1
|
Zhou L, Yang J, Zhang K, Wang T, Jiang S, Zhang X. Rising Star in Immunotherapy: Development and Therapeutic Potential of Small-Molecule Inhibitors Targeting Casitas B Cell Lymphoma-b (Cbl-b). J Med Chem 2024; 67:816-837. [PMID: 38181380 DOI: 10.1021/acs.jmedchem.3c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Casitas B cell lymphoma-b (Cbl-b) is a vital negative regulator of TCR and BCR signaling pathways, playing a significant role in setting an appropriate threshold for the activation of T cells and controlling the tolerance of peripheral T cells via a variety of mechanisms. Overexpression of Cbl-b leads to immune hyporesponsiveness of T cells. Conversely, the deficiency of Cbl-b in T cells results in markedly increased production of IL-2, even in the lack of CD28 costimulation in vitro. And Cbl-b-/- mice spontaneously reject multifarious cancers. Therefore, Cbl-b may be associated with immune-mediated diseases, and blocking Cbl-b could be considered as a new antitumor immunotherapy strategy. In this review, the possible regulatory mechanisms and biological potential of Cbl-b for antitumor immunotherapy are summarized. Besides, the potential roles of Cbl-b in immune-mediated diseases are comprehensively discussed, with emphasis on Cbl-b immune-oncology agents in the preclinical stage and clinical trials.
Collapse
Affiliation(s)
- Lixin Zhou
- Department of Medicinal Chemistry, School of Pharmacy and School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Jiamei Yang
- Department of Medicinal Chemistry, School of Pharmacy and School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Kuojun Zhang
- Department of Medicinal Chemistry, School of Pharmacy and School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Tianyu Wang
- Department of Medicinal Chemistry, School of Pharmacy and School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng Jiang
- Department of Medicinal Chemistry, School of Pharmacy and School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangyu Zhang
- Department of Medicinal Chemistry, School of Pharmacy and School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
2
|
Mechanism of Yangxinshi Intervention on Cardiac Fibrosis in Diabetic Cardiomyopathy Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3968494. [PMID: 35096111 PMCID: PMC8799326 DOI: 10.1155/2022/3968494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 12/14/2021] [Accepted: 12/31/2021] [Indexed: 11/17/2022]
Abstract
Background Cardiac fibrosis (CF) is major myocardial change in diabetic cardiomyopathy (DCM). Yangxinshi as a Chinese medicine formula is used to treat cardiovascular diseases. However, the exact effective mechanism of Yangxinshi on CF is still uncertain. Hence, based on the pharmacological network, predicting the active components, potential targets and pathways of Yangxinshi on diabetic fibrosis require to be further studied. Materials and Methods By using Cytoscape 3.6.0 Bisogenet plug-in, the active components of Yangxinshi were obtained and screened through TCMSP, and the PPI network of DCM-CF was constructed and then screened by CytoNCA plug-in. GO analysis and KEGG pathway enrichment analysis were carried out by Cluego plug-in. Combined with the results of network pharmacological analysis, cells in vitro were performed to verify the CF stimulated with high glucose or intervence with Yangxinshi, and the expressions of Cbl-b, p-smad2, and α-SMA were detected. Results Yangxinshi might play a key role in reversing cardiac fibrosis in individuals with DCM by regulating the signal pathway of CBL and promoted the expression of Cbl-b and inhibited the expression of p-smad2 and α-SMA, verifying some predictive work via network pharmacology. Conclusion Based on network pharmacology, this study demonstrates that the beneficial effect of Yangxinshi on CF is related to the Cbl-b/smad2 pathway, providing an idea for the therapeutic effect of Yangxinshi on cardiac fibrosis in DCM.
