute of Industrial Hygiene of Ordnance industry, Xian 710065, Shanxi, China
| | - Linlin Zhao
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Sanqiao Yao
- School of Public Health, North China University of Science and Technology, Tangshan 063210, Hebei, China; Xinxiang Medical University, Xinxiang 453003, Henan, China.
| |
Collapse
|
8
|
Edo A, Ibrahim DG, Hirooka K, Toda R, Kamaruddin MI, Kawano R, Nagao A, Ohno H, Yoneda M, Kiuchi Y. Dietary Vitamins A, C, and Potassium Intake Is Associated With Narrower Retinal Venular Caliber. Front Med (Lausanne) 2022; 9:818139. [PMID: 35223917 PMCID: PMC8866761 DOI: 10.3389/fmed.2022.818139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/11/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION The retinal vasculature, a surrogate for the systemic microvasculature, can be observed non-invasively, providing an opportunity to examine the effects of modifiable factors, such as nutrient intake, on microcirculation. We aimed to investigate the possible associations of dietary nutrient intake with the retinal vessel caliber. METHODS In this cross-sectional study, a total of 584 participants in a medical survey of Japanese descendants living in Los Angeles in 2015 underwent a dietary assessment, fundus photographic examination, and comprehensive physical and blood examinations. Retinal vessel caliber was measured using fundus photographs with a semi-automated computer system and summarized as central retinal artery and vein equivalents (CRAE and CRVE). The association between dietary nutrient intake and retinal vessel caliber was analyzed using a multivariate linear regression model adjusted for two models including potential confounders. The first model was adjusted for age and sex. The second model was adjusted for age, sex, smoking status, body mass index, hypertension, diabetes, dyslipidemia, history of coronary heart disease, and history of stroke. RESULTS After adjustment of potential confounders, compared to the quartile with the lowest intake, the difference in CRVE for the highest quartile was -5.33 μm [95% confidence interval (CI): -9.91 to -0.76, P for trend = 0.02] for vitamin A, -4.93 μm (95% CI: -9.54 to -0.32, P for trend = 0.02) for vitamin C and -3.90 μm (95% CI: -8.48 to 0.69, P for trend = 0.04) for potassium. CONCLUSIONS A significant association was observed between higher vitamins A, C and potassium intakes and narrower retinal venular caliber.
Collapse
Affiliation(s)
- Ayaka Edo
- Department of Ophthalmology and Visual Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Kazuyuki Hirooka
- Department of Ophthalmology and Visual Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Rie Toda
- Department of Ophthalmology and Visual Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Reo Kawano
- Clinical Research Center in Hiroshima, Hiroshima University Hospital, Hiroshima, Japan
| | - Akiko Nagao
- Division of Nutrition Management, Hiroshima University Hospital, Hiroshima, Japan
| | - Haruya Ohno
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masayasu Yoneda
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshiaki Kiuchi
- Department of Ophthalmology and Visual Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
9
|
Sun C, Zhu T, Zhu Y, Li B, Zhang J, Liu Y, Juan C, Yang S, Zhao Z, Wan R, Lin S, Yin B. Hepatotoxic mechanism of diclofenac sodium on broiler chicken revealed by iTRAQ-based proteomics analysis. J Vet Sci 2022; 23:e56. [PMID: 35698810 PMCID: PMC9346521 DOI: 10.4142/jvs.22018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/12/2022] [Accepted: 04/05/2022] [Indexed: 11/20/2022] Open
Abstract
Background At the therapeutic doses, diclofenac sodium (DFS) has few toxic side effects on mammals. On the other hand, DFS exhibits potent toxicity against birds and the mechanisms remain ambiguous. Objectives This paper was designed to probe the toxicity of DFS exposure on the hepatic proteome of broiler chickens. Methods Twenty 30-day-old broiler chickens were randomized evenly into two groups (n = 10). DFS was administered orally at 10 mg/kg body weight in group A, while the chickens in group B were perfused with saline as a control. Histopathological observations, serum biochemical examinations, and quantitative real-time polymerase chain reaction were performed to assess the liver injury induced by DFS. Proteomics analysis of the liver samples was conducted using isobaric tags for relative and absolute quantification (iTRAQ) technology. Results Ultimately, 201 differentially expressed proteins (DEPs) were obtained, of which 47 were up regulated, and 154 were down regulated. The Gene Ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway analysis were conducted to screen target DEPs associated with DFS hepatotoxicity. The regulatory relationships between DEPs and signaling pathways were embodied via a protein-protein interaction network. The results showed that the DEPs enriched in multiple pathways, which might be related to the hepatotoxicity of DFS, were “protein processing in endoplasmic reticulum,” “retinol metabolism,” and “glycine, serine, and threonine metabolism.” Conclusions The hepatotoxicity of DFS on broiler chickens might be achieved by inducing the apoptosis of hepatocytes and affecting the metabolism of retinol and purine. The present study could provide molecular insights into the hepatotoxicity of DFS on broiler chickens.
