1
|
Groenewegen KL, Gresnigt FMJ, Lonkhuyzen JJNV, den Haan C, Franssen EJF, Riezebos RK, Ohana D, de Lange DW. Cardiotoxicity After Synthetic Cathinone Use; Two Cases, A Case Series and Scoping Review. Cardiovasc Toxicol 2024; 24:209-224. [PMID: 38411851 PMCID: PMC10937789 DOI: 10.1007/s12012-024-09832-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/15/2024] [Indexed: 02/28/2024]
Abstract
The cardiotoxic effects of synthetic cathinones remain largely unknown. In this study, we present two cases, a case series and a scoping review, to explore synthetic cathinone associated cardiotoxicity. Case 1 involved a 28-year-old male with non-ST-elevation myocardial infarction after ingesting a substance containing 4-methylmethcathinone (4-MMC), 3-methylmethcathinon (3-MMC), and methcathinone. Case 2 involved a 49-year-old male with ventricular fibrillation after 4-methylmethcathinone ingestion, who was diagnosed with severe three-vessel disease. A retrospective analysis was performed on self-reported synthetic cathinone poisonings reported to the Dutch Poisons Information Centre from 2012 to 2022. A total of 222 mono-intoxications with cardiotoxicity were included, mostly involving 3-methylmethcathinon (63%). Often tachycardia, hypertension, palpitations, and chest pain were reported. A comprehensive literature search was performed on PubMed to identify the studies reporting cardiac arrest, myocardial infarction, cardiac inflammation, cardiomyopathy, and life-threatening arrhythmias following synthetic cathinone use. A total of 30 articles reporting 40 cases were included. The reported complications included cardiac arrest (n = 28), ventricular tachycardia (n = 4), supraventricular tachycardia (n = 1), ST-elevation myocardial infarction (n = 2), non-ST-elevation myocardial infarction (n = 2), cardiomyopathy (n = 1), and myocarditis (n = 2). A total of ten different associated synthetic cathinones were identified. Cardiac arrest, myocardial infarction, and ventricular arrhythmias have been reported following the use of synthetic cathinones, underscoring the importance of obtaining a detailed recreational drug use history from patients presenting with syncope, chest pain, or palpitations.
Collapse
Affiliation(s)
- K L Groenewegen
- Resident Cardiology, Heartcenter, OLVG Amsterdam, Oosterpark 9, 1091 AC, Amsterdam, The Netherlands
| | - F M J Gresnigt
- Emergency Physician, Emergency Department, OLVG Amsterdam, Oosterpark 9, 1091 AC, Amsterdam, The Netherlands.
- Consultant Clinical Toxicology, Dutch Poisons Information Centre, UMC Utrecht, 3508 GA, Utrecht, The Netherlands.
| | | | - C den Haan
- Information Specialist, OLVG Amsterdam, Oosterpark 9, 1091 AC, Amsterdam, The Netherlands
| | - E J F Franssen
- Hospital Pharmacist-Clinical Pharmacologist and Toxicologist, OLVG Amsterdam, Oosterpark 9, 1091 AC, Amsterdam, The Netherlands
| | - R K Riezebos
- Heartcenter, OLVG Amsterdam, Oosterpark 9, 1091 AC, Amsterdam, The Netherlands
- Currently, Cardiologist, Heartcenter Isala Zwolle, Dokter Van Heesweg 2, 8025 AB, Zwolle, The Netherlands
| | - D Ohana
- Center for Health Protection, National Institute for Public Health and Environment (RIVM), Antonie Van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - D W de Lange
- Toxicologist-Intensivist, Intensive Care and Dutch Poisons Information Centre, UMC Utrecht, 3508 GA, Utrecht, The Netherlands
| |
Collapse
|
2
|
Lavonas EJ, Akpunonu PD, Arens AM, Babu KM, Cao D, Hoffman RS, Hoyte CO, Mazer-Amirshahi ME, Stolbach A, St-Onge M, Thompson TM, Wang GS, Hoover AV, Drennan IR. 2023 American Heart Association Focused Update on the Management of Patients With Cardiac Arrest or Life-Threatening Toxicity Due to Poisoning: An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2023; 148:e149-e184. [PMID: 37721023 DOI: 10.1161/cir.0000000000001161] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
In this focused update, the American Heart Association provides updated guidance for resuscitation of patients with cardiac arrest, respiratory arrest, and refractory shock due to poisoning. Based on structured evidence reviews, guidelines are provided for the treatment of critical poisoning from benzodiazepines, β-adrenergic receptor antagonists (also known as β-blockers), L-type calcium channel antagonists (commonly called calcium channel blockers), cocaine, cyanide, digoxin and related cardiac glycosides, local anesthetics, methemoglobinemia, opioids, organophosphates and carbamates, sodium channel antagonists (also called sodium channel blockers), and sympathomimetics. Recommendations are also provided for the use of venoarterial extracorporeal membrane oxygenation. These guidelines discuss the role of atropine, benzodiazepines, calcium, digoxin-specific immune antibody fragments, electrical pacing, flumazenil, glucagon, hemodialysis, hydroxocobalamin, hyperbaric oxygen, insulin, intravenous lipid emulsion, lidocaine, methylene blue, naloxone, pralidoxime, sodium bicarbonate, sodium nitrite, sodium thiosulfate, vasodilators, and vasopressors for the management of specific critical poisonings.
