1
|
Ullah S, Zhang J, Feng F, Shen F, Qiufen M, Wang J, Ur Rahman T, Haleem A, Zhao M, Shao Q. Effect of Dietary Supplementation of Glycerol Monolaurate on Growth Performance, Digestive Enzymes, Serum Immune and Antioxidant Parameters, and Intestinal Morphology in Black Sea Bream. Animals (Basel) 2024; 14:2963. [PMID: 39457893 PMCID: PMC11503854 DOI: 10.3390/ani14202963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
An eight-week feeding trial was conducted to examine the impact of dietary supplementation with glycerol monolaurate (GML) on juvenile black sea bream. A basal diet was formulated containing 24% fish meal, while five additional diets were prepared, each supplemented with varying levels of GML: GML1 (0.01%), GML2 (0.02%), GML3 (0.04%), GML4 (0.08%), and GML5 (0.16%). Triplicate tanks were randomly allocated to each diet, each containing 20 fish with an initial weight of 1.55 ± 0.05 g. By the trial's end, the GML3 group displayed a notably higher final body weight (FBW), weight gain (WG), specific growth rate (SGR), and protein efficiency ratio (PER) compared to the other groups (p < 0.05), but the FCR was significantly higher in the control group. However, no significant differences were observed in the MFI, PPV, CF, HSI, IPF, VSI, or SR among the groups (p > 0.05). Regarding the proximate compositions of the dorsal muscle and whole body, no substantial differences were observed across the groups (p > 0.05). Additionally, there were no significant variations in digestive enzyme activity (p > 0.05), serum immune, or biochemical parameters in the midgut and hindgut among the treatment groups. But in the serum immune response IgM, C3 and C4 were significantly higher in the GML3 group as compared to the other groups (p < 0.05). However, the GML3 group exhibited significantly greater fore-intestinal villus height, crypt depth, villus height per crypt depth, and the number of goblet cells per villus compared to the other groups (p < 0.05). Overall, GML supplementation, particularly GML3, significantly improved growth indicators like the final body weight and intestinal morphology. While certain parameters remained unaffected, these findings suggest GML's potential as a beneficial dietary supplement in fish diets.
Collapse
Affiliation(s)
- Sami Ullah
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Zhongyuan Institute, Zhengzhou 450001, China
| | - Jinzhi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fei Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Mo Qiufen
- College of Food and Health, Zhejiang A & F University, 666 Wusu Street, Hangzhou 311300, China
| | - Jing Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Tanzil Ur Rahman
- Centre for Animal Sciences and Fisheries, University of Swat, Swat 19200, Pakistan
| | - Abdul Haleem
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qingjun Shao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Ocean Academy, Zhejiang University, Zhoushan 316021, China
| |
Collapse
|
2
|
Ghasemi Z, Alizadeh Mogadam Masouleh A, Rashki Ghaleno L, Akbarinejad V, Rezazadeh Valojerdi M, Shahverdi A. Maternal nutrition and fetal imprinting of the male progeny. Anim Reprod Sci 2024; 265:107470. [PMID: 38657462 DOI: 10.1016/j.anireprosci.2024.107470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/26/2024]
Abstract
The global population as well as the demand for human food is rapidly growing worldwide, which necessitates improvement of efficiency in livestock operations. In this context, environmental factors during fetal and/or neonatal life have been observed to influence normal physical and physiological function of an individual during adulthood, and this phenomenon is called fetal or developmental programming. While numerous studies have reported the impact of maternal factors on development of the female progeny, limited information is available on the potential effects of fetal programming on reproductive function of the male offspring. Therefore, the objective for this review article was to focus on available literature regarding the impact of maternal factors, particularly maternal nutrition, on reproductive system of the male offspring. To this end, we highlighted developmental programming of the male offspring in domestic species (i.e., pig, cow and sheep) as well as laboratory species (i.e., mice and rat) during pregnancy and lactation. In this sense, we pointed out the effects of maternal nutrition on various functions of the male offspring including hypothalamic-pituitary axis, hormonal levels, testicular tissue and semen parameters.
Collapse
Affiliation(s)
- Zahrasadat Ghasemi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Animal Core Facility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - AliReza Alizadeh Mogadam Masouleh
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Gyn-medicum, Center for Reproductive Medicine, Göttingen, Germany; Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.
| | - Leila Rashki Ghaleno
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Vahid Akbarinejad
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mojtaba Rezazadeh Valojerdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
3
|
Han X, Hu X, Jin W, Liu G. Dietary nutrition, intestinal microbiota dysbiosis and post-weaning diarrhea in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:188-207. [PMID: 38800735 PMCID: PMC11126776 DOI: 10.1016/j.aninu.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 05/29/2024]
Abstract
Weaning is a critical transitional point in the life cycle of piglets. Early weaning can lead to post-weaning syndrome, destroy the intestinal barrier function and microbiota homeostasis, cause diarrhea and threaten the health of piglets. The nutritional components of milk and solid foods consumed by newborn animals can affect the diversity and structure of their intestinal microbiota, and regulate post-weaning diarrhea in piglets. Therefore, this paper reviews the effects and mechanisms of different nutrients, including protein, dietary fiber, dietary fatty acids and dietary electrolyte balance, on diarrhea and health of piglets by regulating intestinal function. Protein is an essential nutrient for the growth of piglets; however, excessive intake will cause many harmful effects, such as allergic reactions, intestinal barrier dysfunction and pathogenic growth, eventually aggravating piglet diarrhea. Dietary fiber is a nutrient that alleviates post-weaning diarrhea in piglets, which is related to its promotion of intestinal epithelial integrity, microbial homeostasis and the production of short-chain fatty acids. In addition, dietary fatty acids and dietary electrolyte balance can also facilitate the growth, function and health of piglets by regulating intestinal epithelial function, immune system and microbiota. Thus, a targeted control of dietary components to promote the establishment of a healthy bacterial community is a significant method for preventing nutritional diarrhea in weaned piglets.
Collapse
Affiliation(s)
- Xuebing Han
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| | - Xiangdong Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Wei Jin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| |
Collapse
|
4
|
Zhang Y, Peng S, Dong S, Wang J, Cao Y, Ma Y, Wang C. Fatty acid-balanced oil improved nutrient digestibility, altered milk composition in lactating sows and fecal microbial composition in piglets. Anim Biosci 2024; 37:883-895. [PMID: 38419529 PMCID: PMC11065713 DOI: 10.5713/ab.23.0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/15/2023] [Accepted: 01/13/2024] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the effects of dietary supplementation of a fatty acid-balanced oil, instead of soybean oil, on reproductive performance, nutrient digestibility, blood indexes, milk composition in lactating sows, and fecal microbial composition in piglets. METHODS Twenty-four sows (Landrace×Yorkshire, mean parity 4.96) were randomly allotted to two treatments with twelve pens per treatment and one sow per pen based on their backfat thickness and parity. The experiment began on day 107 of gestation and continued until weaning on day 21 of lactation, lasting for 28 days. The control group (CG) was fed a basal diet supplemented with 2% soybean oil and the experimental group (EG) was fed the basal diet supplemented with 2% fatty acid-balanced oil. RESULTS The fatty acid-balanced oil supplementation increased (p<0.05) the apparent total tract digestibility of dry matter, crude protein, and gross energy in sows. The lower (p<0.05) serum high-density lipoprotein cholesterol and albumin levels of sows were observed in the EG on day 21 of lactation. Dietary supplementation with the fatty acid-balanced oil decreased the fat content, increased the immunoglobulin G level, and changed (p<0.05) some fatty acid content in milk. Moreover, the fatty acid-balanced oil supplementation changed (p<0.05) the fecal microbial composition of piglets, where the average relative abundance of Spirochaetota was decreased (p<0.05) by 0.55% at the phylum level, and the average relative abundance of some potentially pathogenic fecal microorganism was decreased (p<0.05) at the species level. CONCLUSION The fatty acid-balanced oil improved nutrient digestibility, changed the serum biochemical indices and milk composition of sows, and ameliorated the fecal microbial composition of piglets.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193,
China
| | - Shuyu Peng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193,
China
| | - Shuang Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193,
China
| | - Jihua Wang
- CALID BIOTECH (WUHAN) CO., LTD, Wuhan 430073,
China
| | - Yu Cao
- CALID BIOTECH (WUHAN) CO., LTD, Wuhan 430073,
China
| | - Yongxi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193,
China
| | - Chunlin Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193,
China
| |
Collapse
|
5
|
Kelleher SL, Burkinshaw S, Kuyooro SE. Polyphenols and Lactation: Molecular Evidence to Support the Use of Botanical Galactagogues. Mol Nutr Food Res 2024; 68:e2300703. [PMID: 38676329 DOI: 10.1002/mnfr.202300703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/15/2024] [Indexed: 04/28/2024]
Abstract
Botanicals and herbal supplements contain a diverse array of polyphenols that may affect mammary gland function and promote galactagogue activity. This scoping review is conducted to identify scientific literature elucidating how polyphenols affect mammary gland biology and cellular mechanisms critical for lactation. A literature search of PubMed and Medline reviews relevant studies in dairy animals, rodent models, and cultured mammary epithelial cells that are published from January 2010 until July 2023, to ascertain effects of polyphenols on mechanisms regulating milk production and composition. The PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Review) strategy is applied and 80 studies on polyphenols and their implications on milk production and composition are included in this review. Limited information delineating effects of polyphenols on the molecular pathways that affect lactation are found, although available information suggests modulation of Stat5 signaling/differentiation, Stat3 signaling/remodeling, mTOR and insulin signaling/energy production, and nuclear factor kappa beta (NFκβ) signaling/oxidative stress and inflammation may play roles. A profound lack of mechanistic information underscores the critical need for further research to understand the impact of botanical supplements and polyphenols on milk production and composition in humans to establish maternal nutritional guidelines to support lactation and breastfeeding goals.