Collapse
Affiliation(s)
- Chuanxi Sun
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Tianyi Zhu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Yuwei Zhu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Bing Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Jiaming Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Yixin Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Changning Juan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Shifa Yang
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Jinan 250100, China
| | - Zengcheng Zhao
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Jinan 250100, China
| | - Renzhong Wan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Shuqian Lin
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Jinan 250100, China
| | - Bin Yin
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Jinan 250100, China
| |
Collapse
|
10
|
Akhtar MJ, Ahamed M, Alhadlaq H. Anti-Inflammatory CeO 2 Nanoparticles Prevented Cytotoxicity Due to Exogenous Nitric Oxide Donors via Induction Rather Than Inhibition of Superoxide/Nitric Oxide in HUVE Cells. Molecules 2021; 26:5416. [PMID: 34500851 PMCID: PMC8434366 DOI: 10.3390/molecules26175416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 11/16/2022] Open
Abstract
The mechanism behind the cytoprotective potential of cerium oxide nanoparticles (CeO2 NPs) against cytotoxic nitric oxide (NO) donors and H2O2 is still not clear. Synthesized and characterized CeO2 NPs significantly ameliorated the lipopolysaccharide (LPS)-induced cytokines IL-1β and TNF-α. The main goal of this study was to determine the capacities of NPs regarding signaling effects that could have occurred due to reactive oxygen species (ROS) and/or NO, since NP-induced ROS/NO did not lead to toxicity in HUVE cells. Concentrations that induced 50% cell death (i.e., IC50s) of two NO donors (DETA-NO; 1250 ± 110 µM and sodium nitroprusside (SNP); 950 ± 89 µM) along with the IC50 of H2O2 (120 ± 7 µM) were utilized to evaluate cytoprotective potential and its underlying mechanism. We determined total ROS (as a collective marker of hydrogen peroxide, superoxide radical (O2•-), hydroxyl radical, etc.) by DCFH-DA and used a O2•- specific probe DHE to decipher prominent ROS. The findings revealed that signaling effects mediated mainly by O2•- and/or NO are responsible for the amelioration of toxicity by CeO2 NPs at 100 µg/mL. The unaltered effect on mitochondrial membrane potential (MMP) due to NP exposure and, again, CeO2 NPs-mediated recovery in the loss of MMP due to exogenous NO donors and H2O2 suggested that NP-mediated O2•- production might be extra-mitochondrial. Data on activated glutathione reductase (GR) and unaffected glutathione peroxidase (GPx) activities partially explain the mechanism behind the NP-induced gain in GSH and persistent cytoplasmic ROS. The promoted antioxidant capacity due to non-cytotoxic ROS and/or NO production, rather than inhibition, by CeO2 NP treatment may allow cells to develop the capacity to tolerate exogenously induced toxicity.