Collapse
|
3
|
Schanz O, Cornez I, Yajnanarayana SP, David FS, Peer S, Gruber T, Krawitz P, Brossart P, Heine A, Landsberg J, Baier G, Wolf D. Tumor rejection in Cblb -/- mice depends on IL-9 and Th9 cells. J Immunother Cancer 2021; 9:jitc-2021-002889. [PMID: 34272310 PMCID: PMC8287598 DOI: 10.1136/jitc-2021-002889] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Casitas B lymphoma-b (Cbl-b) is a central negative regulator of cytotoxic T and natural killer (NK) cells and functions as an intracellular checkpoint in cancer. In particular, Th9 cells support mast cell activation, promote dendritic cell recruitment, enhance the cytolytic function of cytotoxic T lymphocytes and NK cells, and directly kill tumor cells, thereby contributing to tumor immunity. However, the role of Cbl-b in the differentiation and antitumor function of Th9 cells is not sufficiently resolved. METHODS Using Cblb -/- mice, we investigated the effect of knocking out Cblb on the differentiation process and function of different T helper cell subsets, focusing on regulatory T cell (Treg) and Th9 cells. We applied single-cell RNA (scRNA) sequencing of in vitro differentiated Th9 cells to understand how Cbl-b shapes the transcriptome and regulates the differentiation and function of Th9 cells. We transferred tumor-model antigen-specific Cblb -/- Th9 cells into melanoma-bearing mice and assessed tumor control in vivo. In addition, we blocked interleukin (IL)-9 in melanoma cell-exposed Cblb -/- mice to investigate the role of IL-9 in tumor immunity. RESULTS Here, we provide experimental evidence that Cbl-b acts as a rheostat favoring Tregs at the expense of Th9 cell differentiation. Cblb -/- Th9 cells exert superior antitumor activity leading to improved melanoma control in vivo. Accordingly, blocking IL-9 in melanoma cell-exposed Cblb -/- mice reversed their tumor rejection phenotype. Furthermore, scRNA sequencing of in vitro differentiated Th9 cells from naïve T cells isolated from wildtype and Cblb -/- animals revealed a transcriptomic basis for increased Th9 cell differentiation. CONCLUSION We established IL-9 and Th9 cells as key antitumor executers in Cblb -/- animals. This knowledge may be helpful for the future improvement of adoptive T cell therapies in cancer.
Collapse
Affiliation(s)
- Oliver Schanz
- Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Isabelle Cornez
- Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | | | - Friederike Sophie David
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany.,Institute of Human Genetics, University Hospital Bonn, Bonn, Germany
| | - Sebastian Peer
- Institute of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Gruber
- Institute of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany
| | - Peter Brossart
- Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Annkristin Heine
- Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | | | - Gottfried Baier
- Institute of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Bonn, Germany .,Department of Internal Medicine V, Hematology and Oncology, and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Tang R, Langdon WY, Zhang J. Regulation of immune responses by E3 ubiquitin ligase Cbl-b. Cell Immunol 2018; 340:103878. [PMID: 30442330 DOI: 10.1016/j.cellimm.2018.11.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022]
Abstract
Casitas B lymphoma-b (Cbl-b), a RING finger E3 ubiquitin ligase, has been identified as a critical regulator of adaptive immune responses. Cbl-b is essential for establishing the threshold for T cell activation and regulating peripheral T cell tolerance through various mechanisms. Intriguingly, recent studies indicate that Cbl-b also modulates innate immune responses, and plays a key role in host defense to pathogens and anti-tumor immunity. These studies suggest that targeting Cbl-b may represent a potential therapeutic strategy for the management of human immune-related disorders such as autoimmune diseases, infections, tumors, and allergic airway inflammation. In this review, we summarize the latest developments regarding the roles of Cbl-b in innate and adaptive immunity, and immune-mediated diseases.