Collapse
|
3
|
Soo JEJ, Ng M, Chong TKL, Tan BKK, Ponampalam R. A case of persistent refractory hypoglycemia from polysubstance recreational drug use. World J Emerg Med 2023; 14:75-77. [PMID: 36713342 PMCID: PMC9842469 DOI: 10.5847/wjem.j.1920-8642.2022.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Affiliation(s)
- Jie Er Janice Soo
- Department of Emergency Medicine, Singapore General Hospital, 169608, Singapore,Corresponding Author: Jie Er Janice Soo,
| | - Mingwei Ng
- Department of Emergency Medicine, Singapore General Hospital, 169608, Singapore
| | | | | | - R Ponampalam
- Department of Emergency Medicine, Singapore General Hospital, 169608, Singapore
| |
Collapse
|
4
|
Kuropka P, Zawadzki M, Szpot P. A review of synthetic cathinones emerging in recent years (2019-2022). Forensic Toxicol 2023; 41:25-46. [PMID: 36124107 PMCID: PMC9476408 DOI: 10.1007/s11419-022-00639-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/28/2022] [Indexed: 01/24/2023]
Abstract
Purpose The emergence of novel psychoactive substances (NPS) has been being a continuous and evolving problem for more than a decade. Every year, dozens of new, previously unknown drugs appear on the illegal market, posing a significant threat to the health and lives of their users. Synthetic cathinones are one of the most numerous and widespread groups among NPS. The purpose of this work was to identify and summarize available data on newly emerging cathinones in very recent years. Methods Various online databases such as PubMed, Google Scholar, but also databases of government agencies including those involved in early warning systems, were used in search of reports on the identification of newly emerging synthetic cathinones. In addition, threads on various forums created by users of these drugs were searched for reports on the effects of these new substances. Results We have identified 29 synthetic cathinones that have been detected for the first time from early 2019 to mid-2022. We described their structures, known intoxication symptoms, detected concentrations in biological material in poisoning cases, as well as the countries and dates of their first appearance. Due to the lack of studies on the properties of the novel compounds, we compared data on the pharmacological profiles of the better-known synthetic cathinones with available information on the newly emerged ones. Some of these new agents already posed a threat, as the first cases of poisonings, including fatal ones, have been reported. Conclusions Most of the newly developed synthetic cathinones can be seen as analogs and replacements for once-popular compounds that have been declining in popularity as a result of legislative efforts. Although it appears that some of the newly emerging cathinones are not widely used, they may become more popular in the future and could become a significant threat to health and life. Therefore, it is important to continue developing early warning systems and identifying new compounds so that their widespread can be prevented.