Collapse
Affiliation(s)
- Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hisham Alhadlaq
- Department of Physics and Astronomy, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
11
|
Dietary supplementation of chitosan affects milk performance, markers of inflammatory response and antioxidant status in dairy cows. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Effect of feed restriction on dairy cow milk production. J Anim Sci 2021; 99:skab167. [PMID: 34196702 PMCID: PMC8248039 DOI: 10.1093/jas/skab167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
|
13
|
Guo S, Niu J, Xv J, Fang B, Zhang Z, Zhao D, Wang L, Ding B. Interactive effects of vitamins A and K 3 on laying performance, egg quality, tibia attributes and antioxidative status of aged Roman Pink laying hens. Animal 2021; 15:100242. [PMID: 34091224 DOI: 10.1016/j.animal.2021.100242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
Extending laying cycle is a tendency in hen breeding, but egg quality declines as laying hens age. The present study was conducted to investigate the interactive effects of vitamins A and K3 on laying performance, egg and tibia quality, and antioxidative status of aged Roman Pink laying hens. In a 3 × 3 factorial arrangement, 1 080 87-week-old laying hens were allocated to nine groups with eight replicates in each group. Deficient, adequate and excess vitamins A (0, 7 000 and 14 000 IU/kg) and K3 (0, 2.0 and 4.0 mg/kg) were supplemented into a basal diet with 1 320 IU/kg of vitamin A and 0.5 mg/kg of vitamin K3. After 2 weeks of adaption to basal diet, hens were fed corresponding diets for 8 weeks. Vitamins A and K3 did not significantly affect the laying performance. However, they showed interactive effects on yolk ratio at week 93 as well as tibia weight and diameter (P < 0.05), and hens fed deficient vitamins A and K3 had the highest yolk ratio and tibia weight, but the lowest tibia diameter. Compared with deficient addition, adequate or excess vitamins A and K3 increased yolk color at weeks 93 and 97 (P < 0.05). Compared with hens fed deficient or excess vitamins, hens fed adequate vitamins A and K3 had higher eggshell strength at week 93 or 97 (P < 0.05). Increasing vitamin A elevated plasma total superoxide dismutase (T-SOD) activity and decreased hepatic glutathione peroxidase (GSH-Px) activity (P < 0.05). Excess vitamin K3 increased hepatic T-SOD activity (P < 0.05). Vitamins A and K3 exhibited interaction on the activities of antioxidative enzymes in eggshell gland (P < 0.05), and adequate or excess vitamins A and K3 increased the activities of GSH-Px, T-SOD and catalase (CAT). Adequate and excess vitamin A up-regulated the mRNA expression of GSH-Px1, GSH-Px3 and SOD1 in eggshell gland (P < 0.05). Vitamins A and K3 showed interactive effects on CAT mRNA expression in eggshell gland (P < 0.05) and hens fed adequate vitamins A and K3 had the highest CAT mRNA levels. In conclusion, dietary addition of vitamins A and K3 improved the eggshell quality and yolk color as well as antioxidative status in eggshell gland of aged laying hens. Adequate vitamins A and K3 showed beneficial effects and excess levels did not exhibit superior effects.
Collapse
Affiliation(s)
- S Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - J Niu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - J Xv
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - B Fang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Z Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - D Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - L Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - B Ding
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
14
|
Rehman IU, Ahmad R, Khan I, Lee HJ, Park J, Ullah R, Choi MJ, Kang HY, Kim MO. Nicotinamide Ameliorates Amyloid Beta-Induced Oxidative Stress-Mediated Neuroinflammation and Neurodegeneration in Adult Mouse Brain. Biomedicines 2021; 9:biomedicines9040408. [PMID: 33920212 PMCID: PMC8070416 DOI: 10.3390/biomedicines9040408] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 01/02/2023] Open
Abstract
Alzheimer’s disease (AD) is the most predominant age-related neurodegenerative disease, pathologically characterized by the accumulation of aggregates of amyloid beta Aβ1–42 and tau hyperphosphorylation in the brain. It is considered to be the primary cause of cognitive dysfunction. The aggregation of Aβ1–42 leads to neuronal inflammation and apoptosis. Since vitamins are basic dietary nutrients that organisms need for their growth, survival, and other metabolic functions, in this study, the underlying neuroprotective mechanism of nicotinamide (NAM) Vitamin B3 against Aβ1–42 -induced neurotoxicity was investigated in mouse brains. Intracerebroventricular (i.c.v.) Aβ1–42 injection elicited neuronal dysfunctions that led to memory impairment and neurodegeneration in mouse brains. After 24 h after Aβ1–42 injection, the mice were treated with NAM (250 mg/kg intraperitoneally) for 1 week. For biochemical and Western blot studies, the mice were directly sacrificed, while for confocal and “immunohistochemical staining”, mice were perfused transcardially with 4% paraformaldehyde. Our biochemical, immunofluorescence, and immunohistochemical results showed that NAM can ameliorate neuronal inflammation and apoptosis by reducing oxidative stress through lowering malondialdehyde and 2,7-dichlorofluorescein levels in an Aβ1–42-injected mouse brains, where the regulation of p-JNK further regulated inflammatory marker proteins (TNF-α, IL-1β, transcription factor NF-kB) and apoptotic marker proteins (Bax, caspase 3, PARP1). Furthermore, NAM + Aβ treatment for 1 week increased the amount of survival neurons and reduced neuronal cell death in Nissl staining. We also analyzed memory dysfunction via behavioral studies and the analysis showed that NAM could prevent Aβ1–42 -induced memory deficits. Collectively, the results of this study suggest that NAM may be a potential preventive and therapeutic candidate for Aβ1–42 -induced reactive oxygen species (ROS)-mediated neuroinflammation, neurodegeneration, and neurotoxicity in an adult mouse model.
