1
|
Akib MG, Rifat A, Bormon C, Dutta A, Ataher MS, Azzam M, Farouk MH, Das R, Azad MAK, Mahfuz S. Effects of Moringa oleifera Leaf Powder on the Growth Performance, Meat Quality, Blood Parameters, and Cecal Bacteria of Broilers. Vet Sci 2024; 11:374. [PMID: 39195828 PMCID: PMC11359084 DOI: 10.3390/vetsci11080374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
The effect of dietary inclusion of Moringa oleifera leaf powder (MLP) on the growth, meat quality, carcass characteristics, hematobiochemical profile, and cecal bacteria of broiler chicken was investigated in this research trial. In this study, 192-day-old Arbor Acre broiler chicks were assigned in a completely randomized design to three groups: control, antibiotic, and MLP. A standard basal diet was given to the control group, while the antibiotic group received 75 mg/kg chlortetracycline, and the MLP group received 100 mg/kg M. oleifera leaf powder supplemented basal diet. Each group was further divided into eight replicates consisting of eight birds each, and the trial ran for 35 days. Among the groups, the MLP-fed broilers achieved the highest final body weight (FBW), average daily gain (ADG), and average daily feed intake (ADFI). Notably, the FCR for the whole experimental period was lower in the MLP group, indicating a more efficient use of feed for growth. Supplementation of MLP with basal diet significantly increased (p < 0.05) the weight of thighs and drumsticks relative to live weight %, while the spleen and abdominal fat weight (% of live weight) were significantly decreased (p < 0.05). Adding MLP to the diet improved the meat quality of broilers, as indicated by the highest pH of meat at 45 min and the lowest cooking loss (%) observed in this group. MLP exhibited hypocholesterolemic and hypolipidemic effects, with the lowest total cholesterol and triglyceride levels compared to non-supplemented groups. The hematological profile revealed that the MLP group exhibited the highest RBC count and Hb level, while also showing the lowest H/L ratio. Moringa supplementation significantly (p < 0.05) modulated the cecal bacterial population, reducing pathogenic E. coli and Shigella spp. while increasing beneficial Lactobacillus spp. and the total aerobic plate count (TAPC). In conclusion, Moringa oleifera leaf powder (MLP) can be used as a natural feed supplement for promoting the growth, meat quality, healthy blood, and sound health of broilers.
Collapse
Affiliation(s)
- Md G. Akib
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh; (M.G.A.); (A.R.); (C.B.); (A.D.); (M.S.A.)
| | - Al Rifat
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh; (M.G.A.); (A.R.); (C.B.); (A.D.); (M.S.A.)
| | - Chondhon Bormon
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh; (M.G.A.); (A.R.); (C.B.); (A.D.); (M.S.A.)
| | - Amitush Dutta
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh; (M.G.A.); (A.R.); (C.B.); (A.D.); (M.S.A.)
| | - Mohammad Shamsul Ataher
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh; (M.G.A.); (A.R.); (C.B.); (A.D.); (M.S.A.)
| | - Mahmoud Azzam
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohammed Hamdy Farouk
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Razib Das
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai’i at Manoa, Honolulu, HI 96822, USA
| | - Md Abul Kalam Azad
- Institute of Subtropical Agricultural, Chinese Academy of Sciences, Changsha 410125, China;
| | - Shad Mahfuz
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh; (M.G.A.); (A.R.); (C.B.); (A.D.); (M.S.A.)
| |
Collapse
|
2
|
Feng G, Li R, Jiang X, Yang G, Tian M, Xiang Q, Liu X, Ouyang Q, Long C, Huang R, Yin Y. Prediction of available energy and amino acid digestibility of Chinese sorghum fed to growing-finishing pigs. J Anim Sci 2023; 101:skad262. [PMID: 37535866 PMCID: PMC10576514 DOI: 10.1093/jas/skad262] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023] Open
Abstract
Two experiments were conducted to determine digestible energy (DE), metabolizable energy (ME), as well as the standardized ileal digestibility (SID) of crude protein (CP) and amino acids (AA) in 10 sorghum samples fed to pigs. In experiment 1, 22 crossbred barrows (Duroc × Yorkshire × Landrace, Initial body weight [BW]: 70.0 ± 1.8 kg) were selected and allotted to a replicated 11 × 3 incomplete Latin square design, including a basal diet and 10 sorghum energy diets and three consecutive periods. Each period had 7 d adaptation and 5 d total feces and urine collection. The DE and ME were determined by the total collection and the difference method. In experiment 2, 22 crossbred barrows (Duroc × Yorkshire × Landrace, Initial BW: 41.3 ± 1.2 kg) that had a T-cannula installed in the distal ileum were assigned to a replicated 11 × 3 incomplete Latin square design, including an N-free diet and 10 sorghum diets. Each period had 5 d adaptation and 2 d ileal digesta collection. The basal endogenous N losses were measured by the N-free diet method. All diets in experiment 2 were added 0.30% titanium dioxide as an indigestible marker for calculating the ileal CP and AA digestibility. On an as-fed basis, the DE and ME contents in sorghum were 3,410 kcal/kg (2,826 to 3,794 kcal/kg) and 3,379 kcal/kg (2,785 to 3,709 