Collapse
Affiliation(s)
- Shannon L Kelleher
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Serena Burkinshaw
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Seun Elizabeth Kuyooro
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| |
Collapse
|
6
|
Rigueira LL, Perecmanis S. Concerns about the use of antimicrobials in swine herds and alternative trends. Transl Anim Sci 2024; 8:txae039. [PMID: 38685989 PMCID: PMC11056889 DOI: 10.1093/tas/txae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/15/2024] [Indexed: 05/02/2024] Open
Abstract
Pig productivity in Brazil has advanced a lot in recent decades. Specialized breeds are more vulnerable to pathogens, which has boosted the use of antimicrobials by farmers. The selective pressure generated favors the emergence of resistant bacteria, which compromises the effectiveness of this treatment and limits therapeutic options. In addition to increasing costs and mortality rates in the production system, public awareness of this issue has increased. The authorities have imposed restrictive measures to control the use of antimicrobials and have banned their use as growth promoters. This literature review highlights biosecurity and animal welfare to prevent pig diseases. Hence, we describe alternatives to the use of antimicrobials in pig production for the selection of effective non-antibiotic feed additives that help maintain good health and help the pig resist disease when infection occurs.
Collapse
Affiliation(s)
- Luciana L Rigueira
- Department of Animal Health, Brasília University, 70910-900, Brasília, Brazil
- Secretary of Agriculture of Federal District, 70770-914, Brasília, Brazil
| | - Simone Perecmanis
- Department of Animal Health, Brasília University, 70910-900, Brasília, Brazil
| |
Collapse
|
7
|
Ma L, Tao S, Song T, Lyu W, Li Y, Wang W, Shen Q, Ni Y, Zhu J, Zhao J, Yang H, Xiao Y. Clostridium butyricum and carbohydrate active enzymes contribute to the reduced fat deposition in pigs. IMETA 2024; 3:e160. [PMID: 38868506 PMCID: PMC10989082 DOI: 10.1002/imt2.160] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/06/2023] [Indexed: 06/14/2024]
Abstract
Pig gastrointestinal tracts harbor a heterogeneous and dynamic ecosystem populated with trillions of microbes, enhancing the ability of the host to harvest energy from dietary carbohydrates and contributing to host adipogenesis and fatness. However, the microbial community structure and related mechanisms responsible for the differences between the fatty phenotypes and the lean phenotypes of the pigs remained to be comprehensively elucidated. Herein, we first found significant differences in microbial composition and potential functional capacity among different gut locations in Jinhua pigs with distinct fatness phenotypes. Second, we identified that Jinhua pigs with lower fatness exhibited higher levels of short-chain fatty acids in the colon, highlighting their enhanced carbohydrate fermentation capacity. Third, we explored the differences in expressed carbohydrate-active enzyme (CAZyme) in pigs, indicating their involvement in modulating fat storage. Notably, Clostridium butyricum might be a representative bacterial species from Jinhua pigs with lower fatness, and a significantly higher percentage of its genome was dedicated to CAZyme glycoside hydrolase family 13 (GH13). Finally, a subsequent mouse intervention study substantiated the beneficial effects of C. butyricum isolated from experimental pigs, suggesting that it may possess characteristics that promote the utilization of carbohydrates and hinder fat accumulation. Remarkably, when Jinhua pigs were administered C. butyricum, similar alterations in the gut microbiome and host fatness traits were observed, further supporting the potential role of C. butyricum in modulating fatness. Taken together, our findings reveal previously overlooked links between C. butyricum and CAZyme function, providing insight into the basic mechanisms that connect gut microbiome functions to host fatness.
Collapse
Affiliation(s)
- Lingyan Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Shiyu Tao
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Tongxing Song
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and EngineeringFoshan UniversityFoshanChina
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Qicheng Shen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yan Ni
- The Children's Hospital, Zhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouChina
| | - Jiang Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Jiangchao Zhao
- Department of Animal Science, Division of AgricultureUniversity of ArkansasFayettevilleArkansasUSA
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| |
Collapse
|
8
|
Li W, Lan T, Ding Q, Ren Z, Tang Z, Tang Q, Peng X, Xu Y, Sun Z. Effect of Low Protein Diets Supplemented with Sodium Butyrate, Medium-Chain Fatty Acids, or n-3 Polyunsaturated Fatty Acids on the Growth Performance, Immune Function, and Microbiome of Weaned Piglets. Int J Mol Sci 2023; 24:17592. [PMID: 38139420 PMCID: PMC10743886 DOI: 10.3390/ijms242417592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
This study aimed to investigate the effects of low-protein (LP) diets supplemented with sodium butyrate (SB), medium-chain fatty acids (MCT), or n-3 polyunsaturated fatty acids (n-3 PUFA) on the growth performance, immune function, and the microbiome of weaned piglets. A total of 120 healthy weaned piglets ((Landrace × Large White × Duroc); 7.93 ± 0.7 kg initial body weight), were randomly divided into five groups. Each group consisted of six replications with four piglets per replication. Dietary treatments included control diet (CON); LP diet (LP); LP + 0.2% SB diet (LP + SB); LP + 0.2% MCT diet (LP + MCT); and LP + PUFA diet (LP + PUFA). The experimental period lasted for 4 weeks. Compared with the CON diet, LP, LP + SB, LP + MCT, and LP + PUFA diets decreased the final weight and average daily gain (ADG) of piglets (p < 0.05). There were lower (p < 0.05) concentrations of IL-8 and higher (p < 0.05) Glutathione peroxidase (GSH-Px) activity in the plasma of piglets fed with LP + SB, LP + MCT, and LP + PUFA diets than those fed with the LP diet. The piglets in the LP + SB and LP + PUFA groups had lower IKK-alpha (IKKa) mRNA expression in the colonic mucosa compared with those in the CON and LP groups (p < 0.05). The mRNA expression of TLR4 in the colonic mucosa of piglets in the LP + SB, LP + MCT, and LP + PUFA groups was decreased when compared with the CON and LP groups (p < 0.05). The LP + MCT diets increased the gene expression of nuclear factor erythroid 2-related factor 2 (Nrf2) in the colonic mucosa of piglets compared with CON, LP, and LP + SB diets (p < 0.05). The abundance of Erysipelotrichaceae in the colonic microbiome of piglets in the LP group was higher than that in the other four groups (p < 0.05). Collectively, this study showed that LP diets supplemented with SB, MCT, or n-3 PUFA reduced plasma inflammatory factor levels, increased plasma GSH-Px activity, and declined mRNA expression of TLR4 and IKKa in the colonic epithelium, whereas it reduced the abundance of Erysipelotrichaceae in the colon of piglets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhihong Sun
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (W.L.)
| |
Collapse
|
9
|
He Z, Dong H. The roles of short-chain fatty acids derived from colonic bacteria fermentation of non-digestible carbohydrates and exogenous forms in ameliorating intestinal mucosal immunity of young ruminants. Front Immunol 2023; 14:1291846. [PMID: 38149240 PMCID: PMC10750390 DOI: 10.3389/fimmu.2023.1291846] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023] Open
Abstract
Short-chain fatty acids (SCFA) are a class of organic fatty acids that consist of 1 to 6 carbons in length. They are primary end-products which arise from non-digestible carbohydrates (NDC) fermentation of colonic bacteria. They are the fundamental energy sources for post-weaning ruminants. SCFA represent the major carbon flux of diet through the gut microbiota to the host. They also play a vital role in regulating cell expansion and gene expression of the gastrointestinal tract (GIT). Recently, remarkable progresses have been made in understanding the immunomodulatory effects of SCFA and their interactions with the host. The processes involved in this study encompassed inflammasome activation, proliferation of lymphocytes, and maturation of intestinal mucosal immunity maturation. It is important to note that the establishment and maturation of intestinal mucosal immune system are intricately connected to the barrier function of intestinal epithelial cells (IEC) and the homeostasis of gut microbiota. Thus, insights into the role of SCFA in enteric mucosal immunoreaction of calves will enhance our understanding of their various regulatory functions. This review aims to analyze recent evidence on the role of SCFA as essential signaling molecules between gut microbiota and animal health. Additionally, we provide a summary of current literature on SCFA in intestinal mucosal immune responses of dairy calves.
Collapse
Affiliation(s)
| | - Hong Dong
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
10
|
Abril AG, Carrera M, Pazos M. Immunomodulatory effect of marine lipids on food allergy. Front Nutr 2023; 10:1254681. [PMID: 38035353 PMCID: PMC10683508 DOI: 10.3389/fnut.2023.1254681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Seafood is highly enriched in n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs), particularly eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3), in contrast to the ultra-processed foods included in the modern Western diet that have high levels of n-6 linoleic acid (LA, 18:2 n-6), precursor for the pro-inflammatory n-6 arachidonic acid (ARA, 20:4 n-6). The capacity of marine lipids to reduce plasmatic triglycerides and blood pressure have been well-described. Moreover, recent studies have also raised evidence of a potential regulatory action of marine lipids on inflammation, the immune system, and food allergy (FA). FA is considered one of the main concerns to become life threatening in food safety. The prevalence of this emerging global problem has been increasing during the last two decades, especially in industrialized countries. About a 6-8% of young children and 2-4% of adults is estimated to be affected by FA. The main objective of the current study is to update the existing knowledge, but also the limitations, on the potential impact of marine lipids and their lipid mediators in regulating immunity, inflammation, and ultimately, food allergies. In particular, the focus is on the effect of marine lipids in modulating the key factors that control the sensitization and effector phases of FA, including gut microbiota (GM), inflammation, and immune system response. Results in animal models highlight the positive effect that consuming marine lipids, whether as a supplement or through seafood consumption, may have a relevant role in improving gut dysbiosis and inflammation, and preventing or reducing the severity of FA. However, more systematic studies in humans are needed to optimize such beneficial actions to each particular FA, age, and medical condition to reach an effective clinical application of marine lipids to improve FAs and their outcomes.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Food Technology, Institute of Marine Research (IM-CSIC), Spanish National Research Council (CSIC), Vigo, Spain
| | - Mónica Carrera
- Department of Food Technology, Institute of Marine Research (IM-CSIC), Spanish National Research Council (CSIC), Vigo, Spain
| | - Manuel Pazos
- Department of Food Technology, Institute of Marine Research (IM-CSIC), Spanish National Research Council (CSIC), Vigo, Spain
| |
Collapse
|
11
|
Han P, Du Z, Liu X, You J, Shi XE, Sun S, Yang G, Li X. Effects of maternal supplementation of fish oil during late gestation and lactation on growth performance, fecal microbiota structure and post-weaning diarrhoea of offspring piglets. Br J Nutr 2023; 130:966-977. [PMID: 36539976 DOI: 10.1017/s0007114522003981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Homeostasis of gut microbiota is a critical contributor to growth and health in weaned piglets. Fish oil is widely reported to benefit health of mammals including preventing intestinal dysfunction, yet its protective effect during suckling-to-weaning transition in piglets remains undetermined. Low (30 g/d) and high (60 g/d) doses of n-3-rich fish oil were supplemented in sows from late gestation to lactation. Serum indicators and gut microbiota were determined to evaluate the effects of maternal fish oil on growth performance, immunity and diarrhea of piglets. DHA and EPA in the colostrum as well as serum of suckling and 1-week post-wean piglets were significantly and linearly increased by maternal supplementation of fish oil (P < 0.05). IGF1 and T3 in nursing and weaned piglets were significantly elevated by maternal fish oil (P < 0.05), and the increase of IGF1 was concerning the dosage of fish oil. Colostrum IgG, plasma IgG, IgM in suckling piglets, IgG, IgM and IgA in weaned piglets were significantly increase as maternal replenishment of fish oil increased (P < 0.05). Additionally, cortisol was significantly reduced in weaned pigs (P < 0.05), regardless of dosage. 16S rRNA sequencing revealed that α-diversity of fecal microbiota in nursery piglets, and fecal Lactobacillus genus, positively correlated with post-weaning IgA, was significantly increased by high dosage. Collectively, maternal fish oil during late pregnancy and lactation significantly promoted growth, enhanced immunity, and reduced post-weaning diarrhea in piglets, therefore facilitated suckling-to-weaning transition in piglets, which may be partially due to the altered gut microbial community.
