1
|
Zhang X, Sun L, Wu M, Yu C, Zhao D, Wang L, Zhang Z, Yi D, Hou Y, Wu T. Effect of supplementation with Lactobacillus rhamnosus GG powder on intestinal and liver damage in broiler chickens challenged by lipopolysaccharide. Front Microbiol 2024; 15:1466274. [PMID: 39534507 PMCID: PMC11555397 DOI: 10.3389/fmicb.2024.1466274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024] Open
Abstract
This study explores the effect of dietary along with Lactobacillus rhamnosus GG (LGG) powder on intestinal and liver damage in broiler chickens challenged by lipopolysaccharide (LPS). A total of 100 healthy 1-day-old Ross 308 broiler chickens were selected and randomly divided into two treatments: the control group and the LGG treatment group. There were five replicates for each group, with 10 chickens per replicate. The chickens in the control group were fed a basal diet, while LGG treatment was supplemented with 1,000 mg/kg LGG along with the basal diet. The experiment lasted 29 days, and the trial included two phases. During the first 27 days, the animals were weighed on the 14th and 27th days to calculate growth performance. Then, on day 29, 2 animals from each replicate were intraperitoneally injected with 1 mg/kg BW LPS, and another 2 animals were treated with an equal volume of saline. The chickens were slaughtered 3 h later for sampling and further analysis. (1) LGG addition to the diet did not affect growth performance, including average daily gain (ADG), average daily feed intake (ADFI), and feed-to-weight ratio (F/G) of broiler chickens; (2) LPS stimulation decreased villus height (VH), and caused oxidative stress and increased the amount of diamine oxidase (DAO) in plasma, and the relative expression of intestinal inflammation genes (interleukin-8 [IL-8], interleukin 1β [IL-1β], inducible nitric oxide synthase [iNOS], and tumor necrosis factor-α [TNF-α]) and the relative expression of liver injury genes (b-cell lymphoma 2 [BCL2], heat shock protein70 [HSP70], and matrix metallopeptidase 13 [MMP13]). (3) Supplementation of LGG increased VH and the relative expression of intestinal barrier genes (mucins 2 [Mucin2] and occludin [Occludin]) and decreased the amount of DAO in plasma and the relative expression of intestinal inflammatory factors (IL-8, iNOS, and IL-1β). LGG supplementation also increased the expression of liver injury-related genes (MMP13 and MMP9). In conclusion, LGG enhanced intestinal barrier function, improved intestinal morphology, and alleviated the intestines' inflammatory response in LPS-stimulated broiler chicken, and it has a slightly protective effect on liver damage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
2
|
Guamán SA, Elhadi A, Salama AAK, Manuelian CL, Caja G, Albanell E. Beta-Glucans Improve the Mammary Innate Immune Response to Endotoxin Challenge in Dairy Ewes. Animals (Basel) 2024; 14:3023. [PMID: 39457952 PMCID: PMC11505092 DOI: 10.3390/ani14203023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
This study evaluated short-term immune responses of dairy ewes supplemented with barley β-glucan (BG) following an intramammary Escherichia coli lipopolysaccharide (LPS) challenge. In the adaptation period, 36 ewes were fed an alfalfa hay diet ad libitum and barley grain cv. Hispanic (3.8% BG). Then, ewes were assigned into three experimental groups: (1) Control (CON), the same previous diet (13.3 g BG/d); (2) high β-glucans barley (HBG), new barley (cv. Annapurna) containing 10% BG (35 g BG/d); (3) intraperitoneally injected (INP) with a 1.4% BG solution dose (2 g BG/ewe). At d 9, all ewes were infused with an E. coli LPS or saline solution in each udder half. After the challenge, rectal temperature (RT), milk yield and composition, somatic cell count (SCC), and plasma interleukins (IL-1α and IL-1β) were monitored daily. The INP treatment revealed a transitory increase in RT and decreased milk yield by 38%. Milk fat, protein, and SCC increased in LPS-treated udders but not by BG treatment. The IL-1α plasma concentration was similar among groups but INP ewes showed a lower IL-1β concentration suggesting a lower inflammatory response. The BG administration appears more effective intraperitoneally than orally, which needs additional study.