kcal/kg), respectively. The best-fit prediction equation for DE and ME were DE = 6,267.945 - (1,271.154 × % tannin) - (1,109.720 × % ash) (R2 = 0.803) and ME = 51.263 + (0.976 × DE) (R2 = 0.994), respectively. The SID of CP, Lys, Met, Thr, and Trp (SIDCP, SIDLys, SIDMet, SIDThr, and SIDTrp) in 10 sorghum samples were 78.48% (69.56% to 84.23%), 74.27% (61.11% to 90.60%), 92.07% (85.16% to 95.40%), 75.46% (66.39% to 80.80%) and 87.99% (84.21% to 92.37%), respectively. The best prediction equations for SID of CP and the first four limiting AAs were as following: SIDCP = 93.404 - (21.026 × % tannin) (R2 = 0.593), SIDCP = 42.922 - (4.011 × % EE) + (151.774 × % Met) (R2 = 0.696), SIDLys = 129.947 - (670.760 × % Trp) (R2 = 0.821), SIDMet = 111.347 - (232.298 × % Trp) (R2 = 0.647), SIDThr = 55.187 + (3.851 × % ADF) (R2 = 0.609) and SIDTrp = 95.676 - (10.824 × % tannin) (R2 = 0.523), respectively. Overall, tannin and ash are the first and second predictors of DE and ME values of sorghum, respectively, and the tannin, EE, Trp, ash, CF, and ADF can be used as the key predictors for SID of CP and first four limiting AAs.
Collapse
Affiliation(s)
- Ganyi Feng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Rui Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xianji Jiang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410128, China
| | - Gang Yang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410128, China
| | - Mingzhou Tian
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410128, China
| | - Qiang Xiang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410128, China
| | - Xiaojie Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410128, China
| | - Qing Ouyang
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410128, China
| | - Cimin Long
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Ruilin Huang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
3
|
Wang L, Zeng Z, Hu Q, Wang L, Shi H, Lai C, Zhang S. Determination and prediction of the available energy and amino acids digestibility of full-fat soybean fed to growing pigs. J Anim Sci 2023; 101:skac395. [PMID: 36444860 PMCID: PMC9985155 DOI: 10.1093/jas/skac395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Two experiments were conducted to determine the digestible energy and metabolizable energy contents, as well as the apparent ileal digestibility and standardized ileal digestibility of amino acids in full-fat soybean fed to growing pigs. Ten full-fat soybean samples were collected from different areas in China and used in two experiments in this study. In Exp. 1, 66 growing pigs (initial body weight = 18.48 ± 1.2 kg) were randomly allotted to 1 of 11 diets (n = 6) including a corn basal diet and 10 experimental diets formulated by replacing the corn with 30% full-fat soybean. In Exp. 2, 11 growing pigs (initial body weight = 50.45 ± 3.2 kg) were surgically equipped with a T-cannula in the distal ileum and arranged in a 6 × 11 Youden square design with 11 diets and 6 periods. The diets included an N-free diet based on cornstarch and sucrose and 10 experimental diets formulated with full-fat soybeans as the sole source of amino acids. Chromic oxide was added into the diets as an indigestible maker to calculate the digestibility of the amino acids. Results showed that there was considerable variation in neutral detergent fiber, acid detergent fiber, and trypsin inhibitor contents in the 10 full-fat soybean samples with a coefficient of variation greater than 10%. On a dry matter basis, the averaged digestible energy and metabolizable energy values in the 10 full-fat soybean samples were 4,855 and 4,555 kcal/kg, respectively, both were positively correlated with the ether extract content. The best-fitted prediction equations for digestible energy and metabolizable energy of full-fat soybean were: digestible energy, kcal/kg = 3,472 + 94.87 × ether extract - 97.63 × ash (R2 = 0.91); metabolizable energy, kcal/kg = 3,443 + 65.11 × ether extract - 36.84 × trypsin inhibitor (R2 = 0.91). In addition, all full-fat soybean samples showed high apparent ileal digestibility and standardized ileal digestibility values in amino acids and were all within the range of previously published values. Those values significantly varied among different samples (P < 0.05) for most amino acids, except for glycine and proline. In conclusion, full-fat soybean is a high-quality protein ingredient with high ileal digestibility of amino acids when fed to growing pigs, and the metabolizable energy value of full-fat soybean could be predicted based on its ether extract and trypsin inhibitor contents.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhengcheng Zeng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qile Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huangwei Shi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Changhua Lai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuai Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Gao Q, Liu Z, Li K, Bai G, Liu L, Zhong R, Chen L, Zhang H. Time-course effects of different fiber-rich ingredients on energy values, microbiota composition and SCFA profile in growing pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:263-275. [PMID: 36712404 PMCID: PMC9868344 DOI: 10.1016/j.aninu.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/04/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022]