Collapse
Affiliation(s)
- Patryk Kuropka
- Institute of Toxicology Research, 45 Kasztanowa Street, Lower Silesia Province, 55093 Borowa, Poland
| | - Marcin Zawadzki
- grid.4495.c0000 0001 1090 049XDepartment of Forensic Medicine, Wroclaw Medical University, 4 J. Mikulicza‑Radeckiego Street, 50345 Wroclaw, Poland ,Institute of Toxicology Research, 45 Kasztanowa Street, Lower Silesia Province, 55093 Borowa, Poland
| | - Paweł Szpot
- grid.4495.c0000 0001 1090 049XDepartment of Forensic Medicine, Wroclaw Medical University, 4 J. Mikulicza‑Radeckiego Street, 50345 Wroclaw, Poland ,Institute of Toxicology Research, 45 Kasztanowa Street, Lower Silesia Province, 55093 Borowa, Poland
| |
Collapse
|
5
|
Relative reinforcing effects of dibutylone, ethylone, and N-ethylpentylone: self-administration and behavioral economics analysis in rats. Psychopharmacology (Berl) 2022; 239:2875-2884. [PMID: 35716192 DOI: 10.1007/s00213-022-06173-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/06/2022] [Indexed: 01/23/2023]
Abstract
RATIONALE Following the emergence of methylone as one of the most popular synthetic cathinones, this group of novel psychoactive substance with names ending in "-lone," such as dibutylone, ethylone, and N-ethylpentylone, appeared on the recreational drug market. The pharmacological mechanisms of dibutylone, ethylone, and N-ethylpentylone are well understood; however, to date, the reinforcing effects of dibutylone, ethylone, and N-ethylpentylone are still unclear. OBJECTIVES This study aimed to examine the self-administration of dibutylone, ethylone, and N-ethylpentylone relative to methamphetamine (METH) and to quantify their relative reinforcing effectiveness using behavioral economic analysis. METHODS Male Sprague-Dawley rats were trained to self-administer METH (0.05 mg/kg) under a fixed-ratio 1 (FR1) schedule. Following the training, dose substitution was used to generate full dose-response curves for METH and the three synthetic cathinones. According to the first doses on the descending limb of the dose-response curves, rats were trained to self-administer METH (0.05 mg/kg), dibutylone (0.1 mg·kg-1·infusion-1), ethylone (0.4 mg·kg-1·infusion-1), or N-ethylpentylone (0.1 mg·kg-1·infusion-1) under an FR1 schedule, and a behavioral economic evaluation of their reinforcing effectiveness was then performed. RESULTS Dibutylone, ethylone, and N-ethylpentylone functioned as reinforcers, and the inverted U-shaped dose-response curves were obtained. The rank order of reinforcing potency in this procedure was METH > N-ethylpentylone ≈ dibutylone > ethylone. In the economic analysis, the comparisons of the essential value (EV) transformed from demand elasticity (α) indicated that the rank order of efficacy as reinforcers was METH (EV = 7.93) ≈ dibutylone (EV = 7.81) > N-ethylpentylone (EV = 5.21) ≈ ethylone (EV = 4.19). CONCLUSIONS These findings demonstrated that dibutylone, ethylone, and N-ethylpentylone function as reinforcers and have addictive potential, suggesting that the modification of α-alkyl and N-alkyl side chains may affect their reinforcing efficacy.
Collapse
|
6
|
A Quantitative LC–MS/MS Method for the Detection of 16 Synthetic Cathinones and 10 Metabolites and Its Application to Suspicious Clinical and Forensic Urine Samples. Pharmaceuticals (Basel) 2022; 15:ph15050510. [PMID: 35631341 PMCID: PMC9145040 DOI: 10.3390/ph15050510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/17/2022] [Accepted: 04/17/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Synthetic cathinones currently represent one of the most predominant (sub)-classes of new psychoactive substance (NPS) in illicit drug markets. Despite the increased concerns caused by the constant introduction of new analogues, these drugs are not commonly assayed in routine drug testing procedures and may not be detected in standard screening procedures. This study presents a validated liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for the detection and quantification of 16 synthetic cathinones and 10 metabolites in human urine. Methods: The method was validated for all analytes using published guidelines. The evaluated parameters achieved acceptable values according to the set criteria. Potential abuse of synthetic cathinones was investigated in suspicious urine samples from Saudi Arabia originating from workplace drug testing, pre-employment and Accident & Emergency (A&E). Such samples generated a presumptive positive immunoassay for amphetamine; however, they yielded a negative LC–MS/MS confirmation for this analyte, following the recommended cutoff values of Substance of Abuse and Mental Health Services Administration (SAMHSA) guidelines. Results: 5.8% of the analyzed samples were found to contain at least one target analyte, namely mephedrone and N-ethylpentylone, as well as their dihydro-metabolites. The results also revealed polydrug use with the synthetic cathinones being present together with other classical stimulant drugs. Conclusions: This is the first report of NPS use in Saudi Arabia with respect to designer stimulant drugs. Confirmatory urine analyses for suspicious stimulant use should extend beyond classical stimulants to cover a broad range of NPSs and their metabolites in order to report any otherwise potentially undetected/new analyte.