Collapse
Affiliation(s)
- Rong Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Wallace Y Langdon
- School of Biological Sciences, University of Western Australia, Perth, Australia
| | - Jian Zhang
- Department of Pathology, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
5
|
Li W, Xu L, Che X, Li H, Zhang Y, Song N, Wen T, Hou K, Yang Y, Zhou L, Xin X, Xu L, Zeng X, Shi S, Liu Y, Qu X, Teng Y. C-Cbl reverses HER2-mediated tamoxifen resistance in human breast cancer cells. BMC Cancer 2018; 18:507. [PMID: 29720121 PMCID: PMC5930956 DOI: 10.1186/s12885-018-4387-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 04/17/2018] [Indexed: 01/12/2023] Open
Abstract
Background Tamoxifen is a frontline therapy for estrogen receptor (ER)-positive breast cancer in premenopausal women. However, many patients develop resistance to tamoxifen, and the mechanism underlying tamoxifen resistance is not well understood. Here we examined whether ER-c-Src-HER2 complex formation is involved in tamoxifen resistance. Methods MTT and colony formation assays were used to measure cell viability and proliferation. Western blot was used to detect protein expression and protein complex formations were detected by immunoprecipitation and immunofluorescence. SiRNA was used to examine the function of HER2 in of BT474 cells. An in vivo xenograft animal model was established to examine the role of c-Cbl in tumor growth. Results MTT and colony formation assay showed that BT474 cells are resistant to tamoxifen and T47D cells are sensitive to tamoxifen. Immunoprecipitation experiments revealed ER-c-Src-HER2 complex formation in BT474 cells but not in T47D cells. However, ER-c-Src-HER2 complex formation was detected after overexpressing HER2 in T47D cells and these cells were more resistant to tamoxifen. HER2 knockdown by siRNA in BT474 cells reduced ER-c-Src-HER2 complex formation and reversed tamoxifen resistance. ER-c-Src-HER2 complex formation was also disrupted and tamoxifen resistance was reversed in BT474 cells by the c-Src inhibitor PP2 and HER2 antibody trastuzumab. Nystatin, a lipid raft inhibitor, reduced ER-c-Src-HER2 complex formation and partially reversed tamoxifen resistance. ER-c-Src-HER2 complex formation was disrupted by overexpression of c-Cbl but not by the c-Cbl ubiquitin ligase mutant. In addition, c-Cbl could reverse tamoxifen resistance in BT474 cells, but the ubiquitin ligase mutant had no effect. The effect of c-Cbl was validated in BT474 tumor-bearing nude mice in vivo. Immunofluorescence also revealed ER-c-Src-HER2 complex formation was reduced in tumor tissues of nude mice with c-Cbl overexpression. Conclusions Our results suggested that c-Cbl can reverse tamoxifen resistance in HER2-overexpressing breast cancer cells by inhibiting the formation of the ER-c-Src-HER2 complex. Electronic supplementary material The online version of this article (10.1186/s12885-018-4387-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Ling Xu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Xiaofang Che
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Haizhou Li
- Jinzhou Center Hospital, Jinzhou, 121000, Liaoning, China
| | - Ye Zhang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Na Song
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Ti Wen
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Kezuo Hou
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Yi Yang
- Laboratory Animal Center, China Medical University, Shenyang, 110001, Liaoning, China
| | - Lu Zhou
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Xing Xin
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Lu Xu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Xue Zeng
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Sha Shi
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Yunpeng Liu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China. .,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China.
| | - Yuee Teng
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China. .,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
6
|
Gao YY, Liu QM, Liu B, Xie CL, Cao MJ, Yang XW, Liu GM. Inhibitory Activities of Compounds from the Marine Actinomycete Williamsia sp. MCCC 1A11233 Variant on IgE-Mediated Mast Cells and Passive Cutaneous Anaphylaxis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10749-10756. [PMID: 29148756 DOI: 10.1021/acs.jafc.7b04314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The compounds of the deep-sea-derived marine Williamsia sp. MCCC 1A11233 (CDMW) were isolated, which are secondary metabolites of the actinomycetes. In this study, seven kinds of CDMW were found to decrease degranulation and histamine release in immunoglobulin E (IgE)-mediated rat basophilic leukemia (RBL)-2H3 cells. The production of cytokines (tumor necrosis factor-α, interleukin-4) was inhibited by these CDMW in RBL-2H3 cells, and their chemical structures were established mainly based on detailed analysis of their NMR spectra. CDMW-3, CDMW-5, and CDMW-15 were further demonstrated to block mast cell-dependent passive cutaneous anaphylaxis in IgE-sensitized mice. Bone marrow mononuclear cells (BMMCs) were established to clarify the effect of CDMW-3, CDMW-5, and CDMW-15 on mast cells. The seven kinds of CDMW decreased the degranulation and histamine release of BMMCs. Furthermore, flow cytometry results indicated that CDMW-3, CDMW-5, and CDMW-15 increased the annexin+ cell population of BMMCs. In conclusion, CDMW-3, CDMW-5, and CDMW-15 have obvious antiallergic activity due to induction of the apoptosis of mast cells.