Collapse
Affiliation(s)
- Peiyuan Han
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Zhaohui Du
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Xiaowei Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Junyi You
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Xin E Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Shiduo Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Xiao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| |
Collapse
|
12
|
Yousof SM, Alghamdi BS, Alqurashi T, Alam MZ, Tash R, Tanvir I, Kaddam LA. Modulation of Gut Microbiome Community Mitigates Multiple Sclerosis in a Mouse Model: The Promising Role of Palmaria palmata Alga as a Prebiotic. Pharmaceuticals (Basel) 2023; 16:1355. [PMID: 37895826 PMCID: PMC10610500 DOI: 10.3390/ph16101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Red marine algae have shown the potential to reduce inflammation, influence microbiota, and provide neuroprotection. OBJECTIVE To examine the prebiotic properties of Palmaria palmata aqueous extract (Palmaria p.) and its potential as a neuroprotective agent in multiple sclerosis (MS). METHODS eighty-eight adult Swiss mice were divided into four male and four female groups, including a control group (distilled water), Palmaria p.-treated group (600 mg/kg b.w.), cuprizone (CPZ)-treated group (mixed chow 0.2%), and a group treated with both CPZ and Palmaria p. The experiment continued for seven weeks. CPZ treatment terminated at the end of the 5th week, with half of the mice sacrificed to assess the demyelination stage. To examine the spontaneous recovery, the rest of the mice continued until the end of week seven. Behavioral (grip strength (GS) and open field tests (OFT)), microbiome, and histological assessments for general morphology of corpus callous (CC) were all conducted at the end of week five and week 7. RESULTS Palmaria p. can potentially protect against CPZ-induced MS with variable degrees in male and female Swiss mice. This protection was demonstrated through three key findings: (1) increased F/B ratio and expansion of the beneficial Lactobacillus, Proteobacteria, and Bactriodia communities. (2) Protection against the decline in GS induced by CPZ and prevented CPZ-induced anxiety in OFT. (3) Preservation of structural integrity. CONCLUSIONS Because of its propensity to promote microbiota alterations, its antioxidant activity, and its content of -3 fatty acids, Palmaria p. could be a promising option for MS patients and could be beneficial as a potential probiotic for the at-risk groups as a preventive measure against MS.
Collapse
Affiliation(s)
- Shimaa Mohammad Yousof
- Department of Physiology, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Badrah S. Alghamdi
- Neuroscience Unit, Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Preclinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Thamer Alqurashi
- Faculty of Medicine in Rabigh, Pharmacology Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammad Zubair Alam
- Pre-Clinical Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reham Tash
- Department of Anatomy, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Anatomy, Faculty of Medicine, Ain Shams University, Cairo 3753450, Egypt
| | - Imrana Tanvir
- Department of Pathology, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Lamis AbdelGadir Kaddam
- Department of Physiology, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Physiology Department Faculty of Medicine, Alneelain University, Khartoum 11211, Sudan
| |
Collapse
|
13
|
Tang Q, Li W, Ren Z, Ding Q, Peng X, Tang Z, Pang J, Xu Y, Sun Z. Different Fatty Acid Supplementation in Low-Protein Diets Regulate Nutrient Utilization and Lipid and Amino Acid Metabolism in Weaned Pigs Model. Int J Mol Sci 2023; 24:ijms24108501. [PMID: 37239844 DOI: 10.3390/ijms24108501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
This study was conducted to evaluate the effects of a low-protein (LP) diet supplemented with sodium butyrate (SB), medium-chain fatty acids (MCFAs) and n-3 polyunsaturated fatty acids (PUFAs) on nutrient utilization and lipid and amino acid metabolism in weaned pigs. A total of 120 Duroc × Landrace × Yorkshire pigs (initial body weight: 7.93 ± 0.65 kg) were randomly assigned to five dietary treatments, including the control diet (CON), LP diet, LP + 0.2% SB diet (LP + SB), LP + 0.2% MCFA diet (LP + MCFA) and LP + 0.2% n-3 PUFA diet (LP + PUFA). The results show that the LP + MCFA diet increased (p < 0.05) the digestibility of dry matter and total P in pigs compared with the CON and LP diets. In the liver of the pigs, the metabolites involved in sugar metabolism and oxidative phosphorylation significantly changed with the LP diet compared with the CON diet. Compared with the LP diet, the altered metabolites in the liver of the pigs fed with the LP + SB diet were mainly associated with sugar metabolism and pyrimidine metabolism; the altered metabolites in the liver of pigs fed with the LP + MCFA and LP + PUFA diets were mainly associated with lipid metabolism and amino acid metabolism. In addition, the LP + PUFA diet increased (p < 0.05) the concentration of glutamate dehydrogenase in the liver of pigs compared with the LP diet. Furthermore, the LP + MCFA and LP + PUFA diets increased (p < 0.05) the mRNA abundance of sterol regulatory element-binding protein 1 and acetyl-CoA carboxylase in the liver compared with the CON diet. The LP + PUFA diet increased (p < 0.05) mRNA abundances of fatty acid synthase in the liver compared with the CON and LP diets. Collectively, the LP diet supplemented with MCFAs improved nutrient digestibility, and the LP diet supplemented with MCFAs and n-3 PUFAs promoted lipid and amino acid metabolisms.
Collapse
Affiliation(s)
- Qingsong Tang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Wenxue Li
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhongxiang Ren
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Qi Ding
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xie Peng
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhiru Tang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jiaman Pang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yetong Xu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhihong Sun
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
14
|
Wu H, Xu C, Wang J, Hu C, Ji F, Xie J, Yang Y, Yu X, Diao X, Lv R. Effects of Dietary Probiotics and Acidifiers on the Production Performance, Colostrum Components, Serum Antioxidant Activity and Hormone Levels, and Gene Expression in Mammary Tissue of Lactating Sows. Animals (Basel) 2023; 13:ani13091536. [PMID: 37174573 PMCID: PMC10177095 DOI: 10.3390/ani13091536] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The aims of this study were to test the effects of dietary probiotics and acidifiers on the production performance, colostrum components, serum antioxidant activity and hormone levels, and gene expression in the mammary tissue of lactating sows. Four treatments were administered with six replicates to 24 lactating sows. The control group (GC) received a basal diet, while the experimental groups received a basal diet with 200 mL/d probiotics (GP), 0.5% acidifiers (GA), and 200 mL/d probiotics + 0.5% acidifiers (GM), respectively. Compared with the GC, (1) the average weight of the piglets on the 21st day of lactation in the GM was higher (p < 0.05); (2) the colostrum fat ratio increased significantly (p < 0.05); (3) the malondialdehyde levels in GP and GM were lower (p < 0.05) on the 11th day; (4) on the 1st, 11th, and 21st days, the prolactin in GP and GM increased (p < 0.05); (5) on the 21st day, the relative expression levels of the prolactin receptor and fatty acid synthase were increased (p < 0.05). In summary, the basal diet mixed with 200 mL/d probiotics + 0.5% acidifiers could improve the production performance, colostrum components, serum antioxidant activity, and hormone levels of lactating sows.
Collapse
Affiliation(s)
- Hongzhi Wu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - Chaohua Xu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jingjing Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Chengjun Hu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - Fengjie Ji
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - Jiajun Xie
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yun Yang
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - Xilong Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xinping Diao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Renlong Lv
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| |
Collapse
|
15
|
Kovács L, Pajor F, Bakony M, Fébel H, Edwards JE. Prepartum Magnesium Butyrate Supplementation of Dairy Cows Improves Colostrum Yield, Calving Ease, Fertility, Early Lactation Performance and Neonatal Vitality. Animals (Basel) 2023; 13:ani13081319. [PMID: 37106882 PMCID: PMC10135157 DOI: 10.3390/ani13081319] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Butyrate promotes rumen epithelium growth and function; however, the effect of prepartum butyrate supplementation on dairy cow productivity, health and their offspring has not been extensively studied. Furthermore, no studies have investigated the effect of magnesium butyrate (MgB), which is also a source of magnesium. A trial was performed to test the hypothesis that prepartum MgB supplementation (105 g/cow/day) would increase colostrum quality and improve calving, newborn calf vitality and cow health. Multiparous Holstein cows were randomly assigned to MgB supplemented (n = 107) and Control groups (n = 112). Colostrum yield and the total yield of IgG, protein and lactose were higher (p ≤ 0.05) in the supplemented group. The calving assistance rate was lower (p ≤ 0.012), and the neonatal vitality score was higher (p ≤ 0.001) in the MgB group. Improved parameters related to cow health and fertility were observed in the supplemented group. The MgB group also had higher milk yield during the first week of lactation (p ≤ 0.001), and a higher (p ≤ 0.05) body condition score from 3 to 9 weeks after calving. In conclusion, prepartum MgB supplementation provides a wide range of benefits for dairy cows, as well as their newborn calves.