Collapse
|
7
|
Santos LP, Nascimento MHC, Barros IHAS, Santos NA, Lacerda V, Filgueiras PR, Romão W. Portable Raman spectroscopy applied to the study of drugs of abuse. J Forensic Sci 2022; 67:1399-1416. [DOI: 10.1111/1556-4029.15011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/07/2021] [Accepted: 01/26/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Layla P. Santos
- Laboratório de Petroleômica e Forense Universidade Federal do Espírito Santo (UFES) Vitória Brazil
- Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense) Vila Velha Brazil
| | - Marcia H. C. Nascimento
- Laboratório de Petroleômica e Forense Universidade Federal do Espírito Santo (UFES) Vitória Brazil
| | - Iago H. A. S. Barros
- Laboratório de Petroleômica e Forense Universidade Federal do Espírito Santo (UFES) Vitória Brazil
| | - Nayara A. Santos
- Laboratório de Petroleômica e Forense Universidade Federal do Espírito Santo (UFES) Vitória Brazil
- Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense) Vila Velha Brazil
| | - Valdemar Lacerda
- Laboratório de Petroleômica e Forense Universidade Federal do Espírito Santo (UFES) Vitória Brazil
| | - Paulo R. Filgueiras
- Laboratório de Petroleômica e Forense Universidade Federal do Espírito Santo (UFES) Vitória Brazil
| | - Wanderson Romão
- Laboratório de Petroleômica e Forense Universidade Federal do Espírito Santo (UFES) Vitória Brazil
- Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense) Vila Velha Brazil
- Instituto Federal do Espírito Santo (IFES) Vila Velha Brazil
- Academia Brasileira de Ciências (ABC) Rio de Janeiro Brazil
| |
Collapse
|
8
|
West H, Fitzgerald J, Hopkins K, Li E, Clark N, Tzanetis S, Greene SL, Reid GE. Early Warning System for Illicit Drug Use at Large Public Events: Trace Residue Analysis of Discarded Drug Packaging Samples. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2604-2614. [PMID: 34460248 DOI: 10.1021/jasms.1c00232] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inspired by Locard's exchange principle, which states "every contact leaves a trace", a trace residue sampling strategy has been developed for the analysis of discarded drug packaging samples (DPS), as part of an early warning system for illicit drug use at large public events including music/dance festivals. Using direct analysis in real time/mass spectrometry and tandem mass spectrometry, rapid and high-throughput identification and characterization of a wide range of illicit drugs and adulterant substances was achieved, including in complex polydrug mixtures and at low relative ion abundances. A total of 1362 DPS were analyzed either off-site using laboratory-based instrumentation or on-site and in close to real time using a transportable mass spectrometer housed within a mobile analytical laboratory, with each analysis requiring less than 1 min per sample. Of the DPS analyzed, 92.2% yielded positive results for at least one of 15 different drugs and/or adulterants, including cocaine, MDMA, and ketamine, as well as numerous novel psychoactive substances (NPS). Also, 52.6% of positive DPS were found to contain polydrug mixtures, and a total of 42 different drug and polydrug combinations were observed throughout the study. For analyses performed on-site, reports to key stakeholders including event organizers, first aid and medical personnel, and peer-based harm reduction workers could be provided in as little as 5 min after sample collection. Following risk assessment of the potential harms associated with their use, drug advisories or alerts were then disseminated to event staff and patrons and subsequently to the general public when substances with particularly toxic properties were identified.
Collapse
Affiliation(s)
- Henry West
- School of Chemistry, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - John Fitzgerald
- School of Social and Political Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Katherine Hopkins
- School of Chemistry, The University of Melbourne, Melbourne, Victoria 3010, Australia
- School of Social and Political Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Eric Li
- Agilent Technologies Australia, Mulgrave, Victoria 3170, Australia
| | - Nicolas Clark
- North Richmond Community Health, Richmond, Victoria 3121, Australia
- Royal Melbourne Hospital, Melbourne, Victoria 3050, Australia
| | - Stephanie Tzanetis
- Harm Reduction Victoria, North Melbourne, Victoria 3051, Australia
- Harm Reduction Australia, Leura, New South Wales 2780, Australia
| | - Shaun L Greene
- Victorian Poisons Information Centre, Austin Health, Heidelberg, Victoria 3084, Australia
- Department of Medicine, Faculty of Medicine, University of Melbourne, Melbourne Victoria 3010, Australia
| | - Gavin E Reid
- School of Chemistry, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
9
|
Soares J, Costa VM, Bastos MDL, Carvalho F, Capela JP. An updated review on synthetic cathinones. Arch Toxicol 2021; 95:2895-2940. [PMID: 34100120 DOI: 10.1007/s00204-021-03083-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
Cathinone, the main psychoactive compound found in the plant Catha edulis Forsk. (khat), is a β-keto analogue of amphetamine, sharing not only the phenethylamine structure, but also the amphetamine-like stimulant effects. Synthetic cathinones are derivatives of the naturally occurring cathinone that largely entered the recreational drug market at the end of 2000s. The former "legal status", impressive marketing strategies and their commercial availability, either in the so-called "smartshops" or via the Internet, prompted their large spread, contributing to their increasing popularity in the following years. As their popularity increased, the risks posed for public health became clear, with several reports of intoxications and deaths involving these substances appearing both in the social media and scientific literature. The regulatory measures introduced thereafter to halt these trending drugs of abuse have proved to be of low impact, as a continuous emergence of new non-controlled derivatives keep appearing to replace those prohibited. Users resort to synthetic cathinones due to their psychostimulant properties but are often unaware of the dangers they may incur when using these substances. Therefore, studies aimed at unveiling the pharmacological and toxicological properties of these substances are imperative, as they will provide increased expertise to the clinicians that face this problem on a daily basis. The present work provides a comprehensive review on history and legal status, chemistry, pharmacokinetics, pharmacodynamics, adverse effects and lethality in humans, as well as on the current knowledge of the neurotoxic mechanisms of synthetic cathinones.