Collapse
Affiliation(s)
- Yuan-Yuan Gao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen 361021, Fujian, P. R. China
| | - Qing-Mei Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen 361021, Fujian, P. R. China
| | - Bo Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen 361021, Fujian, P. R. China
| | - Chun-Lan Xie
- Key Laboratory of Marine Biogenetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration , 184 Daxue Road, Xiamen 361005, P. R. China
| | - Min-Jie Cao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen 361021, Fujian, P. R. China
| | - Xian-Wen Yang
- Key Laboratory of Marine Biogenetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration , 184 Daxue Road, Xiamen 361005, P. R. China
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen 361021, Fujian, P. R. China
| |
Collapse
|
7
|
Kim M, Lim SJ, Lee HJ, Nho CW. Cassia tora Seed Extract and Its Active Compound Aurantio-obtusin Inhibit Allergic Responses in IgE-Mediated Mast Cells and Anaphylactic Models. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9037-46. [PMID: 26434611 DOI: 10.1021/acs.jafc.5b03836] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cassia tora seed is widely used due to its various biological properties including anticancer, antidiabetic, and anti-inflammatory effects. However, there has been no report of the effects of C. tora seed extract (CTE) on immunoglobulin E (IgE)-mediated allergic responses. In this research, we demonstrated the effects of CTE and its active compound aurantio-obtusin on IgE-sensitized allergic reactions in mast cells and passive cutaneous anaphylaxis (PCA). CTE and aurantio-obtusin suppressed degranulation, histamine production, and reactive oxygen species generation and inhibited the production and mRNA expression of tumor necrosis factor-α and interleukin-4. CTE and aurantio-obtusin also suppressed the prostaglandin E2 production and expression of cyclooxygenase 2. Furthermore, CTE and aurantio-obtusin suppressed IgE-mediated FcεRI signaling such as phosphorylation of Syk, protein kinase Cμ, phospholipase Cγ, and extracellular signal-regulated kinases. CTE and aurantio-obtusin blocked mast cell-dependent PCA in IgE-mediated mice. These results suggest that CTE and aurantio-obtusin are a beneficial treatment for allergy-related diseases.
Collapse
Affiliation(s)
- Myungsuk Kim
- Natural Products Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute , Gangwon, Korea
| | - Sue Ji Lim
- Natural Products Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute , Gangwon, Korea
| | - Hee-Ju Lee
- Natural Products Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute , Gangwon, Korea
| | - Chu Won Nho
- Natural Products Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute , Gangwon, Korea
| |
Collapse
|
8
|
Liu Q, Zhou H, Langdon WY, Zhang J. E3 ubiquitin ligase Cbl-b in innate and adaptive immunity. Cell Cycle 2014; 13:1875-84. [PMID: 24875217 DOI: 10.4161/cc.29213] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b), a RING finger E3 ubiquitin-protein ligase, has been demonstrated to play a crucial role in establishing the threshold for T-cell activation and controlling peripheral T-cell tolerance via multiple mechanisms. Accumulating evidence suggests that Cbl-b also regulates innate immune responses and plays an important role in host defense to pathogens. Understanding the signaling pathways regulated by Cbl-b in innate and adaptive immune cells is therefore essential for efficient manipulation of Cbl-b in emerging immunotherapies for human disorders such as autoimmune diseases, allergic inflammation, infections, and cancer. In this article, we review the latest developments in the molecular structural basis of Cbl-b function, the regulation of Cbl-b expression, the signaling mechanisms of Cbl-b in immune cells, as well as the biological function of Cbl-b in physiological and pathological immune responses in animal models and human diseases.