Collapse
Affiliation(s)
- Inayat Ur Rehman
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
| | - Riaz Ahmad
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
| | - Ibrahim Khan
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
| | - Hyeon Jin Lee
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
| | - Jungsung Park
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
| | - Rahat Ullah
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
| | - Myeong Jun Choi
- Research and Development Center, Axceso Bio-pharma co, Anyang 14056, Korea;
| | - Hee Young Kang
- Department of Neurology, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52828, Korea;
| | - Myeong Ok Kim
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
- Correspondence: ; Tel.: +82-55-772-1345; Fax: +82-55-772-2656
| |
Collapse
|
15
|
Kweh MF, Merriman KE, Wells TL, Nelson CD. Vitamin D signaling increases nitric oxide and antioxidant defenses of bovine monocytes. JDS COMMUNICATIONS 2021; 2:73-79. [PMID: 36338779 PMCID: PMC9623661 DOI: 10.3168/jdsc.2020-0005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/24/2020] [Indexed: 11/24/2022]
Abstract
Vitamin D and interferon-gamma (IFN-γ) increased monocyte nitric oxide production IFN-γ decreased antioxidant potential of monocyte cultures Vitamin D signaling increased antioxidant potential of IFN-γ-stimulated monocytes Vitamin D increased abundance of metallothionein and thioredoxin transcripts
Vitamin D contributes to multiple aspects of bovine immunity and is reported to decrease the effects of mastitis and metritis in dairy cows. We hypothesized that vitamin D signaling in bovine monocytes increases antioxidant responses as part of its immunomodulatory actions. Our objectives were to assess the effects of vitamin D on oxidant and antioxidant responses of bovine monocytes. Monocytes from peripheral blood of nonpregnant, lactating Holstein cows between 90 and 300 d in milk were used for in vitro cell culture experiments. To test the effects of vitamin D on reactive oxygen metabolites (dROM) and antioxidant potential (AOP), monocytes from 14 cows were cultured in replicates for 16 h with 25-hydroxyvitamin D3 [25(OH)D3, 0 or 75 ng/mL] in a factorial arrangement with lipopolysaccharide (LPS, 100 ng/mL) or interferon-γ (IFN-γ, 10 ng/mL) or with no stimulation. Data were analyzed by ANOVA for main effects of 25(OH)D3, stimulant, and interactions between 25(OH)D3 and stimulant. Significant interactions between 25(OH)D3 and stimulant were observed for dROM and AOP of culture supernatants. In unstimulated cultures, 25(OH)D3 tended to increase dROM, but the opposite was observed in stimulated cultures. In contrast, LPS and IFN-γ treatments alone decreased AOP of culture supernatants, but 25(OH)D3 counteracted the decrease in AOP caused by IFN-γ. Abundances of transcripts of genes encoding antioxidant-related proteins were measured by quantitative PCR using RNA from monocytes from 4 cows treated with 25(OH)D3 (0 or 75 ng/mL) in a factorial arrangement with increasing concentrations of LPS (0 to 1,000 ng/mL) or IFN-γ (0 to 10 ng/mL). Treatment with 25(OH)D3 increased transcripts of genes encoding metallothionein 1A and metallothionein 2A in the presence of IFN-γ but not LPS. Furthermore, 25(OH)D3 increased transcripts of genes encoding thioredoxin and thioredoxin reductase, but the effect of 25(OH)D3 did not depend on IFN-γ or LPS stimulation. In conclusion, 25(OH)D3 increased antioxidant capacity of IFN-γ–stimulated bovine monocytes, potentially by increasing metallothionein and thioredoxin activities in monocytes.