Collapse
Affiliation(s)
- Santiago A. Guamán
- Ruminant Research Group (G2R), Department of Animal and Food Sciences, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (S.A.G.); (A.E.); (A.A.K.S.); (C.L.M.)
- Sede Orellana, Escuela Superior Politécnica de Chimborazo (ESPOCH), El Coca 220150, Ecuador
| | - Abdelaali Elhadi
- Ruminant Research Group (G2R), Department of Animal and Food Sciences, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (S.A.G.); (A.E.); (A.A.K.S.); (C.L.M.)
| | - Ahmed A. K. Salama
- Ruminant Research Group (G2R), Department of Animal and Food Sciences, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (S.A.G.); (A.E.); (A.A.K.S.); (C.L.M.)
| | - Carmen L. Manuelian
- Ruminant Research Group (G2R), Department of Animal and Food Sciences, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (S.A.G.); (A.E.); (A.A.K.S.); (C.L.M.)
| | - Gerardo Caja
- Ruminant Research Group (G2R), Department of Animal and Food Sciences, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (S.A.G.); (A.E.); (A.A.K.S.); (C.L.M.)
| | - Elena Albanell
- Ruminant Research Group (G2R), Department of Animal and Food Sciences, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (S.A.G.); (A.E.); (A.A.K.S.); (C.L.M.)
| |
Collapse
|
3
|
Middleton D, Hanlon K, Greiner SP, Bowdridge SA. Variants of NLRP3 Protein in Haemonchus contortus Infected Sheep: Impact on Immune Cell Responsiveness to LPS In Vitro. Parasite Immunol 2024; 46:e13054. [PMID: 38922988 DOI: 10.1111/pim.13054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Pathogen recognition is an essential component to achieve the desired outcome of host protection. Nod-like receptor pyrin containing domain 3 (NLRP3) is a cytoplasmic pattern recognition receptor (PRR) with a wide array of agonists, such as PAMPs, DAMPs, ATP, bacterial product and viral products. Stimulation of the NLRP3 inflammasome results in proteolytic activation of IL-1β and IL-18, cell pyroptosis and classically, the induction of proinflammatory responses. St. Croix (STC) sheep have resistance traits exhibiting the appropriate T-helper type 2 immune response ensuing protection during helminth parasitic infection whereas parasite-susceptible Suffolk (SUF) sheep have an impaired response resulting in parasite establishment and adverse symptoms. The objective of these experiments was to determine if NLRP3 protein in H. contortus-infected SUF sheep was defective using the classical activation pathway of NLRP3 inflammasome. Peripheral blood mononuclear cells (PBMCs) derived from H. contortus-infected STC and SUF sheep were isolated from whole blood and treated (MCC950 treatment for 2 h followed by LPS treatment for 3 h, 1400 W treatment for 2 h followed by LPS treatment for 3 h, LPS treatment for 3 h or culture media for 3 h). qPCR analysis of LPS-stimulated PBMC revealed an upregulation in inflammatory associated genes IL-1β, TLR4, TNFα and NFκB (p < 0.0001) in STC PBMC and downregulation in IFNγ, IL-6 and iNOS for SUF PBMC. Pharmacological inhibition of iNOS in SUF PBMC resulted in an upregulation in the expression of IFNγ. These preliminary data begin to discover a relationship between NLRP3 activation and TLR4 signalling in PBMC of STC and SUF sheep.