Collapse
Affiliation(s)
- Qingjun Liu
- Laboratory of Immunohematology; Beijing Institute of Transfusion Medicine; Beijing, PR China; Department of Microbial Infection and Immunity; The Ohio State University; Columbus, OH USA
| | - Hong Zhou
- Laboratory of Immunohematology; Beijing Institute of Transfusion Medicine; Beijing, PR China
| | - Wallace Y Langdon
- School of Pathology and Laboratory Medicine; University of Western Australia; Crawley, Western Australia, Australia
| | - Jian Zhang
- Department of Microbial Infection and Immunity; The Ohio State University; Columbus, OH USA
| |
Collapse
|
9
|
Lipid raft-regulated IGF-1R activation antagonizes TRAIL-induced apoptosis in gastric cancer cells. FEBS Lett 2013; 587:3815-23. [DOI: 10.1016/j.febslet.2013.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/29/2013] [Accepted: 10/09/2013] [Indexed: 12/30/2022]
|
10
|
Lee T, Lee S, Ho Kim K, Oh KB, Shin J, Mar W. Effects of magnolialide isolated from the leaves of Laurus nobilis L. (Lauraceae) on immunoglobulin E-mediated type I hypersensitivity in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2013; 149:550-556. [PMID: 23891890 DOI: 10.1016/j.jep.2013.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 07/04/2013] [Accepted: 07/11/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Laurus nobilis L. (Lauraceae) has been used for folk medicines in the Mediterranean area and Europe to treat various disorders including skin inflammation (dermatitis) and asthma. AIM OF THE STUDY Our aim was to investigate the scientific evaluation of the compounds from Laurus nobilis L. on immuniglobulin E (IgE)-mediated type I hypersensitivity responses in vitro such as atopic dermatitis and asthma. METHODS AND MATERIALS Seven compounds were isolated and examined for the mast cell stabilizing effect on IgE-sensitized RBL-2H3 mast cells by measuring the β-hexosaminidase activity. In addition, the effects on interleukin (IL)-4 production and IL-5-dependent Y16 early B cell proliferation were investigated as well as their cytotoxic effects on RBL-2H3 cells. RESULTS Among the seven isolated compounds, magnolialide attenuated the release of β-hexosaminidase from RBL-2H3 cells with an IC50 value of 20.2 μM, while the other compounds revealed no significant effects at concentrations tested. Furthermore, magnolialide significantly inhibited the IL-4 release with an IC50 value of 18.1 μM and IL-4 mRNA expression with an IC50 value of 15.7 μM in IgE-sensitized RBL-2H3 cells. In addition, the inhibition of IL-5-dependent proliferation of early B cells (Y16 cells) by magnolialide was demonstrated with an IC50 value of 18.4 μM. CONCLUSION These results suggest that the magnolialide might be a candidate for the treatment of IgE-mediated hypersensitivity responses such as atopic dermatitis and asthma by inhibiting mast cell degranulation, the IL-4 production, and IL-5-dependent early B cell proliferation, key factors in the development and amplification of type I hypersensitivity reactions.