Collapse
Affiliation(s)
- Jorge Soares
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Vera Marisa Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - João Paulo Capela
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
- FP-ENAS (Fernando Pessoa Energy, Environment and Health Research Unit), CEBIMED (Biomedical Research Centre), Faculty of Health Sciences, University of Fernando Pessoa, Porto, Portugal.
| |
Collapse
|
10
|
Krotulski AJ, Papsun DM, Chronister CW, Homan J, Crosby MM, Hoyer J, Goldberger BA, Logan BK. Eutylone Intoxications-An Emerging Synthetic Stimulant in Forensic Investigations. J Anal Toxicol 2021; 45:8-20. [PMID: 33325503 DOI: 10.1093/jat/bkaa113] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/14/2020] [Accepted: 08/19/2020] [Indexed: 11/13/2022] Open
Abstract
Synthetic stimulants are the largest class of novel psychoactive substances identified each year by forensic laboratories internationally. While hundreds of these drugs appear in drug powders, only a few proliferate in use among forensically relevant populations and eventually emerge in postmortem and clinical investigations. Beta-keto-methylenedioxyamphetamines (i.e., novel psychoactive substances with names ending in "ylone") are currently the most popular subclass of synthetic stimulants. Leading up to its federal scheduling in 2018, N-ethyl pentylone was the most encountered synthetic stimulant. The popularity of N-ethyl pentylone declined once it was scheduled, but it was quickly replaced by eutylone (bk-EBDB), a structurally related analog from the same family. In cases encountered between January 2019 and April 2020, eutylone was quantitatively confirmed in 83 forensic investigations, including postmortem cases and driving under the influence of drugs cases. Matrix types included blood, urine and tissue. Eutylone was identified in cases submitted from 13 states, demonstrating proliferation around the United States; Florida accounted for 60% of the positive cases. The mean concentration of eutylone in postmortem blood was 1,020 ng/mL (standard deviation = ±2,242 ng/mL; median = 110 ng/mL, range = 1.2-11,000 ng/mL, n = 67). The mean concentration of eutylone in blood from driving under the influence of drugs cases was 942 ng/mL (standard deviation = ±1,407 ng/mL; median = 140 ng/mL, range = 17-3,600 ng/mL, n = 7). This report includes cause and manner of death data for 22 postmortem cases. Further analysis of authentic human specimens revealed the presence of three eutylone metabolites, including one unique biomarker and one metabolite in common with butylone. Laboratories should be aware that eutylone may be present in cases of suspected Ecstasy, "Molly" and/or methylenedioxymethamphetamine use, causing or contributing to impairment or death.
Collapse
Affiliation(s)
- Alex J Krotulski
- Center for Forensic Science Research and Education at the Fredric Rieders Family Foundation, Willow Grove, PA 19090, USA
| | | | - Chris W Chronister
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Joseph Homan
- NMS Labs, Toxicology Department, Horsham, PA 19044, USA
| | - Michele M Crosby
- Department of Chemistry, Biochemistry and Physics, University of Tampa, Tampa, FL 33606, USA
| | - Jennifer Hoyer
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Bruce A Goldberger
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Barry K Logan
- NMS Labs, Toxicology Department, Horsham, PA 19044, USA
| |
Collapse
|
11
|
Papa P, Valli A, Di Tuccio M, Buscaglia E, Brambilla E, Scaravaggi G, Gallo M, Locatelli CA. Prevalence of Stimulant, Hallucinogen, and Dissociative Substances Detected in Biological Samples of NPS-Intoxicated Patients in Italy. J Psychoactive Drugs 2021; 53:247-255. [PMID: 33470904 DOI: 10.1080/02791072.2020.1862370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A number of new psychoactive substances (NPS) have been released in the last decade, and the list of NPS continues to grow. This paper reports a retrospective evaluation of the toxicological analyses in 1,445 suspected intoxication cases by psychostimulant, hallucinogen, and dissociative NPS occurring in hospitals across Italy from 2011 to 2019. The objectives of the study were to contribute to the monitoring of the NPS diffusion based on analytically confirmed intoxications, and to evaluate the importance of the clinical toxicological laboratory in the diagnosis of NPS intoxication. For at least one NPS of the considered classes, 246 patients (17.0%) tested positive. Forty-four different NPS were detected and a consistent turnover was observed during the nine-year period, especially regarding cathinones. Among the positive cases, 47.2% tested positive for dissociative NPS, with particular regard to ketamine. Hallucinogens (30.9%) was the second most frequent NPS involved. Stimulants were found in 20% of the positive cases with a considerable presence of cathinones. Findings confirm the dynamism of the NPS phenomenon, underline the importance of awareness of this new public health threat among health care professionals, and highlight the need for analytical confirmation for the identification of the drugs in forensic contexts.