Collapse
Affiliation(s)
- Denzel Middleton
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Kelly Hanlon
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Scott P Greiner
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Scott A Bowdridge
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
4
|
Austin MM, Castro B, Ochoa L, Dominguez Arellanes JF, Luna KL, Salas YA, Gurule SC, Soto-Navarro S, Gifford CA, Hernandez Gifford JA. The effect of repeated lipopolysaccharide endotoxin challenge on immune response of breeding ewes and subsequent lamb performance. J Anim Sci 2024; 102:skae294. [PMID: 39344677 PMCID: PMC11465372 DOI: 10.1093/jas/skae294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024] Open
Abstract
Infectious disease caused by exposure to Gram-negative bacterial endotoxin lipopolysaccharide (LPS) is recognized to suppress female fertility. However, the effect of varying low-dose endotoxin exposure during distinct stages of follicle development on immune response, reproductive performance, and lamb performance has yet to be elucidated. Therefore, the objective of this study was to evaluate acute phase response, mRNA abundance of inflammatory markers, reproductive performance and lamb growth characteristics of ewes challenged with subclinical doses of LPS. Rambouillet ewes (n = 36; 68.2 ± 1.1 kg; age 3 to 7 yr) stratified by body weight (BW) and age were assigned to treatment groups. Ewes received subcutaneous injections of saline (CON, n = 12), 1.5 µg/kg BW LPS (LOW, n = 12), or 3.0 µg/kg BW LPS (HIGH, n = 12) on days 5, 10, and 15 of a synchronized follicular wave. Ewes were subsequently placed with a raddle-painted ram on day 16 for a 35-d breeding season. On treatment days 5 and 15, blood samples, peripheral blood leukocytes, and rectal temperature were collected before and at regular intervals for 12 h after LPS challenge. Immune response to LPS was confirmed by increased temperature and serum cortisol concentrations on days 5 and 15. Endotoxin increased circulating plasma concentration of the acute phase protein, haptoglobin by greater than 15%, in both LPS-treated groups on days 5 and 15 at 12 h compared with control (P≤ 0.05). Pro- and anti-inflammatory mRNA gene expression demonstrated no differences in expression for tumor necrosis factor-α or peroxisome proliferator-activated receptor gamma among treatment groups (P > 0.10). Likewise, Toll-like receptor 4 (TLR4), interleukin-8 (IL-8), and superoxide dismutase 2 (SOD2) expression was similar among treatment groups on day 5. However, ewes challenged with LPS on day 15 displayed greater mRNA expression for TLR4 from 2 to 6 h (P < 0.05), a 7-fold increase for IL-8 from 1.5 to 2.5 h (P < 0.05), and 8-fold induction for SOD2 from 2 to 6 h (P < 0.05) as compared with controls. First service conception rates were 90% for control ewes and 75% for both treated groups (P = 0.84). Treated ewes demonstrated a reduction in lamb birth weight compared with controls (P ≤ 0.05) and a tendency for reduction of 60-d adjusted weaning weight (P = 0.09). Data suggest that subacute endotoxin exposure aligning with key follicle and oocyte maturation events results in detrimental growth performance of the subsequent lamb.
Collapse
Affiliation(s)
- Molly M Austin
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - Briza Castro
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - Luis Ochoa
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | | | - Karime L Luna
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - Yulianna A Salas
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - Sara C Gurule
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - Sergio Soto-Navarro
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - Craig A Gifford
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | | |
Collapse
|
5
|
Yang H, Wang Y, Liu M, Liu X, Jiao Y, Jin S, Shan A, Feng X. Effects of Dietary Resveratrol Supplementation on Growth Performance and Anti-Inflammatory Ability in Ducks ( Anas platyrhynchos) through the Nrf2/HO-1 and TLR4/NF-κB Signaling Pathways. Animals (Basel) 2021; 11:3588. [PMID: 34944363 PMCID: PMC8698092 DOI: 10.3390/ani11123588] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to explore the effect of dietary resveratrol on the growth performance and anti-inflammatory mechanism in ducks. A total of 280 one-day-old specific pathogen-free male ducklings (Anas platyrhynchos) with an average body weight of 35 ± 1 g were randomly divided into two dietary treatment groups with different supplementation levels of resveratrol for growth performance experiments: R0 and R400 (0 and, 400 mg kg-1 resveratrol, respectively). At the age of 28 days, 16 ducks were selected from each treatment group and divided into four subgroups for a 2 × 2 factorial pathological experiment: R0; R400; R0 + LPS; R400 + LPS, (0 mg kg-1 resveratrol, 400 mg kg-1 resveratrol, 0 mg kg-1 resveratrol, 400 mg kg-1 resveratrol + 5 mg lipopolysaccharide/kg body weight). The results showed that resveratrol significantly improved final body weight and average daily gain (p < 0.01) and alleviated the lipopolysaccharide-induced inflammatory response with a reduction in IL-1β and IL-6 in the plasma and the liver (p < 0.05). Resveratrol improved mRNA levels of Nrf2 and HO-1 and decreased the mRNA levels of TLR4 and NF-κB in duck liver (p < 0.05). Dietary resveratrol can improve growth performance and reduce inflammation through the Nrf2/HO-1 and TLR4/NF-κB signaling pathways in duck.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xingjun Feng
- Laboratory of Molecular Nutrition, Institute of Animal Nutrition, Northeast Agricultural University, Changjiang Street 600#, Xiangfang District, Harbin 150030, China; (H.Y.); (Y.W.); (M.L.); (X.L.); (Y.J.); (S.J.); (A.S.)