Collapse
Affiliation(s)
- Levente Kovács
- Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences, 7400 Kaposvár, Hungary
- Bona Adventure Ltd., 2100 Gödöllő, Hungary
| | - Ferenc Pajor
- Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences, 7400 Kaposvár, Hungary
| | - Mikolt Bakony
- Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Hedvig Fébel
- Nutrition Physiology Research Group, Institute of Physiology and Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, 2053 Herceghalom, Hungary
| | - Joan E Edwards
- Palital Feed Additives B.V., 5334 LH Velddriel, The Netherlands
| |
Collapse
|
16
|
Li L, Wang H, Dong S, Ma Y. Supplementation with alpha-glycerol monolaurate during late gestation and lactation enhances sow performance, ameliorates milk composition, and improves growth of suckling piglets. J Anim Sci Biotechnol 2023; 14:47. [PMID: 37016429 PMCID: PMC10074715 DOI: 10.1186/s40104-023-00848-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/05/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Physiological changes during lactation cause oxidative stress in sows, reduce immunity, and hamper the growth capacity of piglets. Alpha-glycerol monolaurate (α-GML) has potential for enhancing the antimicrobial activity of sows and the growth of suckling piglets. METHODS Eighty sows were allocated randomly to four groups: basal diet and basal diets supplemented with 500, 1000, or 2000 mg/kg α-GML. The experiment started on d 85 of gestation and lasted until piglets were weaned on d 21 of lactation. The number of live-born piglets was standardized to 12 ± 1 per sow on day of parturition. On d 0 and 21 of lactation, body weight of piglets was measured and milk samples were obtained from sows, and serum samples and feces from piglets were obtained on d 21. RESULTS Feed intake, backfat loss, and weaning estrus interval did not differ among the four groups of sows. Maternal α-GML supplementation increased (P < 0.05) the body weight of piglets at weaning and the apparent total tract digestibility of crude fat of sows. The immunoglobulin A and immunoglobulin G levels were greater (P < 0.05) in a quadratic manner in the milk of sows as dietary α-GML increased. Concerning fatty acid profile, C12:0, C15:0, C17:0, C18:2n6c, C18:3n3, C24:0, and C22:6n3 were higher (P < 0.05) in linear and quadratic manners in colostrum of sows-fed α-GML diets compared with the control sows. There was lower (P < 0.05) n-6:n-3 polyunsaturated fatty acid ratio in milk than in the control sows. Maternal α-GML increased the abundance of Firmicutes (P < 0.05) and decreased the abundance of Proteobacteria (P < 0.05) of piglet fecal microbiota. CONCLUSIONS Dietary supplementation with α-GML improved milk immunoglobulins and altered fatty acids of sows, thereby improving the health of piglets.
Collapse
Affiliation(s)
- Longxian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Huakai Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuang Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yongxi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
17
|
Wang L, Wang C, Peng Y, Zhang Y, Liu Y, Liu Y, Yin Y. Research progress on anti-stress nutrition strategies in swine. ANIMAL NUTRITION 2023; 13:342-360. [DOI: 10.1016/j.aninu.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/04/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
|
18
|
Zhao H, Tian M, Xiong L, Lin T, Zhang S, Yue X, Liu X, Chen F, Zhang S, Guan W. Maternal supplementation with glycerol monolaurate improves the intestinal health of suckling piglets by inhibiting the NF-κB/MAPK pathways and improving oxidative stability. Food Funct 2023; 14:3290-3303. [PMID: 36938595 DOI: 10.1039/d3fo00068k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Glycerol monolaurate (GML) is a food safe emulsifier and a kind of MCFA monoglyceride that has been proven to confer positive benefits in improving animal health, production and feed digestibility as a feed additive. This study aims to evaluate whether supplementation of a sow diet with GML could affect the intestinal barrier function and antioxidant status of newborn piglets and to explore its regulatory mechanism. A total of 80 multiparous sows were divided into two groups, which were fed a basal diet or a basal diet supplemented with 0.1% GML. The results indicated that maternal supplementation with GML significantly increased fat, lactose and protein in sow colostrum, as well as fat and protein in sow 14-day milk (P < 0.05). The results showed that GML significantly reduced the concentrations of IL-12 in the duodenum, TNF-α, IL-1β and IL-12 in the jejunum, and IL-1β in the ileum of piglets (P < 0.05). Higher concentrations of T-AOC, T-SOD, GSH and GSH-Px and lower MDA in the intestine were observed in the GML group than in the control group. Correspondingly, the villi height, crypt depth and the ratio of villi height to crypt depth (V/C) in the jejunum and the V/C in the ileum in the GML group were significantly higher than those in the control group (P < 0.05). Moreover, the GML group displayed significantly increased protein abundance of zonula occludens (ZO)-1, occludin, and claudin-1 in the small intestine (P < 0.05), mRNA expression of mucins (MUCs) in the small intestine (MUC-1, MUC-3 and MUC-4), and mRNA expression of porcine beta defensins (pBDs) in the duodenum (pBD1 and pBD2), jejunum (pBD1, pBD2 and pBD129) (P < 0.05), and ileum (pBD2, pBD3 and pBD114) (P < 0.05). Further research showed that GML significantly reduced the phosphorylation of the NF-κB/MAPK pathways in the small intestine (P < 0.05). In addition, the results of 16S rDNA sequencing showed that maternal supplementation with GML altered the colonic microbiotic structure of piglets, and reduced the relative abundance of Escherichia shigella. In summary, a sow diet supplemented with GML enhanced the offspring's intestinal oxidative stability and barrier function and attenuated the offspring's intestinal inflammatory response, possibly by suppressing the activation of the NF-κB/MAPK pathways.
Collapse
Affiliation(s)
- Hao Zhao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Min Tian
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Liang Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Tongbin Lin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Shuchang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xianhuai Yue
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xinghong Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
19
|
You C, Xu Q, Chen J, Xu Y, Pang J, Peng X, Tang Z, Sun W, Sun Z. Effects of Different Combinations of Sodium Butyrate, Medium-Chain Fatty Acids and Omega-3 Polyunsaturated Fatty Acids on the Reproductive Performance of Sows and Biochemical Parameters, Oxidative Status and Intestinal Health of Their Offspring. Animals (Basel) 2023; 13:ani13061093. [PMID: 36978634 PMCID: PMC10044250 DOI: 10.3390/ani13061093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The aim of the study was to investigate the comparative effects of different combinations of sodium butyrate (SB), medium-chain fatty acids (MCFAs), and omega-3 polyunsaturated fatty acids (n-3 PUFAs) on the reproductive performances of sows, as well as on the biochemical parameters, oxidative statuses, and intestinal health of the sucking piglets. A total of 30 sows were randomly allocated to five treatments: (1) control diet (CON); (2) CON with 1 g/kg of coated SB and 7.75 g/kg of coated MCFAs (SM); (3) CON with 1 g/kg of coated SB and 68.2 g/kg of coated n-3 PUFAs (SP); (4) CON with 7.75 g/kg of coated MCFAs and 68.2 g/kg of coated n-3 PUFAs (MP); (5) CON with 1 g/kg of coated SB, 7.75 g/kg of coated MCFAs and 68.2 g/kg of coated n-3 PUFA (SMP). The results showed that sows fed the SP, MP, and SMP diets had shorter weaning-to-estrus intervals than those fed the CON diet (p < 0.01). The piglets in the SM, SP, and MP groups showed higher increases in the plasma catalase and glutathione peroxidase activities than those of the CON group (p < 0.01). The diarrhea incidence of piglets in the SM, SP and SMP groups was lower than that of piglets in the CON group (p < 0.01). Additionally, the addition of SM, SP, MP, and SMP to the sow diets increased the contents of immunoglobulin A, immunoglobulin G, fat, and proteins in the colostrum (p < 0.01), as well as the plasma total superoxide dismutase activities (p < 0.01) in the suckling piglets, whereas it decreased the mRNA expressions of tumor necrosis factor-α, interleukin-1β, and toll-like receptor 4 in the jejunum mucosa of the piglets. The relative abundances of Prevotella, Coprococcus, and Blautia in the colonic digesta of the piglets were increased in the SM group (p < 0.05), and the relative abundances of Faecalibacterium increased in the SMP group (p < 0.05), compared with the CON group. The relative abundances of Collinsella, Blautia, and Bulleidia in the MP group were higher than those in the CON group (p < 0.05). Collectively, dietary combinations of fatty acids with different chain lengths have positive effects on the growth performances and intestinal health of suckling piglets.
Collapse
Affiliation(s)
- Caiyun You
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Qingqing Xu
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Jinchao Chen
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Yetong Xu
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Jiaman Pang
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Xie Peng
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Zhiru Tang
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Weizhong Sun
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Zhihong Sun
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| |
Collapse
|
20
|
Yu S, Li L, Zhao H, Tu Y, Liu M, Jiang L, Zhao Y. Characterization of the Dynamic Changes of Ruminal Microbiota Colonizing Citrus Pomace Waste during Rumen Incubation for Volatile Fatty Acid Production. Microbiol Spectr 2023; 11:e0351722. [PMID: 36862010 PMCID: PMC10101060 DOI: 10.1128/spectrum.03517-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/03/2023] [Indexed: 03/03/2023] Open
Abstract
Rumen microorganisms are promising for efficient bioconversion of lignocellulosic wastes to biofuels and industrially relevant products. Investigating the dynamic changes of the rumen microbial community colonizing citrus pomace (CtP) will advance our understanding of the utilization of citrus processing waste by rumen fluid. Citrus pomace in nylon bags was incubated in the rumen of three ruminally cannulated Holstein cows for 1, 2, 4, 8, 12, 24, and 48 h. Results showed that total volatile fatty acids concentrations and proportions of valerate and isovalerate were increased over time during the first 12 h. Three major cellulose enzymes attached to CtP rose initially and then decreased during the 48-h incubation. Primary colonization happened during the initial hours of CtP incubation, and microbes compete to attach CtP for degrading easily digestible components and/or utilizing the waste. The 16S rRNA gene sequencing data revealed the diversity and structure of microbiota adhered to CtP were distinctly different at each time point. The increased abundance of Fibrobacterota, Rikenellaceae_RC9_gut_group, and Butyrivibrio may explain the elevated volatile fatty acids concentrations. This study highlighted key metabolically active microbial taxa colonizing citrus pomace in a 48-h in situ rumen incubation, which could have implications for promoting the biotechnological process of CtP. IMPORTANCE As a natural fermentation system, the rumen ecosystem of ruminants can efficiently degrade plant cellulose, indicating that the rumen microbiome offers an opportunity for anaerobic digestion to utilize biomass wastes containing cellulose. Knowledge of the response of the in situ microbial community to citrus pomace during anaerobic fermentation will help improve the current understanding of citrus biomass waste utilization. Our results demonstrated that a highly diverse rumen bacterial community colonized citrus pomace rapidly and continuously changed during a 48-h incubation period. These findings may provide a deep understanding of constructing, manipulating, and enriching rumen microorganisms to improve the anaerobic fermentation efficiency of citrus pomace.