Collapse
Affiliation(s)
- Pietro Papa
- Fondazione IRCCS Policlinico San Matteo, Analisi Chimico-cliniche. Laboratorio Di Tossicologia Analitica, Pavia, Italy
| | - Antonella Valli
- Fondazione IRCCS Policlinico San Matteo, Analisi Chimico-cliniche. Laboratorio Di Tossicologia Analitica, Pavia, Italy
| | | | - Eleonora Buscaglia
- IRCCS Ospedale Di Pavia, Istituti Clinici Scientifici Maugeri SpA. Servizio Tossicologia, Centro Antiveleni. Centro Nazionale Informazione Tossicologica, Pavia, Italy
| | - Elena Brambilla
- IRCCS Ospedale Di Pavia, Istituti Clinici Scientifici Maugeri SpA. Servizio Tossicologia, Centro Antiveleni. Centro Nazionale Informazione Tossicologica, Pavia, Italy
| | - Giulia Scaravaggi
- IRCCS Ospedale Di Pavia, Istituti Clinici Scientifici Maugeri SpA. Servizio Tossicologia, Centro Antiveleni. Centro Nazionale Informazione Tossicologica, Pavia, Italy
| | - Mariapina Gallo
- ASST Ospedale Papa Giovanni XXIII, Centro Antiveleni e Tossicologia, Bergamo, Italy
| | - Carlo Alessandro Locatelli
- IRCCS Ospedale Di Pavia, Istituti Clinici Scientifici Maugeri SpA. Servizio Tossicologia, Centro Antiveleni. Centro Nazionale Informazione Tossicologica, Pavia, Italy
| |
Collapse
|
12
|
Luethi D, Liechti ME. Designer drugs: mechanism of action and adverse effects. Arch Toxicol 2020; 94:1085-1133. [PMID: 32249347 PMCID: PMC7225206 DOI: 10.1007/s00204-020-02693-7] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 12/18/2022]
Abstract
Psychoactive substances with chemical structures or pharmacological profiles that are similar to traditional drugs of abuse continue to emerge on the recreational drug market. Internet vendors may at least temporarily sell these so-called designer drugs without adhering to legal statutes or facing legal consequences. Overall, the mechanism of action and adverse effects of designer drugs are similar to traditional drugs of abuse. Stimulants, such as amphetamines and cathinones, primarily interact with monoamine transporters and mostly induce sympathomimetic adverse effects. Agonism at μ-opioid receptors and γ-aminobutyric acid-A (GABAA) or GABAB receptors mediates the pharmacological effects of sedatives, which may induce cardiorespiratory depression. Dissociative designer drugs primarily act as N-methyl-D-aspartate receptor antagonists and pose similar health risks as the medically approved dissociative anesthetic ketamine. The cannabinoid type 1 (CB1) receptor is thought to drive the psychoactive effects of synthetic cannabinoids, which are associated with a less desirable effect profile and more severe adverse effects compared with cannabis. Serotonergic 5-hydroxytryptamine-2A (5-HT2A) receptors mediate alterations of perception and cognition that are induced by serotonergic psychedelics. Because of their novelty, designer drugs may remain undetected by routine drug screening, thus hampering evaluations of adverse effects. Intoxication reports suggest that several designer drugs are used concurrently, posing a high risk for severe adverse effects and even death.
Collapse
Affiliation(s)
- Dino Luethi
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Währinger Strasse 13a, 1090, Vienna, Austria.
- Institute of Applied Physics, Vienna University of Technology, Getreidemarkt 9, 1060, Vienna, Austria.
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Schanzenstrasse 55, 4056, Basel, Switzerland.