| |
Collapse
|
6
|
Yang H, Wang Y, Jin S, Pang Q, Shan A, Feng X. Dietary resveratrol alleviated lipopolysaccharide-induced ileitis through Nrf2 and NF-κB signalling pathways in ducks (Anas platyrhynchos). J Anim Physiol Anim Nutr (Berl) 2021; 106:1306-1320. [PMID: 34729831 DOI: 10.1111/jpn.13657] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
Gram-negative bacteria contamination of feed can occur at all the stage of feed production, storage, transportation and utilization. Lipopolysaccharide (LPS) is a major toxic metabolite of Gram-negative bacteria. The aim of this study was to explore the effect of dietary resveratrol on the duck ileitis caused by LPS and its optimum addition level in diet. The results showed that LPS-induced duck ileitis with the destruction of intestinal structure, oxidative stress, mitochondrial dysfunction, inflammatory response and permeability alteration. Dietary resveratrol alleviated LPS-induced intestinal dysfunction and the increase of intestinal permeability by linearly increasing mRNA levels of tight junction protein genes (Claudin-1, Occludin-1, ZO-1) (p < 0.05) and protein expression of Claudin-1 (p < 0.01). In addition, dietary resveratrol improved the antioxidant capacity of duck ileum by reducing the production of MDA and increasing the activity of T-SOD (p < 0.01) and CAT. Lipopolysaccharide increased Keap1 at mRNA and protein level (p < 0.01) and decreased the protein level of Nrf2 (p < 0.05). Dietary resveratrol significantly downregulated expression of Keap1 and upregulated expression of Nrf2 in duck (p < 0.05). Dietary resveratrol suppressed the TLR4/NF-κB signalling pathway and the expression of its downstream genes including IKK, TXNIP, NLRP3, Caspase-1, IL-6 and IL-18. Meanwhile, the levels of inflammatory cytokines (IL-6, IL-18 and TNF-α) showed a linearly decrease (p < 0.01) with increasing dietary resveratrol level. These results demonstrated that resveratrol alleviated the LPS-induced acute ileitis of duck through Nrf2 and NF-κB signalling pathways, and the dietary resveratrol of 500 mg/kg is more efficiently.
Collapse
Affiliation(s)
- Hao Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Yingjie Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Sanjun Jin
- Institute of Animal Nutrition, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Qian Pang
- Institute of Animal Nutrition, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Xingjun Feng
- Institute of Animal Nutrition, Northeast Agricultural University, Xiangfang District, Harbin, China
| |
Collapse
|
7
|
Naylor D, Sharma A, Li Z, Monteith G, Mallard BA, Bergeron R, Baes C, Karrow NA. Endotoxin-induced cytokine, chemokine and white blood cell profiles of variable stress-responding sheep. Stress 2021; 24:888-897. [PMID: 34259115 DOI: 10.1080/10253890.2021.1954905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Individual variation of the hypothalamic-pituitary-adrenal (HPA) axis response to stress could contribute to variable stress resiliency of livestock. During stress events, the innate immune system can also become activated and work in concert with the neuroendocrine system to restore homeostasis, while minimizing tissue damage. The purpose of this study was to assess immune function in variable stress-responding sheep in response to bacterial lipopolysaccharide (LPS) endotoxin immune-challenge. High (HSR, n = 12), middle (MSR, n = 12), and low-stress responders (LSR, n = 12) were selected from a population of 112 female lambs and classified based on serum cortisol concentration after receiving an intravenous bolus of LPS (400 ng/kg). Blood was collected from the jugular vein at 0 and 4 hrs post-LPS challenge to monitor changes in serum pro- and anti-inflammatory cytokines and chemokines, and white blood cell populations. Rectal temperature was recorded hourly to monitor fever. HSR had the greatest increase in rectal temperature and strongest pro-inflammatory IL-6 and IFN-γ cytokine responses compared to MSR and LSR. HSR and MSR had stronger anti-inflammatory IL-10 cytokine and CCL2 chemokine responses than LSR. White blood cell counts changed between 0 and 4 h; however, no differences were detected among the variable stress response groups. The distinct inflammatory response in variable stress responding sheep could contribute to individual differences in stress resiliency and this warrants investigation in the context of other types of stress.