Collapse
Affiliation(s)
- Shiqiang Yu
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Liuxue Li
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Huiying Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yan Tu
- Beijing Key Laboratory of Dairy Cow Nutrition, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming Liu
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yuchao Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
- Beijing Beinong Enterprise Management Co., Ltd., Beijing, China
| |
Collapse
|
21
|
Zeng X, Li S, Liu L, Cai S, Ye Q, Xue B, Wang X, Zhang S, Chen F, Cai C, Wang F, Zeng X. Role of functional fatty acids in modulation of reproductive potential in livestock. J Anim Sci Biotechnol 2023; 14:24. [PMID: 36788613 PMCID: PMC9926833 DOI: 10.1186/s40104-022-00818-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/04/2022] [Indexed: 02/16/2023] Open
Abstract
Fatty acids are not only widely known as energy sources, but also play important roles in many metabolic pathways. The significance of fatty acids in modulating the reproductive potential of livestock has received greater recognition in recent years. Functional fatty acids and their metabolites improve follicular development, oocyte maturation and embryo development, as well as endometrial receptivity and placental vascular development, through enhancing energy supply and precursors for the synthesis of their productive hormones, such as steroid hormones and prostaglandins. However, many studies are focused on the impacts of individual functional fatty acids in the reproductive cycle, lacking studies involved in deeper mechanisms and optimal fatty acid requirements for specific physiological stages. Therefore, an overall consideration of the combination and synergy of functional fatty acids and the establishment of optimal fatty acid requirement for specific stages is needed to improve reproductive potential in livestock.
Collapse
Affiliation(s)
- Xiangzhou Zeng
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Siyu Li
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Lu Liu
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Shuang Cai
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Qianhong Ye
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei China
| | - Bangxin Xue
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Xinyu Wang
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Shihai Zhang
- grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China
| | - Fang Chen
- grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China
| | - Chuanjiang Cai
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Fenglai Wang
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193, Beijing, P. R. China. .,Beijing Key Laboratory of Bio feed Additives, 100193, Beijing, P. R. China.
| |
Collapse
|
22
|
Liu H, Zhao J, Zhang W, Nie C. Impacts of sodium butyrate on intestinal mucosal barrier and intestinal microbial community in a weaned piglet model. Front Microbiol 2023; 13:1041885. [PMID: 36713180 PMCID: PMC9879053 DOI: 10.3389/fmicb.2022.1041885] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023] Open
Abstract
Objective Butyrate is thought to enhance intestinal mucosal homeostasis, but the detailed mechanism remains unclear. Therefore, further investigation on the mechanism of butyrate regulation of intestinal mucosal homeostasis was performed. Materials and methods This study used weaned piglets with similar intestinal metabolic function to humans as a research model. The dietary supplemented 0.2% sodium butyrate group (0.2% S) and negative control group (CON) were established to detect the effects of butyrate on growth performance, intestinal tissue morphology, mucosal barrier function, and intestinal microbial community structure in weaned piglets. Results There was an increase in average daily gain (ADG) during three different experimental periods and a reduction in average daily feed intake (ADFI) and feed-to-gain ratio (F:G) during days 1-35 and days 15-35 in 0.2% S compared with CON (P > 0.05). Furthermore, villus height in the ileum and duodenum was increased, and crypt depths in the colon and jejunum were reduced in both groups (P < 0.05). Moreover, the ratio of villus height and crypt depth (V/C) in 0.2% S both in the ileum and jejunum was significantly increased (P < 0.05) compared with CON. The relative mRNA expression of PKC, MUC1, CLDN1, and ITGB1 was upregulated in the ileum of 0.2% S compared with CON (P < 0.05). The digesta samples of 0.2% S, both in the ileum (P < 0.05) and colon, contained greater intestinal bacterial abundance and diversity of probiotics, including Lactobacillus, Streptococcus, Megasphaera, and Blautia, which promoted amino acid metabolism and energy production and conversion in the colon and the synthesis of carbon-containing biomolecules in the ileum. Conclusion In summary, dietary supplementation with 0.2% sodium butyrate was shown to have a tendency to improve the growth performance of weaned piglets and enhance intestinal mucosal barrier function via altering the gut microbiota.
Collapse
|
23
|
Lin Y, Li D, Ma Z, Che L, Feng B, Fang Z, Xu S, Zhuo Y, Li J, Hua L, Wu D, Zhang J, Wang Y. Maternal tributyrin supplementation in late pregnancy and lactation improves offspring immunity, gut microbiota, and diarrhea rate in a sow model. Front Microbiol 2023; 14:1142174. [PMID: 37168115 PMCID: PMC10165498 DOI: 10.3389/fmicb.2023.1142174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/15/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction Several studies have evaluated the effects of tributyrin on sow reproductive performance; however, none of these studies have investigated the effects of tributyrin on sow gut microbiota and its potential interactions with immune systems and milk composition. Therefore, we speculated that tributyrin, the combination of butyrate and mono-butyrin without odor, would reach the hindgut and affect the intestinal microbiota composition and play a better role in regulating sow reproductive performance, gut flora, and health. Methods Thirty sows (Landrace × Yorkshire) were randomly divided into two groups: the control group (CON) and the tributyrin group (TB), which received basal diet supplemented with 0.05% tributyrin. The experimental period lasted for 35 days from late pregnancy to lactation. Results The results showed that TB supplementation significantly shortened the total parturition time and reduced the diarrhea rate in suckling piglets. On day 20 of lactation, the milk fat and protein levels increased by 9 and 4%, respectively. TB supplementation significantly improved the digestibility of dry material, gross energy, and crude fat in the sow diet, but had no significant effect on crude protein digestibility. Furthermore, TB supplementation increased the levels of IL-10, IL-6, and IgA in the blood of weaned piglets, but had no effect on maternal immunity. Analysis of the fecal microbial composition revealed that the addition of TB during late gestation and lactation increased the microbiota diversity in sows and piglets. At the phylum level, sows in the TB group had a slight increase in the relative abundance of Bacteroidota and Spirochaetota and a decrease in Firmicutes. At the order level, the relative abundance of Lactobacillales was increased in piglets and sows, and the TB group showed increased relative abundance of Enterobacterales and significantly decreased relative abundance of Oscillospirales in piglets. At family level, the relative abundance of Lactobacillaceae, Oscillospiraceae, and Christensenellaceae increased in sows, and the relative abundance of Enterobacteriaceae and Lactobacillaceae increased in piglets. At genus level, the relative abundance of Lactobacillus increased in sows and piglets, but the relative abundance of Subdoligranulum and Eubacterium_fissicatena_group decreased in piglets in the TB group. Discussion In conclusion, tributyrin supplementation shortened the farrowing duration and reduced the diarrhea rate of piglets by improving the inflammatory response and composition of gut microbiota in piglets and sows.
Collapse
Affiliation(s)
- Yan Lin
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
- *Correspondence: Yan Lin,
| | - Dan Li
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
| | - Zhao Ma
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
| | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
| | - Lun Hua
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
| | - Junjie Zhang
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yuanxiao Wang
- Perstorp (Shanghai) Chemical Trading Co., Ltd., Shanghai, China
| |
Collapse
|
24
|
Canibe N, Højberg O, Kongsted H, Vodolazska D, Lauridsen C, Nielsen TS, Schönherz AA. Review on Preventive Measures to Reduce Post-Weaning Diarrhoea in Piglets. Animals (Basel) 2022; 12:2585. [PMID: 36230326 PMCID: PMC9558551 DOI: 10.3390/ani12192585] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 02/08/2023] Open
Abstract
In many countries, medical levels of zinc (typically as zinc oxide) are added to piglet diets in the first two weeks post-weaning to prevent the development of post-weaning diarrhoea (PWD). However, high levels of zinc constitute an environmental polluting agent, and may contribute to the development and/or maintenance of antimicrobial resistance (AMR) among bacteria. Consequently, the EU banned administering medical levels of zinc in pig diets as of June 2022. However, this may result in an increased use of antibiotic therapeutics to combat PWD and thereby an increased risk of further AMR development. The search for alternative measures against PWD with a minimum use of antibiotics and in the absence of medical levels of zinc has therefore been intensified over recent years, and feed-related measures, including feed ingredients, feed additives, and feeding strategies, are being intensively investigated. Furthermore, management strategies have been developed and are undoubtedly relevant; however, these will not be addressed in this review. Here, feed measures (and vaccines) are addressed, these being probiotics, prebiotics, synbiotics, postbiotics, proteobiotics, plants and plant extracts (in particular essential oils and tannins), macroalgae (particularly macroalgae-derived polysaccharides), dietary fibre, antimicrobial peptides, specific amino acids, dietary fatty acids, milk replacers, milk components, creep feed, vaccines, bacteriophages, and single-domain antibodies (nanobodies). The list covers measures with a rather long history and others that require significant development before their eventual use can be extended. To assess the potential of feed-related measures in combating PWD, the literature reviewed here has focused on studies reporting parameters of PWD (i.e., faeces score and/or faeces dry matter content during the first two weeks post-weaning). Although the impact on PWD (or related parameters) of the investigated measures may often be inconsistent, many studies do report positive effects. However, several studies have shown that control pigs do not suffer from diarrhoea, making it difficult to evaluate the biological and practical relevance of these improvements. From the reviewed literature, it is not possible to rank the efficacy of the various measures, and the efficacy most probably depends on a range of factors related to animal genetics and health status, additive doses used, composition of the feed, etc. We conclude that a combination of various measures is probably most recommendable in most situations. However, in this respect, it should be considered that combining strategies may lead to additive (e.g., synbiotics), synergistic (e.g., plant materials), or antagonistic (e.g., algae compounds) effects, requiring detailed knowledge on the modes of action in order to design effective strategies.