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Schanzenstrasse 55, 4056, Basel, Switzerland.
| |
Collapse
|
13
|
Synthetic psychoactive cathinones: hypothermia and reduced lethality compared to methamphetamine and methylenedioxymethamphetamine. Pharmacol Biochem Behav 2020; 191:172871. [PMID: 32061662 DOI: 10.1016/j.pbb.2020.172871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/16/2019] [Accepted: 02/11/2020] [Indexed: 12/16/2022]
Abstract
RATIONALE Synthetic psychoactive cathinones (SPCs) are drugs with psychostimulant and entactogenic properties like methamphetamine (MA) and 3,4-methylenedioxymethamphetamine (MDMA). Despite clinical reports of human overdose, it remains to be determined if SPCs have greater propensity for adverse effects than MA or MDMA. OBJECTIVES To determine whether the SPCs cathinone (CAT), methcathinone (MCAT), mephedrone (MMC), and methylenedioxypyrovalerone (MDPV) have lower LD50 values than MA or MDMA. METHODS Male and female C57Bl/6J mice received single injections of one of 6 doses of a test drug (0-160 mg/kg IP). Temperature and behavioral observations were taken every 20 min for 2 h followed by euthanasia of surviving mice. Organs were weighed and evaluated for histopathological changes. RESULTS LD50 values for MA and MDMA, 84.5 and 100.9 mg/kg respectively, were similar to previous observations. The LD50 for MMC was 118.8 mg/kg, but limited lethality was observed for other SPCs (CAT, MCAT, MDPV), so LD50 values could not be calculated. For all drugs, death was associated with seizure, when it was observed. Rather than hyperthermia, dose-dependent hypothermia was observed for MMC, MDPV, CAT, and MCAT. Contrary to initial expectations, none of the SPCs studied here had LD50 values lower than MA or MDMA. CONCLUSIONS These data indicate that, under the conditions studied here: (1) SPCs exhibit less lethality than MA and MDMA; (2) SPCs impair thermoregulation; (3) effects of SPCs on temperature appear to be independent of effects on lethality.
Collapse
|
14
|
Fatal intoxication with N-ethylpentylone: a case report and method for determining N-ethylpentylone in biological material. Forensic Toxicol 2019. [DOI: 10.1007/s11419-019-00483-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Gatch MB, Dolan SB, Forster MJ. Locomotor activity and discriminative stimulus effects of five novel synthetic cathinone analogs in mice and rats. Drug Alcohol Depend 2019; 199:50-58. [PMID: 30986635 PMCID: PMC6534427 DOI: 10.1016/j.drugalcdep.2019.02.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND The development of novel synthetic psychoactive substances continues to accelerate. There are little or no data on the pharmacological mechanisms, behavioral effects, or abuse liability of many of the newer compounds, despite increasing reports of severe adverse effects in recreational users. METHODS The current study investigated the discriminative stimulus and locomotor stimulant effects of a group of synthetic cathinone analogs: N-ethylpentylone, dimethylone, dibutylone, clephedrone, 3',4'-tetramethylene-α-pyrrolidinovalerophenone (TH-PVP). Locomotor activity was assessed in an open-field assay using Swiss-Webster mice. Discriminative stimulus effects were assessed in Sprague-Dawley rats trained to discriminate either cocaine, methamphetamine or MDMA from vehicle. RESULTS N-Ethylpentylone, dimethylone, dibutylone and clephedrone increased locomotor activity. Maximal effects were similar among the test compounds. Relative potencies were: methamphetamine > N-ethylpentylone > clephedrone > dimethylone > MDMA > cocaine > dibutylone. TH-PVP dose-dependently depressed locomotor activity. N-Ethylpentylone, dimethylone, dibutylone and clephedrone substituted fully for the discriminative stimulus effects of methamphetamine. N-Ethylpentylone, dibutylone and clephedrone fully substituted for cocaine, whereas dimethylone produced a maximum of 67% drug-appropriate responding. Dimethylone, dibutylone and clephedrone fully substituted for MDMA, whereas N-ethylpentylone produced only 50% drug-appropriate responding. TH-PVP produced a maximum of 38% methamphetamine-appropriate responding, 50% cocaine-appropriate responding, and less than 1% MDMA-appropriate responding. CONCLUSIONS These data provide initial evidence that the novel psychoactive substances N-ethylpentylone, dimethylone, dibutylone, and clephedrone demonstrate potential for abuse as psychostimulants and/or club drugs, given their ability to stimulate locomotor activity and their substitution for the discriminative stimulus effects of methamphetamine, cocaine and/or MDMA. TH-PVP has minimal activity in the assays tested and may have little or no abuse liability.