Collapse
Affiliation(s)
- D Naylor
- Department of Animal Biosciences, University of Guelph, Guelph, Canada
| | - A Sharma
- Department of Animal Biosciences, University of Guelph, Guelph, Canada
| | - Z Li
- Department of Animal Biosciences, University of Guelph, Guelph, Canada
| | - G Monteith
- Department of Clinical Studies, Ontario Veterinary College, Guelph, Canada
| | - B A Mallard
- Department of Pathobiology, Ontario Veterinary College, Guelph, Canada
| | - R Bergeron
- Department of Animal Biosciences, University of Guelph, Guelph, Canada
| | - C Baes
- Department of Animal Biosciences, University of Guelph, Guelph, Canada
| | - N A Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, Canada
| |
Collapse
|
8
|
Johnson JS, Maskal JM, Duttlinger AW, Kpodo KR, McConn BR, Byrd CJ, Richert BT, Marchant-Forde JN, Lay DC, Perry SD, Lucy MC, Safranski TJ. In utero heat stress alters the postnatal innate immune response of pigs. J Anim Sci 2021; 98:5960114. [PMID: 33159520 DOI: 10.1093/jas/skaa356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/30/2020] [Indexed: 12/29/2022] Open
Abstract
The effects of in utero heat stress (IUHS) range from decreased growth performance to altered behavior, but the long-term impact of IUHS on postnatal innate immune function in pigs is unknown. Therefore, the study objective was to determine the effects of early gestation IUHS on the immune, metabolic, and stress response of pigs subjected to an 8 hr lipopolysaccharide (LPS) challenge during postnatal life. Twenty-four pregnant gilts were exposed to thermoneutral (TN; n = 12; 17.5 ± 2.1 °C) or heat stress (HS; n = 12; cyclic 26 to 36 °C) conditions from days 6 to 59 of gestation, and then TN conditions (20.9 ± 2.3 °C) from day 60 of gestation to farrowing. At 12 wk of age, 16 IUHS and 16 in utero thermoneutral (IUTN) pigs were selected, balanced by sex and given an intravenous injection of LPS (2 µg/kg BW mixed with sterile saline [SAL] and injected at 2 µL/kg BW) or SAL (2 µL/kg BW). Body temperature was monitored every 30 min, and blood was obtained at 0, 1, 2, 3, 4, 6, and 8 hr following the LPS challenge. Blood samples were analyzed for glucose, insulin, non-esterified fatty acids (NEFA), cortisol, and cytokine concentrations. In addition, white blood cell counts were determined at 0 and 4 hr. Hour 0 data were used as covariates. Body temperature was increased (P < 0.01) in LPS (40.88 ± 0.08 °C) vs. SAL (39.83 ± 0.08 °C) pigs. Eosinophils tended to be decreased overall (P = 0.09; 43.9%) in IUHS vs. IUTN pigs. Glucose concentrations were reduced overall (P = 0.05; 5.9%) in IUHS vs. IUTN pigs. The NEFA concentrations tended to be greater (P = 0.07; 143.4%) in IUHS-LPS pigs compared with all other treatments, and IUTN-LPS pigs tended to have greater (127.4%) circulating NEFA concentrations compared with IUTN-SAL and IUHS-SAL pigs. Cortisol was increased (P = 0.04) in IUHS-LPS compared with IUTN-LPS pigs at 3 hr (21.5%) and 4 hr (64.3%). At 1 hr, tumor necrosis factor α was increased (P = 0.01; 115.1%) in IUHS-LPS compared with IUTN-LPS pigs. Overall, interleukin-1β (IL-1β) and interleukin-6 (IL-6) were greater (P < 0.04; 281.3% and 297.8%, respectively) in IUHS-LPS pigs compared with all other treatments, and IUTN-LPS pigs had increased IL-1β and IL-6 concentrations compared with IUTN-SAL and IUHS-SAL pigs. In summary, IUHS altered the postnatal cytokine, metabolic, and physiological stress response of pigs during postnatal life, which may have negative implications toward the innate immune response of IUHS pigs to pathogens.