Collapse
Affiliation(s)
- Taehun Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
11
|
OUYANG WEN, YANG CHUNXU, ZHANG SIMIN, LIU YU, YANG BO, ZHANG JUNHONG, ZHOU FUXIANG, ZHOU YUNFENG, XIE CONGHUA. Absence of death receptor translocation into lipid rafts in acquired TRAIL-resistant NSCLC cells. Int J Oncol 2012; 42:699-711. [DOI: 10.3892/ijo.2012.1748] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 11/30/2012] [Indexed: 11/05/2022] Open
|
12
|
Xu L, Zhang Y, Liu J, Qu J, Hu X, Zhang F, Zheng H, Qu X, Liu Y. TRAIL-activated EGFR by Cbl-b-regulated EGFR redistribution in lipid rafts antagonises TRAIL-induced apoptosis in gastric cancer cells. Eur J Cancer 2012; 48:3288-99. [PMID: 22456178 DOI: 10.1016/j.ejca.2012.03.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/17/2012] [Accepted: 03/03/2012] [Indexed: 12/30/2022]
Abstract
Most gastric cancer cells are resistant to tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). Since TRAIL resistance is associated with lipid rafts, in which both death receptors and epidermal growth factor receptors (EGFR) are enriched, our aim is to identify how lipid raft-regulated receptor redistribution influences the sensitivity of TRAIL in gastric cancer cells. In TRAIL-resistant gastric cancer cells, TRAIL did not induce effective death-inducing signalling complex (DISC) formation in lipid rafts, accompanied with EGFR translocation into lipid rafts, and activation of EGFR pathway. Knockdown of casitas B-lineage lymphoma-b (Cbl-b) enhanced TRAIL-induced apoptosis by promoting DISC formation in lipid rafts. However, knockdown of Cbl-b also enhanced EGFR translocation into lipid rafts and EGFR pathway activation induced by TRAIL. Either using inhibitors of EGFR or depletion of EGFR with small interfering RNA (siRNA) prevented EGFR pathway activation, and thus increased TRAIL-induced apoptosis, especially in Cbl-b knockdown clones. Taken together, TRAIL-induced EGFR activation through Cbl-b-regulated EGFR redistribution in lipid rafts antagonised TRAIL-induced apoptosis. The contribution of DISC formation and the inhibition of EGFR signal triggered in lipid rafts are both essential for increasing the sensitivity of gastric cancer cells to TRAIL.
Collapse
Affiliation(s)
- Ling Xu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Horiguchi T, Ishiguro N, Chihara K, Ogi K, Nakashima K, Sada K, Hori-Tamura N. Inhibitory effect of açaí (Euterpe oleracea Mart.) pulp on IgE-mediated mast cell activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:5595-5601. [PMID: 21486000 DOI: 10.1021/jf2005707] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The palm fruit açaí is known to have potential health benefits due to its antioxidant scavenging capacities. Pretreatment of IgE-sensitized mouse primary cultured mast cells with açaí pulp resulted in the dramatic suppression of antigen-induced degranulation in a dose-dependent manner. Similarly, açaí suppressed IgE-mediated degranulation and transcription of the cytokine genes from a cultured mast cell line of rat basophilic leukemia (RBL)-2H3 cells. Açaí could selectively inhibit FcεRI signaling pathways. Furthermore, the FcεRI-mediated complementary signaling pathway was also suppressed by açaí. These results demonstrate that açaí is a potent inhibitor of IgE-mediated mast cell activation.
Collapse
Affiliation(s)
- Tomoko Horiguchi
- Laboratory of Biochemistry, Graduate School of Life Science, Kobe Women's University, Kobe, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Xu L, Qu X, Zhang Y, Hu X, Yang X, Hou K, Teng Y, Zhang J, Sada K, Liu Y. Oxaliplatin enhances TRAIL-induced apoptosis in gastric cancer cells by CBL-regulated death receptor redistribution in lipid rafts. FEBS Lett 2009; 583:943-8. [PMID: 19223002 DOI: 10.1016/j.febslet.2009.02.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 02/10/2009] [Accepted: 02/10/2009] [Indexed: 11/18/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor family that selectively induces apoptosis in cancer cells. However, gastric cancer cells are insensitive to TRAIL. In the present study, we show that oxaliplatin enhanced TRAIL-induced apoptosis of MGC803, BGC823, and SGC7901 cells. Oxaliplatin promoted death receptor 4 (DR4) and death receptor 5 (DR5) clustering into aggregated lipid rafts, while the cholesterol-sequestering agent nystatin partially prevented lipid raft aggregation, DR4 and DR5 clustering, and reduced apoptosis. Furthermore, the expression of the casitas B-lineage lymphoma (Cbl) family was downregulated by oxaliplatin. Transfection of c-Cbl or Cbl-b partially reversed oxaliplatin-induced lipid raft aggregation. These results indicated that oxaliplatin enhanced TRAIL-induced gastric cancer cell apoptosis at least partially through Cbl-regulated death receptor redistribution in lipid rafts.