Collapse
Affiliation(s)
- Nuria Canibe
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | | | | | | | | | | | | |
Collapse
|
25
|
EPA and DHA confer protection against deoxynivalenol-induced endoplasmic reticulum stress and iron imbalance in IPEC-1 cells. Br J Nutr 2022; 128:161-171. [PMID: 34519265 DOI: 10.1017/s0007114521003688] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study assessed the molecular mechanism of EPA or DHA protection against intestinal porcine epithelial cell line 1 (IPEC-1) cell damage induced by deoxynivalenol (DON). The cells were divided into six groups, including the CON group, the EPA group, the DHA group, the DON group, the EPA + DON group and the DHA + DON group. RNA sequencing was used to investigate the potential mechanism, and qRT-PCR was employed to verify the expression of selected genes. Changes in ultrastructure were used to estimate pathological changes and endoplasmic reticulum (ER) injury in IPEC-1 cells. Transferrin receptor 1 (TFR1) was tested by ELISA. Fe2+ and malondialdehyde (MDA) contents were estimated by spectrophotometry, and reactive oxygen species (ROS) was assayed by fluorospectrophotometry. RNA sequencing analysis showed that EPA and DHA had a significant effect on the expression of genes involved in ER stress and iron balance during DON-induced cell injury. The results showed that DON increased ER damage, the content of MDA and ROS, the ratio of X-box binding protein 1s (XBP-1s)/X-box binding protein 1u (XBP-1u), the concentration of Fe2+ and the activity of TFR1. However, the results also showed that EPA and DHA decreased the ratio of XBP-1s/XBP-1u to relieve DON-induced ER damage of IPEC-1 cells. Moreover, EPA and DHA (especially DHA) reversed the factors related to iron balance. It can be concluded that EPA and DHA reversed IPEC-1 cell damage induced by DON. DHA has the potential to protect IPEC-1 cells from DON-induced iron imbalance by inhibiting ER stress.
Collapse
|
26
|
Hăbeanu M, Lefter NA, Gheorghe A, Ropota M, Toma SM, Pistol GC, Surdu I, Dumitru M. Alterations in Essential Fatty Acids, Immunoglobulins (IgA, IgG, and IgM), and Enteric Methane Emission in Primiparous Sows Fed Hemp Seed Oil and Their Offspring Response. Vet Sci 2022; 9:vetsci9070352. [PMID: 35878369 PMCID: PMC9319154 DOI: 10.3390/vetsci9070352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
This study shows the effects of dietary hemp seed oil on the milk composition, blood immunoglobulins (Ig), and enteric methane (E-CH4) production of primiparous sows, and their offspring’s response at three time points. A bifactorial experiment was conducted for 21 days (d) on 18 primiparous sows (195 ± 3 days old). The sows were fed two diets: (i) a control diet (SO) based on soybean oil (1.6%), with an 18.82 n-6:n-3 polyunsaturated fatty acids (PUFA) ratio; (ii) an experimental diet (HO) based on hemp seed oil (1.6%), with a 9.14 n-6:n-3 PUFA ratio. The milk contained an elevated level of linoleic acids (LA), n-3 FA, and especially alpha-linolenic acids (ALA), while the n-6:n-3 ratio declined using hemp oil. The Ig concentration was higher in colostrum than in milk. In the first few hours, the IgG in the plasma of piglets was more than double that of maternal plasma IgG (+2.39 times). A period effect (p < 0.0001) for IgG concentration in the plasma of piglets was recorded (40% at 10 d, respectively 73% lower at 21 d than 12 h after parturition). However, the sow diet did not affect Ig (p > 0.05). The frequency of diarrhoea declined after about 7 d. The value of the rate of diarrhoea was 6.2% lower in the PHO group. We found a 4.5% decline in E-CH4 in the HO group. Applying multiple linear regression, feed intake, n-6:n-3 ratio, ALA, and lean meat were potential indicators in estimating E-CH4. In conclusion, sow dietary hemp seed oil increased lean meat %, milk EFA, and milk IgM. Significant changes in the other dependent variables of interest (body weight, plasma Igs in sows and offspring, E-CH4 production) were not recorded. There was reduced diarrhoea which shows that EFA could play a therapeutic role in the incidence of diarrhoea and in lowering of E-CH4 emission in sows and progeny. All dependent variables were significantly altered at different time points, except for fat concentration in milk and sow plasma IgG.
Collapse
Affiliation(s)
- Mihaela Hăbeanu
- National Research Development Institute for Biology and Animal Nutrition, Balotesti, 077015 Ilfov, Romania; (N.A.L.); (A.G.); (M.R.); (S.M.T.); (G.C.P.); (M.D.)
- Correspondence:
| | - Nicoleta Aurelia Lefter
- National Research Development Institute for Biology and Animal Nutrition, Balotesti, 077015 Ilfov, Romania; (N.A.L.); (A.G.); (M.R.); (S.M.T.); (G.C.P.); (M.D.)
| | - Anca Gheorghe
- National Research Development Institute for Biology and Animal Nutrition, Balotesti, 077015 Ilfov, Romania; (N.A.L.); (A.G.); (M.R.); (S.M.T.); (G.C.P.); (M.D.)
| | - Mariana Ropota
- National Research Development Institute for Biology and Animal Nutrition, Balotesti, 077015 Ilfov, Romania; (N.A.L.); (A.G.); (M.R.); (S.M.T.); (G.C.P.); (M.D.)
| | - Smaranda Mariana Toma
- National Research Development Institute for Biology and Animal Nutrition, Balotesti, 077015 Ilfov, Romania; (N.A.L.); (A.G.); (M.R.); (S.M.T.); (G.C.P.); (M.D.)
| | - Gina Cecilia Pistol
- National Research Development Institute for Biology and Animal Nutrition, Balotesti, 077015 Ilfov, Romania; (N.A.L.); (A.G.); (M.R.); (S.M.T.); (G.C.P.); (M.D.)
| | - Ioan Surdu
- Mountain Economy Centre (CE-MONT), Romanian Academy “Costin C. Kiritescu” National Institute of Economic Researches, 050711 Bucharest, Romania; or
| | - Mihaela Dumitru
- National Research Development Institute for Biology and Animal Nutrition, Balotesti, 077015 Ilfov, Romania; (N.A.L.); (A.G.); (M.R.); (S.M.T.); (G.C.P.); (M.D.)
| |
Collapse
|
27
|
Abundance of plasma proteins in response to divergent ratios of dietary ω6:ω3 fatty acids in gestating and lactating sows using a quantitative proteomics approach. J Proteomics 2022; 260:104562. [DOI: 10.1016/j.jprot.2022.104562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/07/2022] [Accepted: 03/15/2022] [Indexed: 11/23/2022]
|
28
|
Li Q, Yang S, Zhang X, Liu X, Wu Z, Qi Y, Guan W, Ren M, Zhang S. Maternal Nutrition During Late Gestation and Lactation: Association With Immunity and the Inflammatory Response in the Offspring. Front Immunol 2022; 12:758525. [PMID: 35126349 PMCID: PMC8814630 DOI: 10.3389/fimmu.2021.758525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
The immature immune system at birth and environmental stress increase the risk of infection in nursing pigs. Severe infection subsequently induces intestinal and respiratory diseases and even cause death of pigs. The nutritional and physiological conditions of sows directly affect the growth, development and disease resistance of the fetus and newborn. Many studies have shown that providing sows with nutrients such as functional oligosaccharides, oils, antioxidants, and trace elements could regulate immunity and the inflammatory response of piglets. Here, we reviewed the positive effects of certain nutrients on milk quality, immunoglobulin inflammatory response, oxidative stress, and intestinal microflora of sows, and further discuss the effects of these nutrients on immunity and the inflammatory response in the offspring.
Collapse
Affiliation(s)
- Qihui Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Siwang Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaoli Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xinghong Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhihui Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yingao Qi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, Fengyang, China
- *Correspondence: Man Ren, ; Shihai Zhang,
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- *Correspondence: Man Ren, ; Shihai Zhang,
| |
Collapse
|
29
|
Threadgold T, Greenwood EC, Van Wettere W. Identifying Suitable Supplements to Improve Piglet Survival during Farrowing and Lactation. Animals (Basel) 2021; 11:ani11102912. [PMID: 34679933 DOI: 10.3390/ani1110291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 05/22/2023] Open
Abstract
Piglet mortality during parturition and prior to weaning is an ongoing economic and welfare issue. This review collates the current literature describing the effects of specific dietary supplements on key parameters affecting piglet survival. Four distinct parameters were identified as having a direct impact on the survival of piglets to weaning: stillbirth rate, birth weight and weight variation, daily gain and weaning weight, and colostrum and milk quality. In the primary stage, relevant literature from the past 5 years was reviewed, followed by a secondary review of literature older than 5 years. The focal parameters benefitted from different supplements. For example, stillbirth may be reduced by supplements in late gestation, including forms of arginine, alpha-tocopherol-selenium, uridine, and Saccharomyces cerevisiae yeast culture, whereas average daily gain and weaning weight were related closely to supplements which improved colostrum and milk quality, most commonly fats and fatty acids in the form of n-3 polyunsaturated fatty acids, soybean oil, and fish oil, and polysaccharides, such as ginseng polysaccharide. Therefore, an effective supplement plan for piglet mortality reduction must consider the circumstances of the individual system and target one or more of the highlighted parameters.