Collapse
Affiliation(s)
- Jay S Johnson
- USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN
| | - Jacob M Maskal
- Department of Animal Sciences, Purdue University, West Lafayette, IN
| | - Alan W Duttlinger
- Department of Animal Sciences, Purdue University, West Lafayette, IN
| | - Kouassi R Kpodo
- Department of Animal Sciences, Purdue University, West Lafayette, IN
| | - Betty R McConn
- Oak Ridge Institute for Science and Education, Oak Ridge, TN
| | | | - Brian T Richert
- Department of Animal Sciences, Purdue University, West Lafayette, IN
| | | | - Donald C Lay
- USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN
| | - Shelbi D Perry
- Division of Animal Sciences, University of Missouri, Columbia, MO
| | - Matthew C Lucy
- Division of Animal Sciences, University of Missouri, Columbia, MO
| | - Tim J Safranski
- Division of Animal Sciences, University of Missouri, Columbia, MO
| |
Collapse
|
9
|
Aksel EG, Akyüz B. Effect of LPS and LTA stimulation on the expression of TLR-pathway genes in PBMCs of Akkaraman lambs in vivo. Trop Anim Health Prod 2021; 53:65. [PMID: 33392825 PMCID: PMC7779097 DOI: 10.1007/s11250-020-02491-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 12/02/2020] [Indexed: 01/30/2023]
Abstract
This is the first study investigating the changes in some gene expressions related to the TLR pathway in vivo in sheep. Lipopolysaccharide (LPS) and lipoteichoic acid (LTA) molecules were administrated separately and in combination to the Akkaraman lambs via intranasal route. For this purpose, 28 lambs were distributed into four groups (LPS, LTA, LPS + LTA, and control, n = 7). Blood samples were collected to isolate the peripheral blood mononuclear cells (PBMCs) at 24 h and on day 7. Expression levels of TLR2, TLR4, MyD88, TRAF6, TNF-α, IL-1ß, IL-6, IL-10, NF-κß, and IFN-γ genes were determined by qRT-PCR. Increases were determined in the expression data of TLR2 [LPS (P < 0.05) and LTA + LPS (P < 0.01)], TLR4 [LTA + LPS (P < 0.05)], TNF-α, IL-10 [LTA + LPS (P < 0.05)], and IFN-γ genes in all groups in the mRNA expression analysis of PBMCs isolated at 24 h whereas decreases were determined in the expression levels of these genes on day 7. The combination of LPS + LTA stimulated lamb PBMCs more effectively than separate administration of LPS and LTA at 24 h. Therefore, this article may contribute to the understanding the host-pathogen interaction of respiratory-transmitted bacterial diseases concerning PBMCs at 24 h and on day 7. Also this study may contribute to the dose adjustment for bacterial vaccine studies in sheep. Experimental application doses will be helpful for in vivo and in vitro drug and vaccine development studies in the fields of pharmacology and microbiology.
Collapse
Affiliation(s)
- Esma Gamze Aksel
- Department of Genetic, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey.
| | - Bilal Akyüz
- Department of Genetic, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey
| |
Collapse
|
10
|
Shalby NA, Abo El-Maaty AM, Ali AH, Elgioushy M. Acute phase biomarkers, oxidants, antioxidants, and trace minerals of mobile sheep flocks naturally infected with brucellosis. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2021. [DOI: 10.15547/bjvm.2020-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study assayed the acute phase responses of sheep seropositive to Brucella. Sera collected from ewes (n=160) were subjected to serological tests of Brucella, Rose Bengal plate agglutination test (RBPAT), buffer acidified plate agglutination test (BAPAT), and complement fixation test (CFT). Results revealed that CFT was the most predictive test of brucellosis followed by BAPAT then RBPAT. The moderate predictive blood biochemical parameters were zinc and ascorbic acid. Ewes with low CFT titre (chronic) had low fibrinogen, copper, NO, and GPx. Seropositive animals had high blood concentrations of ascorbic acid and zinc.