Collapse
Affiliation(s)
- Michael B Gatch
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107-2699, USA.
| | - Sean B Dolan
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107-2699, USA
| | - Michael J Forster
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107-2699, USA
| |
Collapse
|
16
|
Costa JL, Cunha KF, Lanaro R, Cunha RL, Walther D, Baumann MH. Analytical quantification, intoxication case series, and pharmacological mechanism of action for N-ethylnorpentylone (N-ethylpentylone or ephylone). Drug Test Anal 2019; 11:461-471. [PMID: 30207090 PMCID: PMC7316160 DOI: 10.1002/dta.2502] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 01/28/2023]
Abstract
Synthetic cathinones continue to proliferate in clandestine drug markets worldwide. N-ethylnorpentylone (also known as N-ethylpentylone or ephylone) is a popular emergent cathinone, yet little information is available about its toxicology and pharmacology. Here we characterize the analytical quantification, clinical presentation, and pharmacological mechanism of action for N-ethylnorpentylone. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used to quantify N-ethylnorpentylone in blood obtained from human cases. Clinical features exhibited by the intoxicated individuals are described. The activity of N-ethylnorpentylone at plasma membrane transporters for dopamine (DAT), norepinephrine (NET) and 5-HT (SERT) was assessed using in vitro assays measuring uptake inhibition and evoked release of [3 H] neurotransmitters in rat brain synaptosomes. Our LC-MS/MS method assayed N-ethylnorpentylone concentrations with limits of detection and quantification of 1 and 5 ng/mL, respectively. Quantitation was linear from 5 to 500 ng/mL, and the method displayed specificity and reproducibility. Circulating concentrations of N-ethylnorpentylone ranged from 7 to 170 ng/mL in clinical cases, and the associated symptoms included palpitations, tachycardia, agitation, hallucinations, coma and death. N-Ethylnorpentylone was a potent inhibitor at DAT (IC50 = 37 nM), NET (IC50 = 105 nM) and SERT (IC50 = 383 nM) but displayed no transporter releasing activity. We present a validated method for quantifying N-ethylnorpentylone in human case work. The drug is a psychomotor stimulant capable of inducing serious cardiovascular and neurological side-effects which can be fatal. In vitro findings indicate that N-ethylnorpentylone exerts its effects by potent blockade of DAT and NET, thereby elevating extracellular levels of dopamine and norepinephrine in the brain and periphery.
Collapse
Affiliation(s)
- Jose Luiz Costa
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, São Paulo 13083-859, Brazil
- Campinas Poison Control Center, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo 13083-859, Brazil
| | - Kelly Francisco Cunha
- Campinas Poison Control Center, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo 13083-859, Brazil
| | - Rafael Lanaro
- Campinas Poison Control Center, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo 13083-859, Brazil
| | - Ricardo Leal Cunha
- Institute of Chemistry, Federal University of Bahia, Salvador, Bahia 40170-115, Brazil
- Institute of Analysis and Forensic Research, Aracaju, Sergipe 49100-000, Brazil
| | - Donna Walther
- Designer Drug Research Unit of the Intramural Research Program, National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD, USA
| | - Michael H. Baumann
- Designer Drug Research Unit of the Intramural Research Program, National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
17
|
Ikeji C, Sittambalam CD, Camire LM, Weisman DS. Fatal intoxication with N-ethylpentylone: a case report. J Community Hosp Intern Med Perspect 2018; 8:307-310. [PMID: 30356999 PMCID: PMC6197033 DOI: 10.1080/20009666.2018.1510711] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/02/2018] [Indexed: 12/02/2022] Open
Abstract
Synthetic cathinones represent the latest genre of new drugs of abuse, which are increasing in popularity in part because they are readily available and because they are not detected by routine drug testing. They provide a cheaper substitute to stimulants such as methamphetamine and cocaine and are sold on the internet and in retail establishments as ‘bath salts,’ ‘plant food,’ or ‘research chemicals.’ We report a case involving a 21-year-old male who suffered arrest-related death due to intoxication with N-ethylpentylone, a new cathinone derivative. He reportedly left his house to smoke marijuana and returned displaying extremely odd behavior. The patient was unresponsive upon presentation to the emergency room and was intubated after suffering cardiac arrest. Clinical laboratory values revealed elevated lactic acidosis, hyperkalemia, rhabdomyolysis, and renal injury. His condition continued to worsen despite medical management. Sudden cardiac arrest occurred again 72 hours into his hospital stay and the patient was pronounced dead. Post-mortem toxicology testing with gas chromatography and mass spectrometry determined the presence of N-ethylpentylone in the urine. This case report details the behavior effects, clinical presentation, and autopsy findings for N-ethylpentylone drug intoxication.
Collapse
Affiliation(s)
- Chisom Ikeji
- Department of Medicine, MedStar Union Memorial Hospital, Baltimore, MD, USA.,Department of Medicine, MedStar Franklin Square Medical Center, Baltimore, MD, USA.,Department of Medicine, MedStar Good Samaritan Hospital, Baltimore, MD, USA
| | | | - Lyn M Camire
- Department of Medicine, MedStar Union Memorial Hospital, Baltimore, MD, USA
| | - David S Weisman
- Department of Medicine, MedStar Good Samaritan Hospital, Baltimore, MD, USA
| |
Collapse
|