1
|
Fraslin C, Robledo D, Kause A, Houston RD. Potential of low-density genotype imputation for cost-efficient genomic selection for resistance to Flavobacterium columnare in rainbow trout (Oncorhynchus mykiss). Genet Sel Evol 2023; 55:59. [PMID: 37580697 PMCID: PMC10424455 DOI: 10.1186/s12711-023-00832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Flavobacterium columnare is the pathogen agent of columnaris disease, a major emerging disease that affects rainbow trout aquaculture. Selective breeding using genomic selection has potential to achieve cumulative improvement of the host resistance. However, genomic selection is expensive partly because of the cost of genotyping large numbers of animals using high-density single nucleotide polymorphism (SNP) arrays. The objective of this study was to assess the efficiency of genomic selection for resistance to F. columnare using in silico low-density (LD) panels combined with imputation. After a natural outbreak of columnaris disease, 2874 challenged fish and 469 fish from the parental generation (n = 81 parents) were genotyped with 27,907 SNPs. The efficiency of genomic prediction using LD panels was assessed for 10 panels of different densities, which were created in silico using two sampling methods, random and equally spaced. All LD panels were also imputed to the full 28K HD panel using the parental generation as the reference population, and genomic predictions were re-evaluated. The potential of prioritizing SNPs that are associated with resistance to F. columnare was also tested for the six lower-density panels. RESULTS The accuracies of both imputation and genomic predictions were similar with random and equally-spaced sampling of SNPs. Using LD panels of at least 3000 SNPs or lower-density panels (as low as 300 SNPs) combined with imputation resulted in accuracies that were comparable to those of the 28K HD panel and were 11% higher than the pedigree-based predictions. CONCLUSIONS Compared to using the commercial HD panel, LD panels combined with imputation may provide a more affordable approach to genomic prediction of breeding values, which supports a more widespread adoption of genomic selection in aquaculture breeding programmes.
Collapse
Affiliation(s)
- Clémence Fraslin
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Antti Kause
- Natural Resources Institute Finland (Luke), Myllytie 1, 31600, Jokioinen, Finland
| | - Ross D Houston
- Benchmark Genetics, Edinburgh Technopole, 1 Pioneer Building, Penicuik, EH26 0GB, UK
| |
Collapse
|
2
|
What Can Genetics Do for the Control of Infectious Diseases in Aquaculture? Animals (Basel) 2022; 12:ani12172176. [PMID: 36077896 PMCID: PMC9454762 DOI: 10.3390/ani12172176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Infectious diseases place an economic burden on aquaculture and a limitation to its growth. This state-of-the-art review describes the application of genetics and genomics as novel tools to control infectious disease in aquaculture. Abstract Infectious diseases place an economic burden on aquaculture and a limitation to its growth. An innovative approach to mitigate their impact on production is breeding for disease resistance: selection for domestication, family-based selection, marker-assisted selection, and more recently, genomic selection. Advances in genetics and genomics approaches to the control of infectious diseases are key to increasing aquaculture efficiency, profitability, and sustainability and to reducing its environmental footprint. Interaction and co-evolution between a host and pathogen can, however, turn breeding to boost infectious disease resistance into a potential driver of pathogenic change. Parallel molecular characterization of the pathogen and its virulence and antimicrobial resistance genes is therefore essential to understand pathogen evolution over time in response to host immunity, and to apply appropriate mitigation strategies.
Collapse
|
3
|
Calboli FCF, Koskinen H, Nousianen A, Fraslin C, Houston RD, Kause A. Conserved QTL and chromosomal inversion affect resistance to columnaris disease in 2 rainbow trout ( Oncorhyncus mykiss) populations. G3 GENES|GENOMES|GENETICS 2022; 12:6603111. [PMID: 35666190 PMCID: PMC9339330 DOI: 10.1093/g3journal/jkac137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/26/2022] [Indexed: 11/20/2022]
Abstract
We present a comparative genetic analysis of the quantitative trait loci underlying resistance to warm water columnaris disease in 2 farmed rainbow trout (Oncorhynchus mykiss) populations. We provide evidence for the conservation of a major quantitative trait loci on Omy03, and the putative role played by a chromosomal rearrangement on Omy05. A total of 3,962 individuals from the 2 populations experienced a natural Flavobacterium columnare outbreak. Data for 25,823 genome-wide SNPs were generated for both cases (fatalities) and controls (survivors). FST and pairwise additive genetic relationships suggest that, despite being currently kept as separate broodstocks, the 2 populations are closely related. Association analyses identified a major quantitative trait loci on chromosome Omy03 and a second smaller quantitative trait loci on Omy05. Quantitative trait loci on Omy03 consistently explained 3–11% of genetic variation in both populations, whereas quantitative trait loci on Omy05 showed different degree of association across populations and sexes. The quantitative trait loci on Omy05 was found within a naturally occurring, 54.84 cM long inversion which is easy to tag due to a strong linkage disequilibrium between the 375 tagging SNPs. The ancestral haplotype on Omy05 was associated with decreased mortality. Genetic correlation between mortality in the 2 populations was estimated at 0.64, implying that the genetic basis of resistance is partly similar in the 2 populations. Our quantitative trait loci validation identifies markers that can be potentially used to complement breeding value evaluations to increase resistance against columnaris disease, and help to mitigate effects of climate change on aquaculture.