Collapse
Affiliation(s)
- Mercedes F. Kweh
- Animal Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville 32611
| | - Kathryn E. Merriman
- Animal Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville 32611
| | - Teri L. Wells
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - Corwin D. Nelson
- Department of Animal Sciences, University of Florida, Gainesville 32611
- Corresponding author
| |
Collapse
|
16
|
Iqbal WA, Mendes I, Finney K, Oxley A, Lietz G. Reduced plasma carotenoids in individuals suffering from metabolic diseases with disturbances in lipid metabolism: a systematic review and meta-analysis of observational studies. Int J Food Sci Nutr 2021; 72:879-891. [PMID: 33586569 DOI: 10.1080/09637486.2021.1882962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This review summarises the association between serum carotenoids, serum retinoids and dietary intake outcomes with obesity/overweight and individuals with metabolic diseases with disturbances in lipid metabolism. Observational studies reporting dietary intakes and serum concentrations of carotenoids and retinol were collected from Medline and Web of Science. Mean differences were calculated between "cases" (classified as obese, overweight or having a metabolic disease with disturbances in lipid metabolism; i.e. non-alcoholic fatty liver disease, type 2 diabetes, dyslipidaemia or metabolic syndrome) and "comparator group" (classified as normal weight healthy individuals) and summarised in meta-analyses. Significant summary measures were observed for most serum provitamin A and non-provitamin A carotenoids. Studies reporting total serum carotenoids had shown the greatest decrease (-0.28 µmol/l [-0.33, -0.23], p<.001, I2=62.5%, n = 7). There were no significant summary measures for dietary outcomes, suggesting a physiological role of low serum carotenoids in the development of obesity and associated diseases.
Collapse
Affiliation(s)
- Wasim A Iqbal
- Plant and Microbe Group, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Ines Mendes
- Endocrinology and Nutrition Service, Divino Espírito Santo Hospital, Ponta Delgada, Portugal
| | - Kieran Finney
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Anthony Oxley
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Georg Lietz
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
17
|
Kuhn MJ, Mavangira V, Sordillo LM. Invited review: Cytochrome P450 enzyme involvement in health and inflammatory-based diseases of dairy cattle. J Dairy Sci 2020; 104:1276-1290. [PMID: 33358163 DOI: 10.3168/jds.2020-18997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022]
Abstract
Dairy cattle are at the greatest risk of developing diseases around the time of calving because of compromised immune responses and the occurrence of oxidative stress. Both the development of compromised immunity and oxidative stress are influenced directly or indirectly by the metabolism of polyunsaturated fatty acids (PUFA) and fat-soluble vitamins. The cytochrome P450 (CYP450) family of enzymes is central to the metabolism of both classes of these compounds, but to date, the importance of CYP450 in the health of dairy cattle is underappreciated. As certain CYP450 isoforms metabolize both PUFA and fat-soluble vitamins, potential interactions may occur between PUFA and fat-soluble vitamins that are largely unexplored. For example, one CYP450 that generates anti-inflammatory oxylipids from arachidonic acid additionally contributes to the activation of vitamin D. Other potential substrate interactions between PUFA and vitamins A and E may exist as well. The intersection of PUFA and fat-soluble vitamin metabolism by CYP450 suggest that this enzyme system could provide an understanding of how immune function and oxidant status interconnect, resulting in increased postpartum disease occurrence. This review will detail the known contributions of bovine CYP450 to the regulation of oxylipids with a focus on enzymes that may also be involved in the metabolism of fat-soluble vitamins A, D, and E that contribute to antioxidant defenses. Although the activity of specific CYP450 is generally conserved among mammals, important differences exist in cattle, such as the isoforms primarily responsible for activation of vitamin D that makes their specific study in cattle of great importance. Additionally, a CYP450-driven inflammatory positive feedback loop is proposed, which may contribute to the dysfunctional inflammatory responses commonly found during the transition period. Establishing the individual enzyme isoform contributions to oxylipid biosynthesis and the regulation of vitamins A, D, and E may reveal how the CYP450 family of enzymes can affect inflammatory responses during times of increased susceptibility to disease. Determining the potential effect of each CYP450 on disease susceptibility or pathogenesis may allow for the targeted manipulation of the CYP450 pathways to influence specific immune responses and antioxidant defenses during times of increased risk for health disorders.