Collapse
Affiliation(s)
- N. A. Shalby
- Animal Health Research Institute, Agriculture Research center, Dokki, Giza, Egypt
| | - A. M. Abo El-Maaty
- Animal Reproduction and Artificial Insemination, Veterinary Research Division, National Research Centre, Dokki, Giza (Reproductive Physiology), Egypt
| | - A. H. Ali
- Animal Reproduction and Artificial Insemination, Veterinary Research Division, National Research Centre, Dokki, Giza (Reproductive Physiology), Egypt
| | - M. Elgioushy
- Department of Animal Medicine, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| |
Collapse
|
11
|
Sharma A, Shandilya UK, Sullivan T, Naylor D, Canovas A, Mallard BA, Karrow NA. Identification of Ovine Serum miRNAs Following Bacterial Lipopolysaccharide Challenge. Int J Mol Sci 2020; 21:E7920. [PMID: 33113825 PMCID: PMC7663744 DOI: 10.3390/ijms21217920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Host-pathogen interactions are complex and influenced by host genetic and epigenetic modifications. Recently, the significance of microRNAs (miRNAs) in pathogenic infection and the regulation of immune response has been highlighted. However, information on miRNAs' role in the course of inflammation is still very limited in small ruminants. The present study was intended to identify changes in the expression of circulatory miRNAs post-lipopolysaccharide (LPS)-challenge. In this study, young ewes (n = 18) were challenged with Escherichia coli LPS (400 ng/kg i.v.) and blood samples were collected for serum miRNA isolation at two-time points; prior to challenge (T0), and 4 h (T4) post-challenge, reflecting the peak cortisol response. A total of 91 miRNAs were profiled, including 84 miRNAs on a commercial ovine miRNA-PCR array, and seven individual miRNAs. Forty five miRNAs were differentially expressed (DE) with 35 being up-regulated (Fold regulation, FR > 2) and 10 being down-regulated (FR < 1, p < 0.05) at T4. Among the up-regulated miRNAs, 14 were significantly (p < 0.05) induced, including oar-miRs: 369-3p, 495-3p, 376a-3p, 543-3p, 668-3p, 329a-3p, 655-3p, 411a-5p, and 154a-3p, which were located on ovine chromosome 18 forming four miRNA clusters within 10 kb. The elevated miRNAs belonged to different functional classes, playing roles in activating the hypothalamic-pituitary-adrenal axis; increasing cell survival and differentiation; and inducing inflammatory responses and targeted PI3K-Akt and MAPK signaling and chemokine signaling pathways. In summary, these results reveal the dynamic nature of ovine serum miRNAs during LPS-induced stress and highlight the potential role of identified miRNA-clusters on chromosome 18 to understand the regulation of the acute-phase response. Some of these identified circulating miRNAs may also serve as stress biomarkers for livestock in the future.
Collapse
Affiliation(s)
- Ankita Sharma
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.S.); (U.K.S.); (T.S.); (D.N.); (A.C.)
| | - Umesh K. Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.S.); (U.K.S.); (T.S.); (D.N.); (A.C.)
| | - Tianna Sullivan
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.S.); (U.K.S.); (T.S.); (D.N.); (A.C.)
| | - Danielle Naylor
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.S.); (U.K.S.); (T.S.); (D.N.); (A.C.)
| | - Angela Canovas
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.S.); (U.K.S.); (T.S.); (D.N.); (A.C.)
| | - Bonnie A. Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.S.); (U.K.S.); (T.S.); (D.N.); (A.C.)