Collapse
Affiliation(s)
| | - Heikki Koskinen
- Natural Resources Institute Finland (LUKE) , FI-70210 Kuopio, Finland
| | - Antti Nousianen
- Natural Resources Institute Finland (LUKE) , FI-70210 Kuopio, Finland
| | - Clémence Fraslin
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh , Easter Bush EH25 9RG, UK
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh , Easter Bush EH25 9RG, UK
| | - Antti Kause
- Natural Resources Institute Finland (LUKE) , FI-31600 Jokioinen, Finland
| |
Collapse
|
4
|
Dégremont L, Morga B, Maurouard E, Travers MA. Susceptibility variation to the main pathogens of Crassostrea gigas at the larval, spat and juvenile stages using unselected and selected oysters to OsHV-1 and/or V. aestuarianus. J Invertebr Pathol 2021; 183:107601. [PMID: 33964304 DOI: 10.1016/j.jip.2021.107601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/15/2021] [Accepted: 04/25/2021] [Indexed: 10/21/2022]
Abstract
French commercial hatcheries are massively producing Crassostrea gigas selected for their higher resistance to OsHV-1, and soon should also implement selection for increasing resistance to Vibrio aestuarianus. The first objective of this study was to optimize the breeding programs for dual resistance to OsHV-1 and V. aestuarianus to determine the earliest life stage for which oysters are able to develop disease resistance. Wild stocks and selected families were tested using experimental infections by both pathogens at the larval, spat and juvenile stages. Oyster families could be evaluated for OsHV-1 as soon as the larval stage by a bath method, but this only highlighted the most resistant families; those that showed the highest resistance to V. aestuarianus could be determined using the cohabitation method at the juvenile stage. The second objective of this study was to determine if selection to increase/decrease the resistance to OsHV-1 and V. aestuarianus could have an impact on other major pathogens currently detected in hatchery at the larval stage, and in nursery and field at the spat/juveniles stages (V. coralliilyticus, V. crassostreae, V. tasmaniensis, V. neptunius, V. europaeus, V. harveyi, V. chagasi). No relationship was found between mortality caused by V. aestuarianus/OsHV-1 and the mortality caused by the other virulent bacterial strains tested regardless the stages, except between OsHV-1 and V. tasmaniensis at the juvenile stage. Finally, miscellaneous findings were evidenced such as (1) bath for bacterial challenges was not adapted for spat, (2) the main pathogens at the larval stage were OsHV-1 and V. coralliilyticus using bath, while it was V. coralliilyticus, V. europaeus, and V. neptunius at the juvenile stage by injection, and (4) variation in mortality was observed among families/wild controls for all pathogens at larval and juvenile stages, except for V. harveyi for larvae.
Collapse
Affiliation(s)
| | | | | | - Marie-Agnès Travers
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, F-34090 Montpellier, France
| |
Collapse
|
5
|
Evenhuis JP, Lipscomb R, Birkett C. Virulence variations of Flavobacterium columnare in rainbow trout (Oncorhynchus mykiss) eyed eggs and alevin. JOURNAL OF FISH DISEASES 2021; 44:533-539. [PMID: 33647180 DOI: 10.1111/jfd.13343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Flavobacterium columnare (Fc) is the causative agent for columnaris disease (CD) in several fish species and an emerging problem for rainbow trout aquaculture. We characterize the virulence phenotype of two Fc isolates, CSF-298-10 and MS-FC-4, against trout from two sources, NCCCWA and a production stock (PS), at the eyed egg and alevin life stages. Immersion challenges demonstrated that NCCCWA eyed eggs were susceptible to the Fc isolate MS-FC-4 (>97% mortality) but no mortality was observed against PS eyed eggs. The CSF-298-10 had little effect on any eyed eggs tested and was not highly virulent to any alevin till day six post-hatch, up to 38% for NCCCWA and ~80% PS alevin. The MS-FC-4 strain produced ≥80% mortality any day an immersion challenge occurred post-hatch. Significant difference in CFU counts was recorded between the Fc strains on 2 days post-hatch immersion challenges. Counts for the NCCCWA alevin were 4.4 × 103 CFU/ml-1 and 1.8 × 106 CFU/ml-1 for the CSF-298-10 strain and MS-FC-4 strain, respectively, and for the PS alevin CSF-298-10 measured 9.9 × 101 CFU/ml-1 and 3.8 × 105 CFU/ml-1 for MS-FC-4. These two Fc isolates present stark differences in virulence phenotypes to both eyed eggs and alevin and present an interesting model system for virulence kinetics and potentially alternative pathogenic pathways.