Collapse
Affiliation(s)
- M J Kuhn
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - V Mavangira
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - L M Sordillo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824.
| |
Collapse
|
18
|
Dandelion Extract Alleviated Lipopolysaccharide-Induced Oxidative Stress through the Nrf2 Pathway in Bovine Mammary Epithelial Cells. Toxins (Basel) 2020; 12:toxins12080496. [PMID: 32752301 PMCID: PMC7472369 DOI: 10.3390/toxins12080496] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
In practical dairy production, cows are frequently subjected to inflammatory diseases, such as high-grain diet-induced subacute ruminal acidosis (SARA) as well as mastitis and metritis. Under the circumstances, lipopolysaccharide (LPS) induces oxidative stress within the cow and in the mammary epithelial cells. It has implications in practical production to alleviate oxidative stress and to optimize the lactational function of the mammary epithelial cells. This study thus aimed to investigate the antioxidative effects of dandelion aqueous extract (DAE) on LPS-induced oxidative stress and the mechanism of DAE as an antioxidant to alleviate oxidative stress through the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in the bovine mammary epithelial cell line MAC-T cells. The cells were cultured for 48 h in six treatments including control (without LPS and DAE), LPS (100 ng/mL), DAE10 (100 ng/mL LPS and 10 μg/mL DAE), DAE50 (100 ng/mL LPS and 50 μg/mL DAE), DAE100 (100 ng/mL LPS and 100 μg/mL DAE), and DAE200 (100 ng/mL LPS and 200 μg/mL DAE), respectively. The results showed that cell viability was reduced by LPS, and the adverse effect of LPS was suppressed with the supplementation of DAE. Lipopolysaccharide-induced oxidative stress through enhancing reactive oxygen species (ROS) production, resulted in increases in oxidative damage marker concentrations, while 10 and 50 μg/mL DAE alleviated the LPS-induced oxidative stress via scavenging cellular ROS and improving antioxidant enzyme activity. The upregulation of antioxidative gene expression in DAE treatments was promoted through activating the Nrf2 signaling pathway, with DAE at a concentration of 50 μg/mL exhibiting the highest effect. Overall, DAE acted as an effective antioxidant to inhibit LPS-induced oxidative stress and as a potential inducer of the Nrf2 signaling pathway.