| |
Collapse
|
12
|
Naylor D, Sharma A, Li Z, Monteith G, Sullivan T, Canovas A, Mallard BA, Baes C, Karrow NA. Short communication: Characterizing ovine serum stress biomarkers during endotoxemia. J Dairy Sci 2020; 103:5501-5508. [PMID: 32307170 DOI: 10.3168/jds.2019-17718] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022]
Abstract
Breeding stress-resilient livestock is a potential strategy to help mitigate the negative effect of environmental and pathogenic stressors. The hypothalamic-pituitary-adrenal axis and immune system are activated during stress events and release mediators into the circulation that help restore physiological homeostasis. The purpose of this study was to assess a comprehensive set of circulatory mediators released in response to an acute immune stress challenge to identify candidate biomarkers that can be used for the selection of stress-resilient animals. Fifteen female lambs were stress challenged with an intravenous bolus of lipopolysaccharide (LPS; 400 ng/kg), and blood was collected from the jugular vein at 0, 2, 4, and 6 h after LPS challenge to identify and monitor candidate stress biomarkers; temperature was also recorded over time. Biomarker responses were evaluated with a repeated-measures model to compare time points with baseline values. As expected, all sheep had a monophasic febrile response to LPS challenge, and cortisol increased and returned to baseline by 6 h. The cytokines tumor necrosis factor-α, IL-6, IFN-γ (proinflammatory), and IL-10 (anti-inflammatory) increased, but only tumor necrosis factor-α returned to baseline during the monitoring period. The cytokines IL-1α, IL-1β, IL-17α (proinflammatory), and IL-4 (anti-inflammatory) did not respond to LPS challenge. All chemokines (CCL2, CCL3, CCL4, CXCL10, and IL-8) responded to LPS challenge; however, only CCL2, CCL3, CCL4, and CXCL10 increased over time, and only CCL3, CCL4, and CXCL10 returned to baseline during the monitoring period. MicroRNA (miR-145, miR-233, and miR-1246) also increased and remained elevated during the study. In summary, the LPS challenge induced a strong stress response in Rideau-Dorset sheep that could be monitored with a distinct profile of circulatory biomarkers.
Collapse
Affiliation(s)
- D Naylor
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - A Sharma
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Z Li
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - G Monteith
- Department of Clinical Studies, Ontario Veterinary College, Guelph, ON, N1G 2W1, Canada
| | - T Sullivan
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - A Canovas
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - B A Mallard
- Department of Pathobiology, Ontario Veterinary College, Guelph, ON, N1G 2W1, Canada
| | - C Baes
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland
| | - N A Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
13
|
Protective Effect of Resveratrol Improves Systemic Inflammation Responses in LPS-Injected Lambs. Animals (Basel) 2019; 9:ani9110872. [PMID: 31661768 PMCID: PMC6912468 DOI: 10.3390/ani9110872] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
Simple Summary China’s livestock industry has been transforming from traditional extensive systems to highly intensive systems. Highly intensive livestock production often causes immune stress to animals, which makes them more susceptible to infections. The aim of this study was to examine whether resveratrol alleviates inflammation in lambs. Results showed that resveratrol attenuated the LPS-evoked inflammatory responses in lambs by suppressing expression levels of inflammatory cytokines and blocking NF-κB and MAPK signaling pathways. Based on these studies, resveratrol has the potential to be a promising therapeutic reagent for multiple inflammatory illnesses caused by immune stress. Abstract Highly intensive livestock production often causes immune stress to animals, which makes them more susceptible to infections. The aim of this study was to examine whether resveratrol (Res) alleviates inflammation in lambs. In Experiment 1, 16 male lambs were injected with lipopolysaccharides (LPS) at an initial dose of 0.25, 1.25, and 2.5 μg/kg body weight (BW) for 9 days. Average daily gain and blood parameters were measured and clinical symptoms were recorded. In Experiment 2, 20 male lambs were injected intravenously with LPS (0 mg/kg) + Res (0 mg), LPS (2.5 μg /kg) + Res (0 mg, 82.5 mg, 165 mg, 330 mg), 4 h after LPS injection. Jugular blood was collected from each lamb to determine white blood cell (WBC) counts and the expression of inflammatory genes. In Experiment 1, all LPS-treated lambs showed clinical signs of sickness including rhinorrhea, lethargy, and shivering, and systemic inflammatory responses of increased inflammatory genes levels and cortisol concentration. The lambs had increased respiratory and heart rates and rectal temperature and decreased average daily gain and feed intake. In Experiment 2, resveratrol significantly reduced WBCs and the expression levels of several genes associated with inflammation response (TLR4, NF-κB, c-jun) and inhibited the signaling cascades of NF-κB and MAPKs by down-regulating the expression levels of inflammatory cytokines (IL-1β, IL-4, IL-6, TNF-α, IFN-γ) induced by LPS. Resveratrol attenuated the LPS-evoked inflammatory responses in lambs by suppressing expression levels of inflammatory cytokines, and blocking NF-κB and MAPK signaling pathways.
Collapse
|