Collapse
Affiliation(s)
- Jason P Evenhuis
- National Center for Cool and Cold Water Aquaculture USDA/ARS, Kearneysville, WV, USA
| | - Ryan Lipscomb
- National Center for Cool and Cold Water Aquaculture USDA/ARS, Kearneysville, WV, USA
| | - Clayton Birkett
- National Center for Cool and Cold Water Aquaculture USDA/ARS, Kearneysville, WV, USA
| |
Collapse
|
6
|
The Type IX Secretion System Is Required for Virulence of the Fish Pathogen Flavobacterium psychrophilum. Appl Environ Microbiol 2020; 86:AEM.00799-20. [PMID: 32532872 DOI: 10.1128/aem.00799-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/06/2020] [Indexed: 12/15/2022] Open
Abstract
Flavobacterium psychrophilum causes bacterial cold-water disease in wild and aquaculture-reared fish and is a major problem for salmonid aquaculture. The mechanisms responsible for cold-water disease are not known. It was recently demonstrated that the related fish pathogen, Flavobacterium columnare, requires a functional type IX protein secretion system (T9SS) to cause disease. T9SSs secrete cell surface adhesins, gliding motility proteins, peptidases, and other enzymes, any of which may be virulence factors. The F. psychrophilum genome has genes predicted to encode components of a T9SS. Here, we used a SacB-mediated gene deletion technique recently adapted for use in the Bacteroidetes to delete a core F. psychrophilum T9SS gene, gldN The ΔgldN mutant cells were deficient for secretion of many proteins in comparison to wild-type cells. Complementation of the mutant with wild-type gldN on a plasmid restored secretion. Compared to wild-type and complemented strains, the ΔgldN mutant was deficient in adhesion, gliding motility, and extracellular proteolytic and hemolytic activities. The ΔgldN mutant exhibited reduced virulence in rainbow trout and complementation restored virulence, suggesting that the T9SS plays an important role in the disease.IMPORTANCE Bacterial cold-water disease, caused by F. psychrophilum, is a major problem for salmonid aquaculture. Little is known regarding the virulence factors involved in this disease, and control measures are inadequate. A targeted gene deletion method was adapted to F. psychrophilum and used to demonstrate the importance of the T9SS in virulence. Proteins secreted by this system are likely virulence factors and targets for the development of control measures.
Collapse
|
7
|
Birkett C, Lipscomb R, Moreland T, Leeds T, Evenhuis JP. Recirculation versus flow-through rainbow trout laboratory Flavobacterium columnare challenge. DISEASES OF AQUATIC ORGANISMS 2020; 139:213-221. [PMID: 32495747 DOI: 10.3354/dao03487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Flavobacterium columnare immersion challenges are affected by water-related environmental parameters and thus are difficult to reproduce. Whereas these challenges are typically conducted using flow-through systems, use of a recirculating challenge system to control environmental parameters may improve reproducibility. We compared mortality, bacterial concentration, and environmental parameters between flow-through and recirculating immersion challenge systems under laboratory conditions using 20 rainbow trout families. Despite identical dose concentration (1:75 dilution), duration of challenge, lot of fish, and temperature, average mortality in the recirculating system (42%) was lower (p < 0.01) compared to the flow-through system (77%), and there was low correlation (r = 0.24) of family mortality. Mean days to death (3.25 vs. 2.99 d) and aquaria-to-aquaria variation (9.6 vs. 10.4%) in the recirculating and flow-through systems, respectively, did not differ (p ≥ 0.30). Despite 10-fold lower water replacement rate in the recirculating (0.4 exchanges h-1) compared to flow-through system (4 exchanges h-1), differences in bacterial concentration between the 2 systems were modest (≤0.6 orders of magnitude) and inconsistent throughout the 21 d challenge. Compared to the flow-through system, dissolved oxygen during the 1 h exposure and pH were greater (p ≤ 0.02), and calcium and hardness were lower (p ≤ 0.03), in the recirculating system. Although this study was not designed to test effects of specific environmental parameters on mortality, it demonstrates that the cumulative effects of these parameters result in poor reproducibility. A recirculating immersion challenge model may be warranted to empirically identify and control environmental parameters affecting mortality and thus may serve as a more repeatable laboratory challenge model.