Collapse
Affiliation(s)
- Tobias Threadgold
- School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Mudla Wirra Road, Roseworthy, SA 5371, Australia
| | - Emma Catharine Greenwood
- School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Mudla Wirra Road, Roseworthy, SA 5371, Australia
| | - William Van Wettere
- School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Mudla Wirra Road, Roseworthy, SA 5371, Australia
| |
Collapse
|
30
|
Threadgold T, Greenwood EC, Van Wettere W. Identifying Suitable Supplements to Improve Piglet Survival during Farrowing and Lactation. Animals (Basel) 2021; 11:ani11102912. [PMID: 34679933 PMCID: PMC8532790 DOI: 10.3390/ani11102912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
Piglet mortality during parturition and prior to weaning is an ongoing economic and welfare issue. This review collates the current literature describing the effects of specific dietary supplements on key parameters affecting piglet survival. Four distinct parameters were identified as having a direct impact on the survival of piglets to weaning: stillbirth rate, birth weight and weight variation, daily gain and weaning weight, and colostrum and milk quality. In the primary stage, relevant literature from the past 5 years was reviewed, followed by a secondary review of literature older than 5 years. The focal parameters benefitted from different supplements. For example, stillbirth may be reduced by supplements in late gestation, including forms of arginine, alpha-tocopherol-selenium, uridine, and Saccharomyces cerevisiae yeast culture, whereas average daily gain and weaning weight were related closely to supplements which improved colostrum and milk quality, most commonly fats and fatty acids in the form of n-3 polyunsaturated fatty acids, soybean oil, and fish oil, and polysaccharides, such as ginseng polysaccharide. Therefore, an effective supplement plan for piglet mortality reduction must consider the circumstances of the individual system and target one or more of the highlighted parameters.
Collapse
|
31
|
Metzler-Zebeli BU. The Role of Dietary and Microbial Fatty Acids in the Control of Inflammation in Neonatal Piglets. Animals (Basel) 2021; 11:ani11102781. [PMID: 34679802 PMCID: PMC8532928 DOI: 10.3390/ani11102781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
Simple Summary The maturation of the gut is a specific and very dynamic process in new-born piglets. Consequently, piglet’s gut is very susceptible to disturbances, especially in stressful periods of life, such as weaning, when the gut lining often becomes inflamed and leaky. Dietary fatty acids (FA) do not only serve as source of energy and essential FA, but they are important precursors for bioactive lipid mediators, which modulate inflammatory signalling in the body. The current review summarizes results on dietary sources of FA for piglets, the signalling cascades, bioactivities, the necessity to consider the autoxidation potential of polyunsaturated FA and the area of microbially produced long-chain FA. That said, porcine milk is high in fat, whereby the milk FA composition partly depends on the dietary FA composition of the sow. Therefore, manipulation of the sow diet is an efficient tool to increase the piglet’s intake of specific FA, e.g., n-3 polyunsaturated FA which show anti-inflammatory activity and may support intestinal integrity and functioning in the growing animal. Abstract Excessive inflammation and a reduced gut mucosal barrier are major causes for gut dysfunction in piglets. The fatty acid (FA) composition of the membrane lipids is crucial for mediating inflammatory signalling and is largely determined by their dietary intake. Porcine colostrum and milk are the major sources of fat in neonatal piglets. Both are rich in fat, demonstrating the dependence of the young metabolism from fat and providing the young organism with the optimum profile of lipids for growth and development. The manipulation of sow’s dietary polyunsaturated FA (PUFA) intake has been shown to be an efficient strategy to increase the transfer of specific FAs to the piglet for incorporation in enteric tissues and cell membranes. n-3 PUFAs, especially seems to be beneficial for the immune response and gut epithelial barrier function, supporting the piglet’s enteric defences in situations of increased stress such as weaning. Little is known about microbial lipid mediators and their role in gut barrier function and inhibition of inflammation in neonatal piglets. The present review summarizes the current knowledge of lipid nutrition in new-born piglets, comparing the FA ingestion from milk and plant-based lipid sources and touching the areas of host lipid signalling, inflammatory signalling and microbially derived FAs.
Collapse
Affiliation(s)
- Barbara U Metzler-Zebeli
- Unit Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
32
|
McGhee ML, Stein HH. Hybrid rye may replace up to 75% of the corn in diets for gestating and lactating sows without negatively impacting sow and piglet performance. J Anim Sci 2021; 99:6341115. [PMID: 34350937 DOI: 10.1093/jas/skab230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/04/2021] [Indexed: 12/25/2022] Open
Abstract
An experiment was conducted to test the hypothesis that hybrid rye can replace a part of the corn in gestation and lactation diets without negatively affecting sow and litter performance. For each phase, a corn-soybean meal diet and three diets in which hybrid rye replaced 25%, 50%, or 75% of corn were formulated. Two hundred sows were randomly allotted by parity to the four treatments. Results indicated that diet did not affect body weight or average daily gain (ADG) of sows or number of pigs born. The number of pigs weaned, litter weaning weight, and litter ADG increased and then decreased (quadratic, P < 0.05) as hybrid rye in diets increased. Pig mortality and number of crushed pigs tended (quadratic, P < 0.10) to be reduced as hybrid rye was added to the diet. Serum cytokines did not differ among treatments on day 105 of gestation or in pigs on the day of weaning, but interleukin (IL)-4, IL-10, and IL-18 on day 13 of lactation increased and then decreased (quadratic, P < 0.05) as hybrid rye inclusion increased in diets. Milk urea N increased (linear, P < 0.05) as hybrid rye was included in the diet, but no other differences in milk composition were observed. Overall, replacing 25% or 50% of corn with hybrid rye resulted in improved lactation performance, and replacing 75% of corn with hybrid rye resulted in sow and litter performance that was not different from that of sows fed control diets.
Collapse
Affiliation(s)
- Molly L McGhee
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Hans H Stein
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
33
|
Associations among Dietary Omega-3 Polyunsaturated Fatty Acids, the Gut Microbiota, and Intestinal Immunity. Mediators Inflamm 2021; 2021:8879227. [PMID: 33488295 PMCID: PMC7801035 DOI: 10.1155/2021/8879227] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (omega-3 PUFAs), which are essential fatty acids that humans should obtain from diet, have potential benefits for human health. In addition to altering the structure and function of cell membranes, omega-3 PUFAs (docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), alpha-linolenic acid (ALA), and docosapentaenoic acid (DPA)) exert different effects on intestinal immune tolerance and gut microbiota maintenance. Firstly, we review the effect of omega-3 PUFAs on gut microbiota. And the effects of omega-3 PUFAs on intestinal immunity and inflammation were described. Furthermore, the important roles of omega-3 PUFAs in maintaining the balance between gut immunity and the gut microbiota were discussed. Additional factors, such as obesity and diseases (NAFLD, gastrointestinal malignancies or cancer, bacterial and viral infections), which are associated with variability in omega-3 PUFA metabolism, can influence omega-3 PUFAs–microbiome–immune system interactions in the intestinal tract and also play roles in regulating gut immunity. This review identifies several pathways by which the microbiota modulates the gut immune system through omega-3 PUFAs. Omega-3 supplementation can be targeted to specific pathways to prevent and alleviate intestinal diseases, which may help researchers identify innovative diagnostic methods.
Collapse
|
34
|
Nguyen TX, Agazzi A, Comi M, Bontempo V, Guido I, Panseri S, Sauerwein H, Eckersall PD, Burchmore R, Savoini G. Effects of Low ω6:ω3 Ratio in Sow Diet and Seaweed Supplement in Piglet Diet on Performance, Colostrum and Milk Fatty Acid Profiles, and Oxidative Status. Animals (Basel) 2020; 10:ani10112049. [PMID: 33167599 PMCID: PMC7694489 DOI: 10.3390/ani10112049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Feeding maternal animals divergent ratios of omega-6 (ω6) and omega-3 (ω3) fatty acids can change not only their health, physiological condition, and performance but also do the same for their offspring. In swine production, various ω6:ω3 ratios have been tested, but the search for an optimal proportion in the sow diet is still in progress. For piglets, weaning oxidative stress has been alleviated by supplementing with abundant sources of bioactive compounds. In this case, brown seaweed, a rich source of natural antimicrobials and antioxidants, can be a good candidate, but its supplementation in piglet diet is limited. This study explores the hypothesis that feeding a low ω6:ω3 ratio diet to sows during gestation and lactation, together with the supplementation of Ascophyllum nodosum for piglets during the post-weaning period, could benefit piglets’ performance and oxidative status more than the respective single treatment provided to the mother or the piglet. Results showed that the low dietary ω6:ω3 ratio (4:1) and seaweed supplement did not affect the post-weaning piglets’ growth rate and oxidative status. However, a low ω6:ω3 ratio diet alone improved weaning survival rate, suckling piglets’ weight gain, and total ω3 fatty acids in colostrum and milk. Abstract The ratio of omega-6 (ω6) to omega-3 (ω3) polyunsaturated fatty acids (PUFAs) in the diet contributes to animal health and performance modulations because they have mostly opposite physiological functions. Increasing ω3 PUFAs content in the maternal diet can stimulate antioxidative capacity in sow and piglets; however, the optimal ratio of ω6 and ω3 PUFAs in the sow diet is still under discussion. Rich sources of bioactive constituents such as brown seaweed are an excellent supplementation to promote animal health and antioxidant status. However, the knowledge of the effects of this compound, specifically in post-weaning piglets, is still limited. Moreover, the combined effect of a low ω6:ω3 PUFAs ratio in sow diet and seaweed supplementation in post-weaning piglets’ diet has never been studied. This research aims to assess the combined effect of a low ω6:ω3 ratio in sow diets and seaweed supplementation in piglet diets on their growth and oxidative status. We also assessed the impact of a low ω6:ω3 ratio in the maternal diet on reproduction, milk fatty acid (FA) profile, and plasma leptin concentration. Two sow diets (n = 8 each) contained either a control ratio (CR, 13:1 during gestation, starting from day 28 (G28) and 10:1 during lactation) or a low ratio (LR, 4:1 from G28 until the end of lactation (L-End)) of ω6:ω3 FA by adding soybean oil or linseed oil, respectively. Reproductive performance was evaluated. Colostrum and milk at lactation day 7 (L7) and L-End were collected to analyze FA profile. Plasma was collected at G28, G79, G108, L7, L14, and L-End for determination of leptin and oxidative status. At weaning, 20 male piglets were selected per sow group to form 4 diet treatments (n = 10 each), which were supplemented with or without 4 g/kg seaweed. Recording of growth performance and collection of blood were performed at days 0, 7, 15, and 21 of post-weaning for oxidative status. LR diet increased (p < 0.05) the survival rate of piglets at weaning, and individual and litter weight gains. Colostrum and milk at L7 and L-End had lower (p < 0.05) ω6:ω3 ratio in LR sows. Interaction between dietary treatments on sows and piglets was revealed for all examined growth parameters at most time points (p < 0.05). LR diet did not affect plasma leptin levels and oxidative status. These findings suggest that the seaweed supplement during post-weaning could not improve growth rate and oxidative status of piglets born from mothers receiving a low dietary ω6:ω3 ratio (4:1) during gestation and lactation. However, this low ratio was beneficial for weaning survival rate, sucking piglets’ weight gain, and ω3 enrichment in colostrum and milk.