Collapse
|
19
|
Zheng Y, Yan S, Qi J, Zhao Y, Guo X, Shi B. Protective effect of chitosan oligosaccharide against oxidative damage of peripheral blood mononuclear cells in dairy cows induced by diethylenetriamine/nitric oxide via NF-κB signalling pathway. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1772131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yaguang Zheng
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Sumei Yan
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jingyu Qi
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanli Zhao
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaoyu Guo
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Binlin Shi
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
20
|
Kuhn MJ, Putman AK, Sordillo LM. Widespread basal cytochrome P450 expression in extrahepatic bovine tissues and isolated cells. J Dairy Sci 2019; 103:625-637. [PMID: 31677841 DOI: 10.3168/jds.2019-17071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/13/2019] [Indexed: 01/08/2023]
Abstract
Periparturient cattle face increased risk of both metabolic and infectious diseases. Factors contributing to this predisposition include oxidized polyunsaturated fatty acids, also known as oxylipids, whose production is altered during the periparturient period and in diseased cattle. Alterations in the production of oxylipids derived from cytochrome P450 (CYP450) enzymes are over-represented during times of increased disease risk and clinical disease, such as mastitis. Many of these same CYP450 enzymes additionally regulate metabolism of fat-soluble vitamins, such as A, D, and E. These vitamins are essential to maintaining immune health, yet circulating concentrations are diminished near calving. Despite this, a relatively small amount of research has focused on the roles of CYP450 enzymes outside of the liver. The aim of this paper is to describe the relative gene expression of 11 CYP450 in bovine tissues and common in vitro bovine cell models. Eight tissue samples were collected from 3 healthy dairy cows after euthanasia. In vitro samples included primary bovine aortic and mammary endothelial cells and immortalized bovine kidney and mammary epithelial cells. Quantitative real-time-PCR was carried out to assess basal transcript expression of CYP450 enzymes. Surprisingly, CYP450 mRNA was widely expressed in all tissue samples, with predominance in the liver. In vitro CYP450 expression was less robust, with several cell types lacking expression of specific CYP450 enzymes altogether. Overall, cell culture models did not reflect expression of tissue CYP450. However, when CYP450 were organized by activity, certain cell types consistently expressed specific functional groups. These data reveal the widespread expression of CYP450 in individual organs of healthy dairy cows. Widespread expression helps to explain previous evidence of significant changes in CYP450-mediated oxylipid production and fat-soluble vitamin metabolism in organ microenvironments during periods of oxidative stress or disease. As such, these data provide a foundation for targeted functional experiments aimed at understanding the activities of specific CYP450 and associated therapeutic potential during times of increased disease risk.
Collapse
Affiliation(s)
- M J Kuhn
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - A K Putman
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - L M Sordillo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824.
| |
Collapse
|
21
|
Cheng WN, Jeong CH, Seo HG, Han SG. Moringa Extract Attenuates Inflammatory Responses and Increases Gene Expression of Casein in Bovine Mammary Epithelial Cells. Animals (Basel) 2019; 9:ani9070391. [PMID: 31248033 PMCID: PMC6680921 DOI: 10.3390/ani9070391] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 01/07/2023] Open
Abstract
Bovine mastitis is a common inflammatory disease in the udder of dairy cows that causes economic loss to dairy industries. The development of alternative strategies, especially the utilization of natural products, e.g. Moringa oleifera, has gained a lot of interests. The objective of the current study was to investigate the protective effects of moringa extract (ME) in bovine mammary epithelial cells (MAC-T) in in vitro settings. Radical scavenging capacities and anti-inflammatory properties of ME were examined using lipopolysaccharide (LPS)-challenged MAC-T cells. ME showed significant radical scavenging activities. In addition, ME decreased reactive oxygen species produced by LPS in cells. ME also attenuated inflammatory cyclooxygenase-2 expression induced by LPS by down-regulating NF-κB signaling cascade. Moreover, ME ameliorated LPS-induced pro-inflammatory cytokines including tumor necrosis factor-, interleukin-1, and interleukin-6. Furthermore, ME up-regulated mRNA expression levels of heme oxygenase-1, NAD(P)H: quinone oxidoreductase-1, and thioredoxin reductase 1. Importantly, ME promoted differentiated MAC-T cells by increasing mRNA expression levels of α-casein S1, α-casein S2, and β-casein. In conclusion, ME has beneficial effects in bovine mammary epithelial cells through its anti-inflammatory, antioxidant, and casein production properties. Our study provides evidence that ME could be a good candidate for a feed supplement to decrease inflammatory responses due to bovine mastitis.
Collapse
Affiliation(s)
- Wei Nee Cheng
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea.
| | - Chang Hee Jeong
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea.
| | - Han Geuk Seo
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea.
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
22
|
The effects of retinol oral supplementation in 6-hydroxydopamine dopaminergic denervation model in Wistar rats. Neurochem Int 2019; 125:25-34. [DOI: 10.1016/j.neuint.2019.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/02/2019] [Accepted: 02/04/2019] [Indexed: 12/23/2022]
|