Collapse
Affiliation(s)
- Clayton Birkett
- National Center for Cool and Cold Water Aquaculture (NCCCWA), USDA-ARS, Kearneysville, WV 25430, USA
| | | | | | | | | |
Collapse
|
8
|
Silva RMO, Evenhuis JP, Vallejo RL, Gao G, Martin KE, Leeds TD, Palti Y, Lourenco DAL. Whole-genome mapping of quantitative trait loci and accuracy of genomic predictions for resistance to columnaris disease in two rainbow trout breeding populations. Genet Sel Evol 2019; 51:42. [PMID: 31387519 PMCID: PMC6683352 DOI: 10.1186/s12711-019-0484-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/30/2019] [Indexed: 01/09/2023] Open
Abstract
Background Columnaris disease (CD) is an emerging problem for the rainbow trout aquaculture industry in the US. The objectives of this study were to: (1) identify common genomic regions that explain a large proportion of the additive genetic variance for resistance to CD in two rainbow trout (Oncorhynchus mykiss) populations; and (2) estimate the gains in prediction accuracy when genomic information is used to evaluate the genetic potential of survival to columnaris infection in each population. Methods Two aquaculture populations were investigated: the National Center for Cool and Cold Water Aquaculture (NCCCWA) odd-year line and the Troutlodge, Inc., May odd-year (TLUM) nucleus breeding population. Fish that survived to 21 days post-immersion challenge were recorded as resistant. Single nucleotide polymorphism (SNP) genotypes were available for 1185 and 1137 fish from NCCCWA and TLUM, respectively. SNP effects and variances were estimated using the weighted single-step genomic best linear unbiased prediction (BLUP) for genome-wide association. Genomic regions that explained more than 1% of the additive genetic variance were considered to be associated with resistance to CD. Predictive ability was calculated in a fivefold cross-validation scheme and using a linear regression method. Results Validation on adjusted phenotypes provided a prediction accuracy close to zero, due to the binary nature of the trait. Using breeding values computed from the complete data as benchmark improved prediction accuracy of genomic models by about 40% compared to the pedigree-based BLUP. Fourteen windows located on six chromosomes were associated with resistance to CD in the NCCCWA population, of which two windows on chromosome Omy 17 jointly explained more than 10% of the additive genetic variance. Twenty-six windows located on 13 chromosomes were associated with resistance to CD in the TLUM population. Only four associated genomic regions overlapped with quantitative trait loci (QTL) between both populations. Conclusions Our results suggest that genome-wide selection for resistance to CD in rainbow trout has greater potential than selection for a few target genomic regions that were found to be associated to resistance to CD due to the polygenic architecture of this trait, and because the QTL associated with resistance to CD are not sufficiently informative for selection decisions across populations. Electronic supplementary material The online version of this article (10.1186/s12711-019-0484-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rafael M O Silva
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, 11861 Leetown Road, Leetown, WV, 25430, USA.,Department of Animal and Dairy Science, University of Georgia, Athens, 425 River Road, Athens, GA, 30602, USA.,Zoetis, Sao Paulo, Sao Paulo, 04711-130, Brazil
| | - Jason P Evenhuis
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, 11861 Leetown Road, Leetown, WV, 25430, USA
| | - Roger L Vallejo
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, 11861 Leetown Road, Leetown, WV, 25430, USA
| | - Guangtu Gao
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, 11861 Leetown Road, Leetown, WV, 25430, USA
| | - Kyle E Martin
- Troutloged, Inc., P.O. Box 1290, Sumner, WA, 98390, USA
| | - Tim D Leeds
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, 11861 Leetown Road, Leetown, WV, 25430, USA
| | - Yniv Palti
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, 11861 Leetown Road, Leetown, WV, 25430, USA.
| | - Daniela A L Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, 425 River Road, Athens, GA, 30602, USA
| |
Collapse
|