Collapse
Affiliation(s)
- Thi Xuan Nguyen
- Department of Health, Animal Science and Food Safety ‘Carlo Cantoni’ (VESPA), Università degli Studi di Milano, Via dell’ Università 6, 26900 Lodi, Italy; (A.A.); (V.B.); (I.G.); (S.P.); (G.S.)
- College of Medical, Veterinary and Life Sciences, School of Veterinary Medicine, University of Glasgow, Garscube Estate, Switchback Road, Bearsden G61 1QH, UK; (P.D.E.); (R.B.)
- Correspondence:
| | - Alessandro Agazzi
- Department of Health, Animal Science and Food Safety ‘Carlo Cantoni’ (VESPA), Università degli Studi di Milano, Via dell’ Università 6, 26900 Lodi, Italy; (A.A.); (V.B.); (I.G.); (S.P.); (G.S.)
| | - Marcello Comi
- Department of Human Science and Quality of Life Promotion, Università Telematica San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy;
| | - Valentino Bontempo
- Department of Health, Animal Science and Food Safety ‘Carlo Cantoni’ (VESPA), Università degli Studi di Milano, Via dell’ Università 6, 26900 Lodi, Italy; (A.A.); (V.B.); (I.G.); (S.P.); (G.S.)
| | - Invernizzi Guido
- Department of Health, Animal Science and Food Safety ‘Carlo Cantoni’ (VESPA), Università degli Studi di Milano, Via dell’ Università 6, 26900 Lodi, Italy; (A.A.); (V.B.); (I.G.); (S.P.); (G.S.)
| | - Sara Panseri
- Department of Health, Animal Science and Food Safety ‘Carlo Cantoni’ (VESPA), Università degli Studi di Milano, Via dell’ Università 6, 26900 Lodi, Italy; (A.A.); (V.B.); (I.G.); (S.P.); (G.S.)
| | - Helga Sauerwein
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany;
| | - Peter David Eckersall
- College of Medical, Veterinary and Life Sciences, School of Veterinary Medicine, University of Glasgow, Garscube Estate, Switchback Road, Bearsden G61 1QH, UK; (P.D.E.); (R.B.)
| | - Richard Burchmore
- College of Medical, Veterinary and Life Sciences, School of Veterinary Medicine, University of Glasgow, Garscube Estate, Switchback Road, Bearsden G61 1QH, UK; (P.D.E.); (R.B.)
| | - Giovanni Savoini
- Department of Health, Animal Science and Food Safety ‘Carlo Cantoni’ (VESPA), Università degli Studi di Milano, Via dell’ Università 6, 26900 Lodi, Italy; (A.A.); (V.B.); (I.G.); (S.P.); (G.S.)
| |
Collapse
|
35
|
Świątkiewicz M, Hanczakowska E, Okoń K, Kowalczyk P, Grela ER. Effect of Maternal Diet and Medium Chain Fatty Acids Supplementation for Piglets on Their Digestive Tract Development, Structure, and Chyme Acidity as Well as Performance and Health Status. Animals (Basel) 2020; 10:ani10050834. [PMID: 32403448 PMCID: PMC7278414 DOI: 10.3390/ani10050834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Weaning is the most critical period of piglet rearing. During this time, pigs have not yet fully developed their intestinal tract and immune system; therefore, they are an easy target for pathogenic microorganisms that cause gastrointestinal diseases. In the last decade, several nutritional factors were studied to prevent gastrointestinal disorders in piglets. The present study aimed to evaluate the effect of oils for sows during late pregnancy and lactation on offspring performance. In addition, the study determined the effect of caprylic acid or medium-chain triglyceride oil in piglets’ feed on their intestinal structure development, fatty acids content of chyme, productive performance, and health status. Summarizing, the study showed that coconut oil fed to pregnant and lactating sows can markedly reduce the mortality of piglets during the weaning period and that caprylic acid and medium-chain fatty acid oil can be a good feed supplement in weaned piglet feed. The nutritional factors tested in the present study could be used in the diet of sows and piglets to improve the health of piglets and thus the efficiency of pig production. Abstract The objective of the present study was to evaluate the effect of oils for sows during late pregnancy and lactation on offspring performance. In addition, the effect of caprylic acid (C8) or medium-chain triglyceride oil (MCT) in piglets’ feed on their gut development, performance, and health status was determined. The experiment was conducted on 24 sows allocated to two treatments: diet with rapeseed oil or with coconut oil. Newborn piglets were randomly allocated to three treatments: feed with no supplement or supplemented with 0.3% MCT or with 0.3% C8. The results showed that both oils had no effect on sow reproductive rates; however, fatty acid patterns of milk differed significantly and the number of lost piglets was lower in sow fed with coconut oil. Both caprylic and MCT oil significantly improved piglet performance and villus height. These additives did not change triacylglycerol content in blood, but C8 lowered total cholesterol and MCT increased IgG content. It can be concluded that coconut oil fed to pregnant and lactating sows can markedly reduce the mortality of piglets and that caprylic acid and medium-chain fatty acid oil can be a good supplement in weaned piglet feed.
Collapse
Affiliation(s)
- Małgorzata Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland;
- Correspondence:
| | - Ewa Hanczakowska
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland;
| | - Krzysztof Okoń
- Department of Pathomorphology, Medical College, Jagiellonian University, Grzegórzecka 16, 31-531 Krakow, Poland;
| | - Piotr Kowalczyk
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka13, 20-950 Lublin, Poland;
- Auxilium Veterinary Clinic, Królewska 64, 20-950 Milanówek, Poland
| | - Eugeniusz R. Grela
- Institute of Animal Nutrition and Bromatology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland;
| |
Collapse
|
36
|
Reducing protein content in the diet of growing goats: implications for nitrogen balance, intestinal nutrient digestion and absorption, and rumen microbiota. Animal 2020; 14:2063-2073. [PMID: 32381142 DOI: 10.1017/s1751731120000890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Reducing dietary CP content is an effective approach to reduce animal nitrogen excretion and save protein feed resources. However, it is not clear how reducing dietary CP content affects the nutrient digestion and absorption in the gut of ruminants, therefore it is difficult to accurately determine how much reduction in dietary CP content is appropriate. This study was conducted to investigate the effects of reduced dietary CP content on N balance, intestinal nutrient digestion and absorption, and rumen microbiota in growing goats. To determine N balance, 18 growing wether goats (25.0 ± 0.5 kg) were randomly assigned to one of three diets: 13.0% (control), 11.5% and 10.0% CP. Another 18 growing wether goats (25.0 ± 0.5 kg) were surgically fitted with ruminal, proximate duodenal, and terminal ileal fistulae and were randomly assigned to one of the three diets to investigate intestinal amino acid (AA) absorption and rumen microbiota. The results showed that fecal and urinary N excretion of goats fed diets containing 11.5% and 10.0% CP were lower than those of goats fed the control diet (P < 0.05). When compared with goats fed the control diet, N retention was decreased and apparent N digestibility in the entire gastrointestinal tract was increased in goats fed the 10% CP diet (P < 0.05). When compared with goats fed the control diet, the duodenal flow of lysine, tryptophan and phenylalanine was decreased in goats fed the 11.5% CP diet (P < 0.05) and that of lysine, methionine, tryptophan, phenylalanine, leucine, glutamic acid, tyrosine, essential AAs (EAAs) and total AAs (TAAs) was decreased in goats fed the 10.0% CP diet (P < 0.05). When compared with goats fed the control diet, the apparent absorption of TAAs in the small intestine was increased in goats fed the 11.5% CP diet (P < 0.05) and that of isoleucine, serine, cysteine, EAAs, non-essential AAs, and TAAs in the small intestine was increased in goats fed the 10.0% CP diet (P < 0.05). When compared with goats fed the control diet, the relative richness of Bacteroidetes and Fibrobacteres was increased and that of Proteobacteria and Synergistetes was decreased in the rumen of goats fed a diet with 10.0% CP. In conclusion, reducing dietary CP content reduced N excretion and increased nutrient utilization by improving rumen fermentation, enhancing nutrient digestion and absorption, and altering rumen microbiota in growing goats.
Collapse
|
37
|
Effects of early protein restriction on the growth performance and gut development of pigs fed diets with or without antibiotic. Animal 2019; 14:1392-1401. [PMID: 31870464 DOI: 10.1017/s1751731119002921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In the livestock husbandry compensatory growth may be explored as a means to improve nutrient utilization, to reduce gut health problems due to excess protein intake, to simplify feeding strategies and thus to improve production efficiencies. This study investigated the effects of early protein restriction (EPR) and early antibiotic intervention (EAI) on growth performance, intestinal morphology, colonic bacteria, metabolites and mucosal gene expressions during the restriction phase and re-alimentation phase. A total of 64 piglets (10.04 ± 0.73 kg) were randomly divided into four treatment groups according to a 2 × 2 factorial arrangement with two levels of proteins (14% v. 20%) and two levels of antibiotics (0 v. 50 mg/kg kitasamycin and 20 mg/kg colistin sulphate). After a 30-day restriction phase with four kinds of diets, all groups were fed the same diets for another 74 days. The results showed that EPR decreased BW, average daily gain (ADG), average daily feed intake in the restriction phase (P < 0.01) and increased ADG on days 66 to 104 of the late re-alimentation phase. Early protein restriction could decrease the villus height in the jejunum (P < 0.05), while shifting to the same diets restored the villus height. Meanwhile, during the re-alimentation phase, pigs in the protein restriction groups had increased concentrations of total short chain fatty acids (P < 0.05), and modified the abundances of Firmicutes and Bacteroidetes in the colon. Furthermore, the lower microbial diversity caused by EPR was improved, and gene expression analysis indicated a better barrier function in the colon. During the whole trial, EAI had no interaction with EPR and played a dispensable role in compensatory growth. Collectively, the retardation of growth caused by EPR can be compensated for in the later stages of pig raising, and accompanied by altered intestinal morphology, microbial composition.
Collapse
|