Collapse
Affiliation(s)
- Ling Xu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Up-regulation of the Cbl family of ubiquitin ligases is involved in ATRA and bufalin-induced cell adhesion but not cell differentiation. Biochem Biophys Res Commun 2007; 367:183-9. [PMID: 18164258 DOI: 10.1016/j.bbrc.2007.12.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 12/19/2007] [Indexed: 11/22/2022]
Abstract
The Casitas B-lineage Lymphoma (Cbl) family of ubiquitin ligases is multifunctional proteins that play important roles in different cell signaling pathways. It has been reported that c-Cbl and Cbl-b mRNAs are up-regulated during TPA-induced U937 and HL-60 cell differentiation. But the mechanism of the up-regulation and the roles of the Cbl family of ubiquitin ligases still remain unclear. In the present study, we demonstrated that bufalin enhanced all-trans retinoic acid (ATRA) induced differentiation of HL-60 cells, accompanied by up-regulation of the Cbl family of ubiquitin ligases. CsA, an inhibitor of calcium mobilization, reversed this up-regulation. Pretreatment with CsA and PS-341 did not affect the expression of CD11b, but suppressed the percentage of adherent cells. Lipid raft localization of Cbl-b enhanced cell adhesion, while C-terminal deletion partially suppressed the effect. Moreover, the expression of the adhesion-related kinases Pyk2 and Paxillin was up-regulated in parallel with the increase of Cbl proteins. These results suggested that up-regulation of c-Cbl and Cbl-b was involved in the regulation of ATRA and bufalin-induced HL-60 cell adhesion rather than cell differentiation, which might be mediated by lipid raft localization, ubiquitin ligase activity and C-terminal structure of Cbl proteins. Meanwhile, up-regulation of proline-rich tyrosine kinase (Pyk2) and Paxillin might also be implicated in this regulation.
Collapse
|
16
|
Oksvold MP, Dagger SA, Thien CBF, Langdon WY. The Cbl-b RING finger domain has a limited role in regulating inflammatory cytokine production by IgE-activated mast cells. Mol Immunol 2007; 45:925-36. [PMID: 17868870 DOI: 10.1016/j.molimm.2007.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 08/03/2007] [Accepted: 08/06/2007] [Indexed: 12/26/2022]
Abstract
The RING finger type E3 ubiquitin ligase, Cbl-b, is abundantly expressed in bone marrow-derived mast cells (BMMCs) and functions as a potent negative regulator of signalling responses from the high-affinity IgE receptor (FcvarepsilonRI). To determine the contribution of Cbl-b E3 ligase activity we generated knockin mice with a loss-of-function mutation in the RING finger domain. We find the mice to be healthy and, unlike equivalent c-Cbl RING finger mutant mice, produce homozygous offspring at the expected frequency. Comparative analyses of BMMCs from Cbl-b knockout and Cbl-b RING finger mutant mice revealed that both showed similarly enhanced FcvarepsilonRI signalling compared to wild-type cells for most parameters examined. A notable exception was a markedly higher level of activation of IkappaB kinase (IKK) in Cbl-b knockout BMMC compared to RING finger mutant-derived cells. In addition BMMCs from the Cbl-b RING finger mutant did not retard FcvarepsilonRI internalization to the extent observed for knockout cells. Most striking however was the finding that RING finger mutant mast cells do not produce the very high levels of TNF-alpha, IL-6, and MCP-1 evident in Cbl-b knockout cultures following FcvarepsilonRI activation. Thus the ability of Cbl-b to function as a negative regulator of FcvarepsilonRI signalling that promotes inflammatory cytokine production is largely independent of the RING finger domain.