Abstract
This study was to investigate time-course effects of different types of dietary fiber on the energy values, fecal microbiota and short-chain fatty acid (SCFA) concentration in growing pigs. A total of 24 barrows (initial body weight, 19.8 ± 0.5 kg) were assigned to 4 dietary treatments based on body weight (BW) in a completely randomized design, including a basal diet (CON) and 3 fiber-rich diets replacing corn, soybean meal and soybean oil in the CON diet with 20% sugar beet pulp (SBP), defatted rice bran (DFRB) or soybean hull (SBH), respectively. Fresh feces were sampled on d 7, 14 and 21, followed by 5 d total feces and urine collections. The results showed that there were no differences in DE and ME between any of the fiber ingredients on d 7, 14 or 21. However, fiber inclusion decreased the DE and ME of the diet (P < 0.05) regardless of the time effect. Principal coordinate analysis (PCoA) revealed distinctly different microbial communities on the DFRB diet and SBH diet across different times (P < 0.05) and the fecal microbiota of the 4 diet groups demonstrated notably distinct clusters at each time point (P < 0.05). With adaptation time increased from 7 to 21 d, cellulose-degrading bacteria and SCFA-producing bacteria (e.g., Ruminococcaceae _UCG-014, Rikenellaceae _RC9_gut_group and Bifidobacterium) increased in the fiber inclusion diets, and pathogenic genera (e.g., Streptococcus and Selenomonas) were increased in the basal diet (P < 0.05). Furthermore, the gut microbiota of growing pigs adapted more easily and quickly to the SBP diet compared to the DFRB diet, as reflected by the concentration of propionate, butyrate, isovalerate and total SCFA which increased with time for growing pigs fed the DFRB diet (P < 0.05). Collectively, our results indicated at least 7 d adaptation was required to evaluate the energy values of fiber-rich ingredients, as the hindgut microbiota of growing pigs may need more time to adapt to a high fiber diet, especially for insoluble dietary fiber.
Collapse
Affiliation(s)
- Qingtao Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhengqun Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Animal Science and Veterinary, Tianjin Academy of Agriculture Sciences, Tianjin, China
| | - Kai Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guosong Bai
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Corresponding authors.
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Corresponding authors.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
5
|
Effect of Corn Particle Size on the Particle Size of Intestinal Digesta or Feces and Nutrient Digestibility of Corn–Soybean Meal Diets for Growing Pigs. Animals (Basel) 2020; 10:ani10050876. [PMID: 32443473 PMCID: PMC7278416 DOI: 10.3390/ani10050876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 11/17/2022] Open
Abstract
This study was conducted to evaluate the effect of corn particle size on the particle size of intestinal digesta or feces and nutrient digestibility of corn–soybean meal diets. Twenty-four growing barrows (initial BW: 21.9 ± 1.62 kg) were randomly divided into 4 groups of 6 pigs. A T-cannula was surgically placed in the anterior duodenum (about 50 cm from pylorus) of pigs in Groups 1 and 2 or in the distal ileum of pigs in Groups 3 and 4. Corn used to formulate diets had mean particle size (MPS) of 365 µm (Corn 1) or 682 µm (Corn 2), resulting in diets with MPS of 390 µm (Diet 1) or 511 μm (Diet 2). Diet 1 or 2 were randomly assigned within pig Groups 1 or 2 and 3 or 4. The digestive enzyme activities of duodenal fluid, particle size of intestinal digesta and feces, as well as nutrient digestibility, were determined for each pig as the experiment unit. The MPS of duodenal digesta (181 vs. 287 µm, p < 0.01), ileal digesta (253 vs. 331 µm, p < 0.01), and feces (195 vs. 293 µm, p < 0.01) was significantly reduced for pigs fed Diet 1 vs. Diet 2, respectively. Compared with Diet 2, Diet 1 significantly reduced the proportion of particles above 0.5 mm, but significantly increased the proportion of particles between 0.072 and 0.5 mm (p < 0.01) in digesta and feces (p < 0.01). Diet 1 significantly increased solubles percentage (<0.072 mm) in duodenal digesta (p < 0.05) but did not affect solubles percentage in ileal digesta and feces. The MPS of diet did not affect the activities of amylase, trypsin, and chymotrypsin in the duodenal fluid and the apparent total tract digestibility (ATTD) of dry matter, gross energy, crude protein, ether extract, neutral detergent fiber (NDF) and acid detergent fiber (ADF) in pigs offered Diet 1 compared to Diet 2. The in vitro digestible energy (IVDE) (3706 vs. 3641 kcal/kg; p = 0.03) was greater for Corn 1 vs. Corn 2. However, no significant difference was observed in IVDE (3574 vs. 3561 kcal/kg; p = 0.47) for Diet 1 vs. Diet 2. In conclusion, the particle size of digesta and feces was dependent on the dietary particle size. However, the digestive enzyme activities of duodenal fluid and ATTD of energy and nutrients were not affected by reducing dietary MPS from 511 to 390 µm.
Collapse
|