Collapse
Affiliation(s)
- Morten P Oksvold
- School of Surgery and Pathology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | | | | |
Collapse
|
17
|
Gustin SE, Thien CBF, Langdon WY. Cbl-b is a negative regulator of inflammatory cytokines produced by IgE-activated mast cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:5980-9. [PMID: 17056522 DOI: 10.4049/jimmunol.177.9.5980] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
c-Cbl and Cbl-b E3 ubiquitin ligases are abundantly expressed in hemopoietic cells where they negatively regulate the activity and levels of many cell surface receptors and associated signaling molecules. By comparing bone marrow-derived mast cells from c-Cbl and Cbl-b-deficient mice it has recently been shown that Cbl-b is the dominant family member for negatively regulating signaling responses from high-affinity IgE receptors. In this study, we suggest that a possible reason for the greater enhancement of IgE receptor signaling in Cbl-b-deficient mice is the relatively higher levels of Cbl-b protein over c-Cbl in mast cells compared with other hemopoietic cells. We also directly compare mast cells from c-Cbl and Cbl-b-deficient mice and find that loss of Cbl-b, but not c-Cbl, increases cell growth, retards receptor internalization, and causes the sustained tyrosine phosphorylation of Syk and its substrates. However, loss of Cbl-b does not enhance the activation of ERK or Akt, nor does it promote a greater calcium response. Furthermore, loss of Cbl-b or c-Cbl does not increase levels of the Syk or Lyn protein tyrosine kinases. Most notable, however, is the extremely large increase in the production of proinflammatory cytokines TNF-alpha, IL-6, and MCP-1 by Cbl-b(-/-) mast cells compared with levels produced by c-Cbl(-/-) or wild-type cells. This marked induction, which appears to be restricted to these three cytokines, is dependent on IgE receptor activation and correlates with enhanced IkappaB kinase phosphorylation. Thus, Cbl-b functions as a potent negative regulator of cytokines that promote allergic and inflammatory reactions.
Collapse
Affiliation(s)
- Sonja E Gustin
- School of Surgery and Pathology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | | |
Collapse
|
18
|
Cuschieri J, Billigren J, Maier RV. Endotoxin tolerance attenuates LPS-induced TLR4 mobilization to lipid rafts: a condition reversed by PKC activation. J Leukoc Biol 2006; 80:1289-97. [PMID: 16959900 DOI: 10.1189/jlb.0106053] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Endotoxin tolerance is characterized by attenuated macrophage activation to subsequent LPS challenge and can be reversed through nonspecific protein kinase C (PKC) activation, and activation by LPS within naïve cells requires the activation of the cell surface receptors CD14 and TLR4 on lipid rafts. The effect of PKC activation and endotoxin tolerance on lipid raft receptor complex assembly is unknown and the focus of this study. Tolerance was induced in THP-1 cells through LPS pre-exposure. Naïve and tolerant cells were stimulated with LPS, with or without PMA pretreatment to activate PKC. TLR4 surface expression and LPS binding were determined by flow cytometry and immunohistochemistry. Cellular and lipid raft protein was analyzed for the presence and activation of the TLR4 complex components. Harvested supernatants were examined for TNF-alpha production. Total TLR4 surface expression and LPS binding were not affected by tolerance induction. LPS stimulation of naïve cells resulted in TLR4 and heat shock protein (HSP)70 lipid raft mobilization, MAPK activation, and TNF-alpha production. LPS stimulation of tolerant cells was associated with attenuation of all of these cellular events. Although PKC activation by PMA had no effect on naïve cells, it did result in reversal in tolerance-induced suppression of TLR4 and HSP70 lipid raft mobilization, MAPK activation, and TNF-alpha production. In addition, the effects associated with PMA were reversed with exposure to a myristoylated PKC-zeta pseudosubstrate. Thus, endotoxin tolerance appears to be induced through attenuated TLR4 formation following LPS stimulation. This complex formation appears to be PKC-dependent, and restoration of PKC activity reverses tolerance.
Collapse
Affiliation(s)
- Joseph Cuschieri
- University of Washington, Harborview Medical Center, 325 9th Avenue, Box 359796, Seattle, WA 98104, USA.
| | | | | |
Collapse
|